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Abstract

Quantitative histomorphometry (QH) refers to the application of advanced computational image analysis to reproducibly
describe disease appearance on digitized histopathology images. QH thus could serve as an important complementary tool
for pathologists in interrogating and interpreting cancer morphology and malignancy. In the US, annually, over 60,000
prostate cancer patients undergo radical prostatectomy treatment. Around 10,000 of these men experience biochemical
recurrence within 5 years of surgery, a marker for local or distant disease recurrence. The ability to predict the risk of
biochemical recurrence soon after surgery could allow for adjuvant therapies to be prescribed as necessary to improve long
term treatment outcomes. The underlying hypothesis with our approach, co-occurring gland angularity (CGA), is that in
benign or less aggressive prostate cancer, gland orientations within local neighborhoods are similar to each other but are
more chaotically arranged in aggressive disease. By modeling the extent of the disorder, we can differentiate surgically
removed prostate tissue sections from (a) benign and malignant regions and (b) more and less aggressive prostate cancer.
For a cohort of 40 intermediate-risk (mostly Gleason sum 7) surgically cured prostate cancer patients where half suffered
biochemical recurrence, the CGA features were able to predict biochemical recurrence with 73% accuracy. Additionally, for
80 regions of interest chosen from the 40 studies, corresponding to both normal and cancerous cases, the CGA features
yielded a 99% accuracy. CGAs were shown to be statistically signicantly (pv0:05) better at predicting BCR compared to
state-of-the-art QH methods and postoperative prostate cancer nomograms.
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Introduction

Each year in the United States, nearly 60,000 men diagnosed

with prostate cancer (CaP) undergo radical prostatectomy (RP)

[1]. In cases for which there is no prior evidence of disease spread,

treatment of CaP with RP has generally resulted in favorable long

term outcome [2]. However, for 15–40% of RP patients,

biochemical recurrence (BCR) occurs within 5 years of surgery

[1]. BCR is commonly defined as a detectable persistence of

prostate specific antigen (PSA) of at least 0.2 ng/ml and is

suggestive of either local or distant recurrence of disease

necessitating further treatment [3]. Consequently, it is important

to be able to predict the risk of BCR soon after surgery, so that if

needed, adjuvant treatments can be initiated.

Gleason scoring [4] is a pathology based grading system based

on the visual analysis of glandular and nuclear morphology. Low

Gleason scores have been associated with more favorable longer

term prognosis for prostate cancer, while the converse is true for

higher Gleason scores [5]. Gleason scoring combines the grade of

the most common and second most common patterns within the

tissue section, resulting in a Gleason sum ranging from 2 (least

aggressive) to 10 (most aggressive). Gleason score is currently

regarded as the best biomarker for predicting disease aggressive-

ness and longer term, post-surgical patient outcome [4]. Unfor-

tunately, post-surgical outcome of prostate cancer patients with

intermediate Gleason scores can vary considerably [6]. Some

statistical tables suggest a 5-year BCR-free survival rate as low as

43% in men with Gleason sum 7 [5]. Furthermore, Gleason

scoring is subject to considerable inter-reviewer variability [7].

Allsbrook et al. [7] reported a kappa-coefficient of 0.4 representing

moderate agreement amongst pathologists for grading Gleason

score 7 patterns. Therefore, the prognostic value of Gleason
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scoring alone for predicting BCR in RP patients with intermediate

Gleason scores appears to be limited.

Over the last two decades, many postoperative nomograms

have been developed to incorporate additional clinical variables

such as tumor stage, pre-operative PSA, or positive surgical

margins [5,8–11] in order to predict patient and disease outcome.

The Kattan nomogram [8] incorporated these parameters to

predict 80 month BCR free survival following radical prostatec-

tomy. Han et al. [5] incorporated Gleason sum, tumor stage, and

pre-operative PSA into a series of probability tables, known as the

Han Tables. Subsequently, the Stephenson nomogram [9] added

the date of surgery as a prognostic variable. The University of

California at San Francisco built their own risk score predictor

(CAPRA) [10] to separate postoperative CaP patients into low,

medium, and high risk categories. Apart from the parameters used

in the Kattan nomogram, the CAPRA score also included the

percentage of positive biopsy cores into their risk assessment.

Hinev et al. [11] performed an independent study advocating the

use of the Memorial Sloan Kettering Cancer Center (MS-KCC)

nomogram, developed by Kattan and Stephenson, suggesting

superior prediction of 5-year BCR compared to the Han tables.

The MS-KCC nomogram adds additional variables such as age

and time free of cancer. These nomograms represent the state-of-

the-art in postoperative CaP prediction of BCR, but still rely

heavily on Gleason score, which is derived from pathologist

interpretation.

The recent advent of digital whole slide scanners has allowed for

high resolution digitization of tissue slides. These digitized slide

images can be subsequently subjected to quantitative histomor-

phometry (QH). A variety of QH tools have been previously

employed for describing, classifying, and diagnosing disease

patterns from histopathology images [12]. In the context of

excised prostate pathology specimens, QH has been utilized

successfully in a wide range of applications from cancer detection

to prognosis, Monaco et al. developed and employed a markov

random field (MRF) algorithm for detection of prostate cancer

[13].

Some researchers have also explored the role of image texture in

characterizing the appearance of CaP morphology. For the

purpose of automated CaP grading, Jafari-Khouzani et al. [14]

examined the role of second order image intensity texture features

based on co-occurrence matrices. Co-occurrence matrices evalu-

ate the frequency with which two image intensities appear within a

pre-defined distance of each other within a neighborhood. A series

of second-order statistical features (e.g. entropy) [15] to describe

the co-occurrence matrix can then be extracted and serve to

describe the local image texture. Other texture features such as

first order statistical image intensity and steerable gradient filters

(e.g. Gabor filters) [16] have also been used to predict CaP.

Texture features, while they have been shown to be useful for

characterizing CaP morphology, often suffer from a lack of

transparency and interpretability.

Another class of approaches have attempted to explicitly model

CaP appearance by interrogating the spatial arrangement of

individual nuclei and glands. Tabesh et al. [17] investigated color,

texture, and structural morphology to perform automated Gleason

scoring in prostate histopathology. In Doyle et al. [16], morpho-

logical descriptors such as gland size and perimeter ratio were

shown to distinguish benign and malignant histological regions.

Veltri et al. [18] investigated nuclear morphology using a

descriptor called nuclear roundness variance to predict biochem-

ical recurrence in men with prostate cancer.

Many researchers have also attempted to model QH tissue

architecture, via the use of graphs networks to characterize the

spatial arrangement of nuclei and glands [16,19–21]. Christens-

Barry et al. used Voronoi- and Delaunay-based graph tessellations

to describe tissue architecture in CaP histology [19]. Doyle et al.

[16] showed that the Minimum Spanning Trees, in addition to

Voronoi, Delaunay features appeared to be strongly correlated to

Gleason grade. However, these features are derived from fully

connected graphs. This approach suggests that nuclei embedded

within stromal and epithelial regions will be connected via these

graphs and hence the graph edges will traverse the epithelial

stromal interfaces and regions [22]. Hence the features extracted

from Voronoi or Delaunay graphs represent the ‘‘averaged’’

attributes of both stromal and epithelial architecture, and thus

overlooks the local contributions of stroma and epithelium

independently within the graphs. Alternatively, analysis of local

subgraphs [20,21,23,24], which unlike global graphs (e.g. Voronoi

and Delaunay) that aim to capture a global architectural signature

for the tumor, can allow for quantification of local interactions

within flexible localized neighborhoods. Gunduz et al. [23] noted

a natural clustering of cells and utilized cell graphs to model

gliomas and differentiate cancerous, healthy, and non-neoplastic

inflamed tissue. Demir et al. [25] and others [20,23,24] have

developed a set of graph features to quantify the local cell-graphs.

Bilgin et al. [20] similarly extracted features from different types of

local cell graphs for classification of breast tissue. Features were

extracted from simple, probablilistic, and hierarchical cell-graphs,

as well as a hybrid combination of simple and hierarchical

approaches. Similarly, Ali et al [21], utilized attributes of

probabilistic cell-cluster graphs for differentiating oropharyngeal

cancers. These subgraphs offer the advantage of being able to

explicitly and independently model spatial architecture of nuclei

and glands within the epithelial and stromal regions.

In this paper, we describe a new QH methodology which aims

to utilize the directionality of glands and associate disorder in

gland orientations to predict the degree of malignancy and

subsequently the risk of post-surgical biochemical recurrence in

CaP patients. The hypothesis is that normal benign glands align

themselves with respect to the fibromusclar stroma, and thus

display a coherent directionality. Malignant prostate glands,

however, lose their capability to orient themselves and display

no preferred directionality. Additionally with increasing degree of

malignancy and disease aggressiveness, the coherence of gland

orientations within localized regions is completely disrupted. In

other words, the entropy (which captures disorder) in gland

orientations tends to increase as a function of malignancy.

The CGA features aim to capture the directional information in

localized gland networks in excised histopathology sections to

characterize differences in gland orientation between (a) malignant

and benign regions and (b) CaP patients who do and do not

experience biochemical recurrence following RP. The CGA

methodology comprises the following main steps.

For CGAs, a segmentation algorithm is first employed to

individually segment gland boundaries from digitized pathology

sections. To each gland, we ascribe an angle that reflects the

dominant orientation of the gland based off the major axis as

shown in Figure 1(a). A subgraph is then constructed to link

together glands proximal to each other into a gland network as

illustrated in Figure 1(b). The subgraphs, unlike the graphs for

Voronoi, Delaunay and minimum spanning trees that have been

previously used to characterize global glandular architecture [26],

allows for characterization of local gland arrangement. Use of

local subgraphs prevent graph edges from traversing heteroge-

neous tissue regions such as stroma and epithelium. The co-

occurrence matrix, previously used to characterize image intensity

textures, is used to capture second-order statistics of gland
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orientations within each gland network in the image. Hence each

co-occurrence matrix captures the frequency with which orienta-

tions of two glands proximal to each other co-occur. Co-

occurrence features such as entropy are extracted from the co-

occurrence matrix associated with each gland network to capture

the degree to which proximal gland orientations are similar or

divergent to each other. Hence a neighborhood with a high

entropy value would reflect a high degree of disorder among gland

orientations while a low entropy value reflects that the gland

angles appear to be aligned roughly in the same direction.

Given that we expect to see glandular angle disorder in (a)

malignant versus benign regions and (b) biochemical recurrence

cases versus non-recurrence cases, second-order statistical angular

features like entropy represent a novel, reproducible, and

interpretable way to characterize disease appearance on histopa-

thology. Unlike first order statistics of angles, the co-occurring

gland angular features are able to implicitly capture the cyclical

properties of gland orientation. The use of local subgraphs

generated by a probabilistic decaying function help define local

gland networks within which the CGA features can be extracted

and analyzed.

In this work, we demonstrate the utility of CGA features for the

following classification tasks: 1) differentiating cancerous and non-

cancerous prostate tissue regions, and 2) distinguishing CaP

patients with and without biochemical recurrence following

radical prostatectomy.

Figure 2 shows two representative studies: a biochemical

recurrence (BCR) and a non-biochemical recurrence (NR) case.

For the BCR case, we can see greater disorder in the gland

orientation illustrated via the vector plot in Figure 2(f). The angle-

based colormap for BCR characterizes the disorder in BCR cases,

as evidenced by the a large spectrum of colors, each color

representing a different orientation. Conversely, for the NR case,

(Figure 2(n)), the colormap shows a smaller range of colors,

suggesting less variance in the gland directionality. The gland

directionality differences are also reflected in Figures 2(d), (l) via

the angular co-occurrence matrix. The brightness of the off-

diagonal elements of the matrix reflect greater co-occurrences of

differentially oriented gland angles for the BCR case (Figure 2(d))

compared to the NR case (Figure 2(l)). These differences in the

angular co-occurrence matrices are detected by the second order

statistics, as Figures 2(h), (p) illustrate different color patterns based

on the value of the statistics in each subgraph.

It can also be observed in Figures 2(c), (k) that subgraphs

capture local gland neighborhoods. Since the subgraphs are

localized and limited to the epithelial regions alone, the

contributions from within the stromal regions are minimized.

The CGAs therefore provide a compact, interpretable and

quantitative representation of gland architecture and prostate

cancer morphology which can be employed to distinguish (a)

cancer from benign regions and (b) BCR from NR cases.

The remainder of this paper is structured as follows. We first

introduce the theory and methodology for CGAs. Materials and
Methods outlines the process of obtaining the study cohorts and

provides details for workflow and comparative methodologies used

in this study. Experimental Results and Discussion provides

specific instances in which we test our CGA methodology. Lastly,

Concluding Remarks discusses our overall contributions and

future work.

Quantitative Histomorphometry via Co-occurring
Gland Angularity (CGA)

Notation
We define an image scene as I~(c,f ), where the image scene I

is described by a spatial grid C of locations c[C, each of which are

associated with a unique intensity value f (c). For intensity images

f (c)[R1 and for color images f (c)[R3. We define a sub-region,

R[C, within the scene, where a subgraph G(R) can be defined.

Each R is comprised of a number of glands ci , which are

represented as nodes, ci[R, where i[f1, . . . ,ngg, where ng is the

Figure 1. Gland characteristics of interest for calculating CGA features. (a) For each gland, the angle between the major axis of the gland
(z1) and the x-axis is calculated. (b) Subgraphs connect the centroids of neighboring glands into locally connected gland networks.
doi:10.1371/journal.pone.0097954.g001
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number of glands in R. We can also define B(ci)5R as the set of

boundary points associated with gland ci[R.

Hence we can formally define G(R)~fV ,Eg where V

represents the set of glands ci[R and E is the set of edges that

connect ci to other adjacent glands within R. Each G(R) can then

be represented via an attribute vector of CGA features F(R). A

classifier W can then be trained to identify any R as belonging to

one of two classes fz1,{1g. In this work, the classifier W will be

trained to distinguish each R as (a) malignant or benign or (b)

BCR or not.

Figure 2. Annotated histological CaP regions ((a) and (i)) pertaining to a BCR (a)–(h) and a NR (i)–(p) case study, respectively. (b), (j)
Automated gland segmentation of gland boundaries. (c), (k) Subgraphs showing connections between neighboring glands. An enlarged view of the
boxed region in (a) and (i) respectively, illustrates (e), (m) segmented glands, (f), (n) gland angles, and (g), (o) gland network subgraphs. (f), (n) Arrows
denote the directionality of each gland. Boundary colors (blue to red) correspond to angles h[½00 1800]. (g), (o) Localized gland networks define the
region of each angular co-occurrence matrix. (d), (l) Summed angular co-occurrence matrices denote the frequency with which two glands of two
directionalities co-occur across all neighborhoods (white elements reflect greater co-occurrence). Diagonal co-occurrence values have been omitted
to provide better contrast compared to the off-diagonal components. (h), (p) Colormap of the gland subgraphs correspond to the intensity average
in each neighborhood.
doi:10.1371/journal.pone.0097954.g002
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Calculating Gland Angles
To determine the directionality for each gland ci[R,

i[f1,2, . . . ,ngg, we perform principal component analysis [27]

on a set of boundary points B(ci) to obtain the principal

components Zi~½zi
1,zi

2�. The first principal component zi
1

describes the directionality of gland ci in the form of the major

axis, along which the greatest variance occurs within B(ci). The

principal axis zi
1 is expressed as vector, of a single directionality,

and is defined as

zi
1~vzi,x

1 ,z
i,y
1 w, ð1Þ

where zi,x
1 represents the direction in the x-direction, and z

i,y
1

represents the direction in the y-direction. zi
1 is subsequently

converted to an angle �hh(ci)[½001800� calculated counterclockwise

from the vector v1,0w by

�hh(ci)~
1800

p
arctan (

z
i,y
1

zi,x
1

): ð2Þ

A depiction of the process for estimating gland orientations is

shown in Figure 1(a).

Defining Local Subgraphs on Glands
Pairwise spatial relationships between glands are defined via

sparsified graphs. For the subgraph G(R) defined on region R, the

individual edges can be defined between all pairs of fci,cjg[R via

a probabilistic decaying function described in Gunduz et al.

[20,23].

E~f(i,j) : rvD(i,j){a,Vci,cj[Vg, ð3Þ

where D(i,j) represents the Euclidean distance between ci and cj .

a§0 controls the density of the graph, where a approaching 0

represents a high probability of connecting nodes while a

approaching ? represents a low probability. r[½0,1� is an

empirically determined edge threshold. An example of a resulting

glandular subgraph network is shown in Figure 1(b).

Gland Angularity Co-occurrence Matrices
The objects of interest for calculating CGA features are given by

a discretization of the angles �hh(ci), such that h(ci)~v|ceil
�hh

v

� �
,

where v is an empirically derived discretization factor. Larger v
provide less specificity for counting co-occurring gland angles and

smaller v may not express co-occurring angles within the

individual neighborhoods. The optimal v was chosen based off

a 3-fold randomized cross-validation of parameters v[f5, . . . ,45g.
v was set to be 10 in this work, allowing for angles to be

discretized at every 10 degrees.

Neighbors defined by the local subgraphs G, allow us to define

neighborhoods for each ci. For each ci[Vu, we define a

neighborhood N i, to include all cj[V where a path between ci

and cj , i,j[f1,2, . . . ,ngg exists via E in the graph G.

An N|N angular co-occurrence matrix M subsequently

captures gland angle pairs, h(cu) and h(cv), where

u,v[f1, . . . ,Ug and U is the number of glands in N i, which co-

occur within each neighborhood N i. This can therefore be

expressed in the following way.

MN i
(a,b)~

XN i

ci ,cj

XN

a,b~1

1, if h(c i)~a and h(cj)~b

0, otherwise

�
ð4Þ

where N~
180

v
, the number of discrete angular bins. An example

of a angular co-occurrence matrix is shown in Figures 2(d) and (l).

Second Order Gland Angle Statistics
We subsequently extract second order statistical features H

(Contrast energy, Contrast inverse moment, Contrast average,

Table 1. Description of 13 CGA features.

CGA Feature (H) Description Additional Notation

H1 Contrast energy
P

nfn2P(n)g P(n)~
P

a,b,ja{bj~nM(a,b)

H2 Contrast inverse moment P
a,bf

1

1z(a{b)2
M(a,b)g Q(k)~

P
a,b,azb~kM(a,b)

H3 Contrast average
P

a,b,ja{bj~nfja{bj2P(n)g px~
P

bM(a,b)

H4 Contrast variance
P

a,b,ja{bj~nf(ja{bj{H3)2P(n)g py~
P

aM(a,b)

H5 Contrast entropy
P

nf{P(n) log(P(n))g HX~{
P

a,bfpx log(px)g

H6 Intensity average
P

kfkQ(k)g HY~{
P

a,bfpy log(py)g

H7 Intensity variance
P

kf(k{H8)2Q(k)g HXY~

H8 Intensity entropy
P

kf{Q(k) log(Q(k))g {
P

a,bfM(a,b) log(M(a,b))g

H9 Entropy
P

a,bf{M(a,b) log(M(a,b))g HXY1~

H10 Energy
P

a,bfM(a,b)2g {
P

a,bfM(a,b) log(px(a)py(b))g

H11 Correlation P
a,bf

(px{ma)(py{mb)M(a,b)

sasb

g HXY2~

H12 Information measure 1 HXY{HXY1

max (HX ,HY )

{
P

a,bfpx(a)py(b) log(px(a)py(b))g

H13 Information measure 2 (1{e{2(HXY2{HXY ))1=2

doi:10.1371/journal.pone.0097954.t001
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Contrast variance, Contrast entropy, Intensity average, Intensity

variance, Intensity entropy, Entropy, Energy, Correlation, and

two measures of information) from each angular co-occurrence

matrix MN i
(a,b). Formulations of these second order features H

are described in Table 1. Figure 2 illustrates the visualization of

the mean intensity measure of each N i on a digitized histopa-

thology image.

Materials and Methods

Ethics Statement
Patients included in the study were obtained from independent

sources. Cohort A was collected by Drs. Tomaszewski and

Feldman obtained from IRB study ‘‘Analysis of Genetic Changes

in Genitourinary Cancers’’ Protocol #707863. Cohort B was part

the Score prostate project, run by Dr. Rebbeck, and approved by

IRB study UPCC 13808 ‘‘Molecular epidemiology of prostate

cancer’’ Protocol #36142. All IRB approval was obtained from

the University of Pennsylvania, where the patient data was

collected. Written consent was obtained for all patients for long

term follow up. De-identified digital pathology samples and

biochemical recurrence data used for this study was derived from

data collected under informed consent. Since de-identified data

was used, IRB consent was not required.

Data Acquisition and Data Description
The datasets (obtained from the Hospital at the University of

Pennsylvania) were comprised of 40 CaP patients who had

undergone RP treatment. These studies were selected from a

much larger cohort of over 3000 cases archived at the Hospital at

the University of Pennsylvania. The cases were chosen to have an

equal split of cases with BCR and NR following RP. Additionally,

the search was limited to just Gleason scores 6–8 and pathologic

stage pT2 and pT3.

For all CaP patients, following RP, the excised prostate was

sectioned, stained with hematoxylin and eosin (H&E), and

digitized at a resolution of 0.5 mm per pixel or 20x magnification

using an AperioH whole slide scanner. For each digitized image,

CaP regions were annotated by a pathologist, as shown in Figure 3.

56 cancer regions were annotated across 40 patients, 28 from BCR

Figure 3. Workflow for building a CGA-based classifier. (a)
Gland segmentation is performed on a region of interest. CGA
methodology (highlighted within the dashed lines) leverages the gland
segmentation to compute CGA features. (b) Angle calculation and (c)
Subgraph computation is performed on the segmented image. (d)
Angular co-occurrence matrix aggregates co-occurring gland angles
within localized gland networks. (e) Mean, standard deviation and range
of second order statistics (shown via differentially colored gland
networks) create a set of CGA features for the region. (f) A CGA-based
classifier can then be built using the features obtained from (e) to
distinguish the categories of interest (either cancer versus benign
regions or BCR versus NR).
doi:10.1371/journal.pone.0097954.g003

Figure 4. Annotation of a region of interest (shown in green) on prostate histopathology is performed by a pathologist. In this study,
quantitative histomorphometric analysis is performed only in these regions.
doi:10.1371/journal.pone.0097954.g004
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patients and 28 from NR patients. Since no men without

documented and biopsy confirmed prostate cancer undergo

radical prostatectomy, there were no regions in this study which

did not originate from a patient without cancer. Instead, 24

control regions were culled out from non-cancerous regions of the

excised prostate for these patients.

CGA Extraction Workflow
As previously described in Notation, each region R is

characterized by a CGA features vector F. The F is used to train

a machine learning classifier W to distinguish between (a)

cancerous from benign regions and (b) BCR from NR patients.

The procedure for extracting F and training W is described below

and summarized by Figure 4.

Identification of glandular boundaries. The detection and

segmentation of gland boundaries is limited to only those regions

manually annotated by the pathologist on the digitized histopa-

thology sections. An automatic region-growing based prostate

gland segmentation algorithm [13] is used to detect and segment

glandular boundaries on the histological image as illustrated in

Figure 5. Monaco et al. [13] previously was able to accurately

identify prostate cancer regions at 93% accuracy via the gland

segmentation procedure described below. Segmentation is per-

formed using the luminance channel in CIELAB color space. In

the luminance channel, glands appear as contiguous, high intensity

pixel regions bordered by sharp edges as boundaries. To identify

glands, the luminance image is convolved with a Gaussian kernel

at multiple scales sg[f0:025,0:05,0:1,0:2g mm to account for

multiple gland sizes. The peaks (maxima) of the resulting

smoothed luminance images are used as seeds for a region

growing procedure briefly outlined below.

1. A 12sg|12sg bounding box is initialized around each initial

seed pixel, which represents the current region (CR), with 8-

connected pixels surrounding CR, denoted as the current

boundary (CB).

2. Next, the pixel in CB with the highest intensity is removed

from CB and incorporated into CR. The 8 surrounding pixels

of this new CR pixel, which are not already in CR, are

incorporated into CB.

3. The boundary strength is identified at each iteration as shown

in Figure 5. We define the internal boundary (IB) as all CR

pixels adjacent to CB. Boundary strength is defined as the

mean intensity of the pixels in IB minus the mean intensity of

the pixels in CB.

4. Steps 2 and 3 are repeated until the algorithm attempts to add

a pixel outside the bounding box.

Figure 5. Schematic for region growing.
doi:10.1371/journal.pone.0097954.g005

Table 2. Overview of clinical datasets employed in this study.

Clinical Variables Cohort A (20) Cohort B (20) Combined Cohort (40)

Pathological Gleason Score 3+3 4 (20%) 1 (5%) 5 (12.5%)

3+4 7 (35%) 17 (85%) 24 (60%)

4+3 7 (35%) 2 (10%) 9 (22.5%)

3+5 1 (5%) - (-) 1 (2.5%)

4+4 1 (5%) - (-) 1 (2.5%)

Pathologic Stage pT2 8 (40%) 12 (60%) 20 (50%)

pT3a 9 (45%) 6 (30%) 15 (37.5%)

pT3b 3 (15%) 2 (10%) 5 (12.5%)

doi:10.1371/journal.pone.0097954.t002
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5. The optimal region is defined as region CR at the iteration

where maximum boundary strength was achieved.

Overlapping regions are subsequently resolved by removing the

region with the lowest boundary strength. An example of our

results can be seen in Figure 4(b).

CGA feature extraction. Based on the gland segmentation

detailed in the section, Identification of Glandular Bound-
aries, CGA features are calculated as described in the previous

section, Quantitative Histomorphometry via Co-occur-
ring Gland Angularity (CGA). The optimal parameters were

chosen based off a 3-fold randomized cross-validation procedure

for v[f5,10, . . . ,45g and a,r[f0,5, . . . ,1g. The best combination

was found to be v~10, a~0:5 and r~0:2, which was used to

build the angle co-occurrence matrix for all cases in these

experiments. Mean, standard deviation, and range of the CGA

features described in the section Second Order Gland Angle
Statistics are calculated. This yields F which is a set of 39 CGA

features.

Building a CGA-based classifier. For each classification

task (see Experimental Results and Discussion), a training

set of positive and negative categories were compiled from the set

of 40 cases (see Table 2). The training set was used to train a

classifier W in conjunction with F to distinguish between the

categories of interest. The trained classifier W was then used to

assign each region R or study I into classes fz1,{1g based on

the classification tasks (a) distinguishing cancer from benign or (b)

BCR from NR patients. 3-fold randomized cross-validation was

used to train and evaluate classifier robustness. This involved

randomly splitting the entire dataset into 3 equally sized sets with 2

subsets used for W training and 1 subset used for independent

evaluation. This procedure was repeated 100 times. In all our

experiments a random forest classifier (a boostrapped aggregation

of multiple decision tree classifiers) was used. We refer the reader

to [28] for additional details on the random forest classifier.

Comparative Methodologies
In order to compare the performance of the CGA features for

the different classification tasks described in Experimental
Results and Discussion, we explicitly modeled and evaluated

a nunber of other state of the art (a) QH features and (b)

nomograms, described below.

Quantitative histomorphometric attributes. Gland Mor-

phology (M): Morphological descriptors [16] are extracted from the

segmented glandular boundaries obtained in textbfIdentification of

Glandular Boundaries Statistics such as the area ratio, perimeter

ratio, and distance ratio are derived from the gland boundary

information and the mean, standard deviation, median, and the

ratio between the minimum and maximum values are calculated

across all glands [16]. These features are summarized in Table 3.

Table 3. Summary of Quantitative Histomorphometric (QH) features to compare against CGA features as well as the number of
features used to characterize each feature type.

Feature Type (QH) Description #

Gland Morphology Area Ratio, Distance Ratio, Standard Deviation of Distance,
Variance of Distance, Distance Ratio, Perimeter Ratio,
Smoothness, Invariant Moment 1–7, Fractal Dimension,
Fourier Descriptor 1–10 (Mean, Std. Dev, Median, Min/Max of each)

100

Voronoi Diagram Polygon area, perimeter, chord length: mean,
std. dev., min/max ratio, disorder

12

Delaunay Triangulation Triangle side length, area: mean, std. dev.,
min/max ratio, disorder

8

Minimum Spanning Tree Edge length: mean, std. dev., min/max ratio, disorder 4

Glandular Density Density of glands, distance to nearest gland 24

Co-occurrence Texture Contrast energy, Contrast inverse moment, Contrast average,
Contrast variance, Contrast entropy, Intensity average,
Intensity variance, Intensity entropy, Entropy, Energy,
Correlation, two measures of information: mean, std. dev.

26

doi:10.1371/journal.pone.0097954.t003

Figure 6. Examples of quantitative histomorphometric features for comparing against CGA features. QH features are extracted from (a)
an annotated region on a digitized prostate histology slide following radical prostatectomy. Graphs for (b) Voronoi, (c) Delaunay, and (d) Minimum
Spanning Trees as well as (e) a texture image feature are shown from the area denoted by a blue box in (a).
doi:10.1371/journal.pone.0097954.g006
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Voronoi Diagram (V ): Voronoi diagrams divide each region R
into non-overlapping polygons, each associated with a gland ci,

where each edge bisects two neighboring gland centroids ci and cj ,

where i,j[f1,2, . . . ,ngg. An example of the Voronoi Diagram

constructed on top of a digitized pathology image with gland

centers serving as nodes/vertices is shown in Figure 6(b). Statistics

(See Table 3) such as the area, perimeter and chord length are

recorded for each polygon and the average, standard deviation,

disorder, and the ratio between the minimum and maximum

values are calculated across all polygons in the image.

Delaunay Triangulation (D): Delaunay triangulation divides the

image Ri into triangles whose edges connect the gland centroids ci

and cj with ci and cj serving as the graph vertices. An example of

the Delaunay triangulation graph is shown in Figure 6(c).

Delaunay triangulation is related to the Voronoi diagram in that

for each polygon in the Voronoi diagram, there is an accompa-

nying edge which connects its gland centroid ci with cj of an

adjacent polygon. Edge length and area are computed for each

triangle and the mean, standard deviation, minimum to maximum

ratio, and disorder statistics are calculated across all triangles (see

Table 3).

Minimum Spanning Tree (MST ): MSTs are another graph

representation where all gland centroids ci are connected with a

minimum total edge weight defined as argmin
E

P
i,j Eij|D(i,j),

where D(i,j) is the Euclidean distance between ci and cj . An

example is shown in Figure 6(d). The average, standard deviation,

disorder, and minimum to maximum ratio statistics are calculated

across all edges in the graph (see Table 3).

Gland Density (GD): GD features encompass two types of

features. The first set of features denotes the number of cj which

lie within a 10, 20, 30, 40, and 50 pixel radius of each ci. The

second set of features denoted the distance between each ci and its

3, 5, and 7 nearest centroids cj . The average, standard deviation,

and disorder for each of these features are computed across all

glands (see Table 3).

Co-occurrence Textures (T ): Second order co-occurrence features

are calculated from a symmetric co-occurrence matrix which

aggregates the frequency with which two pixel intensities co-occur

within a pre-determined spatial distance around each pixel c[R.

The size of the co-occurrence matrix is determined by the

maximum possible intensity value in the image, which for 8-bit

images is 28~256. A spatial distance of 1 pixel was chosen for our

experiments. For each c[R, the second order co-occurrence

features described in [15] are computed from the co-occurrence

matrix. The mean and standard deviation across all c[R are used

to build a single texture feature descriptor for each R.

Risk assessment nomogram and scoring systems. Kattan

Nomogram (K): The Kattan nomogram [8] was one of the earliest

prediction tools to be developed for predicting biochemical failure

following radical prostatectomy. Clinical predictors for the Kattan

nomogram include 1) Pre-operative PSA, 2) Gleason Sum, 3)

Primary Gleason score, 4) Surgical Margins, 5) Prostate Capsular

Invasion, 6) Seminal Vesicle Invasion (SVI), and 7) Lymph Node

Involvement. A raw score s, 0ƒsƒ300 (higher score reflects

higher risk of BCR) is derived from these predictors and risk for

each patient is assessed in terms of a probability of being BCR free

for a particular time interval following surgery.

Stephenson Nomogram (S): The Stephenson nomogram [9] was

developed along with Michael Kattan to incorporate the year of

surgical intervention for predicting BCR. Based on 1) year of

Radical Prostatectomy, 2) surgical margins, 3) extraprostatic

extension (EPE), 4) seminal vesicle invasion (SVI), 5) lymph node

involvement, 6) primary gleason grade, 7) secondary gleason

grade, and 8) pre-operative PSA. A raw score s, 0ƒsƒ240,

(higher score pertains to higher risk of BCR) is derived from these

clinical features. Risk for each patient is assessed in terms of a score

related to the probability of being BCR free for a particular time

interval following surgery.

Cancer of the Prostate Risk Assessment (CAPRA): The University of

California in San Francisco (UCSF) CAPRA test [10], is based on

overall score s[f0,1, . . . ,10g, where 10 represents the highest risk

of BCR. Clinical predictors for CAPRA include 1) Age, 2) Pre-

operative PSA, 3) Primary Gleason, 4) Secondary Gleason scores,

5) Tumor Stage, and 6) Percent Positive Biopsy Cores.

Memorial Sloan-Kettering Cancer Center (MS-KCC) Nomogram (MSK):

One of the most popular nomograms with contributions from

Kattan and Stephenson is the MS-KCC nomogram [8,9]. The

MS-KCC nomogram incorporates 1) Pre-Treatment PSA, 2) Age,

3) Primary Gleason Grade, 4) Secondary Gleason Grade, 5)

Gleason Sum, 6) Year of Prostatectomy, 7) Months Free of

Cancer, 8) Surgical Margins, 9) Extra Capsular Extension, 10)

Table 6. Mean and Standard Deviation of (a) wAcc and (b) wAUC for predicting BCR over 100 runs of randomized 3-fold cross
validation via Random Forest classifiers.

CaP Predictor Kattan Stephenson CAPRA MS-KCC CGA

wAcc 58:30+4:83% 54:75+4:34% 52:90+3:19% 59:45+5:41% 85.75+4.89%

p-value 4.2558e-35 3.3989e-35 1.3793e-35 5.2764e-35 -

wAUC 0:6246+0:0929 0:7199+0:0935 0:6579+0:0906 0:6182+0:0764 0.7959+0.0591

p-value 5.1173e-25 6.0125e-10 2.1506e-21 7.2366e-29 -

Associated Wilcoxon Rank Sum Test p-values for wAcc and wAUC of each risk assessment tool compared to CGA features for predicting BCR are shown.
doi:10.1371/journal.pone.0097954.t006

Table 7. Independent validation of wAUC for predicting BCR from non-recurrence CaP patients.

CaP Predictor Kattan Stephenson CAPRA MS-KCC CGA

wAUC 0.5500 0.5600 0.6050 0.5850 0.7600

doi:10.1371/journal.pone.0097954.t007
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Seminal Vesicle Involvement, and 11) Lymph Node Involvement.

Risk for each patient is assessed in terms of a score related to the

probability of being BCR free for a particular time interval

following surgery.

Classification accuracy. The predictive value of each

classifier, obtained with the CGA features and comparative

methodologies, is evaluated via classification accuracy wAcc
and

via the area under the receiver operating characteristic curve

(AUC) wAUC
. The Wilcoxon Rank Sum Test [29] was utilized to

determine statistical significance between the classification perfor-

mance of the QH features listed in Table 3 and the CGA features.

Classification Accuracy (wAcc
) measures the ability of a classifier

to correctly predict class label for R or I within the independent

testing set and is calculated as

wAcc~
TPzTN

TPzTNzFPzFN
, ð5Þ

where TP, TN, FP, and FN refer to the true positive, true negative,

false positive, and false negative detection rates associated with W
respectively.

Receiver operating characteristic. wAUC
represents an

overall measure of predictive value for classifier W, independent

Table 8. Logrank test p-values for comparison of Kaplan-Meier survival curves of Cohort B stratified into BCR and NR groups by
CGA features and CaP risk assessment tools.

CaP Predictor Kattan Stephenson CAPRA MS-KCC CGA

p-value 0.1846 0.2934 0.4215 0.0596 0.0016

The most significant p-value is shown in bold.
doi:10.1371/journal.pone.0097954.t008

Figure 7. Comparison of Kaplan-Meier BCR-free survival curves differentiated via (a) Kattan nomogram, (b) Stephenson
nomogram, (c) UCSF-CAPRA, (d) MS-KCC nomogram, and (e) CGA classifiers on an independent 20 patient cohort. Lower p-values are
indicative of better predictors of BCR.
doi:10.1371/journal.pone.0097954.g007

Co-Occurring Gland Angularity in Localized Subgraphs

PLOS ONE | www.plosone.org 11 May 2014 | Volume 9 | Issue 5 | e97954



of the decision threshold. The receiver operative characteristic

(ROC) curve is constructed by computing 1{wSpec
and wSens

at

each decision threshold where wSpec
and wSens

are defined as

wSens~
TP

TPzFN
, ð6Þ

and

wSpec~
TN

TNzFP
: ð7Þ

The AUC represents the area under the ROC curve, where an

AUC of 1 reflects perfect classification and an AUC of 0.5 suggests

that the classifier is performing no better than random guessing.

Kaplan-meier analysis. Kaplan-Meier analysis [30] is used

to compare the BCR-free survival time between positive and

negative control groups. In this study, the two groups are

determined by a predictor W. When plotted onto time versus

BCR-free survival rate, the BCR free survival rate of the group will

decrease at the time when a patient develops BCR. Thus, we

expect the curve for the set of patients predicted to have BCR to

drop quickly while the set of patients predicted as NR should

remain BCR-free with the corresponding Kaplan-Meier curve not

dropping off. The quantitative difference between the survival

outcome can be determined via the logrank test [31]. The non-

parametric test yields a p-value, where lower p-values denote

greater significance between the survival distributions.

Experimental Results and Discussion

We compare the performance of the CGA features versus the

other QH (see Table 3) and risk assessment tools (see Risk
Assessment Nomogram and Scoring Systems) in the

context of the following experiments.

1. Distinguishing cancerous versus non-cancerous regions.

2. Predicting biochemical recurrence versus non-recurrence in

CaP patients following RP.

3. Comparing BCR prediction of CaP patients following RP via

CGAs against QH and risk assessment tools in terms of ROC and

Kaplan-Meier analysis.

Each experiment and accompanying results are described in

detail below and were conducted in accordance with the CGA

extraction workflow described in the previous section.

Experiment 1: Distinguishing Cancerous versus Non-
cancerous Regions

80 regions were annotated by expert pathologists pertaining to

56 cancerous regions and 24 non-cancer regions. We compare the

efficacy of CGA features with the QH features described in Table 3

for the purpose of differentiating cancerous regions from non-

cancerous regions. For each set of CGA or QH features, a

classifier was trained to distinguish between the cancerous and

non-cancerous regions as previously described in Building a
CGA-based classifier.

Mean and standard deviation for wAcc
and wAUC

for the

different QH and CGA features are shown in Table 4. CGA shows

statistically significant (pv0:05) improvement in terms of wAcc
and

wAUC
compared to all QH features. In fact the CGA features yield

a near perfect classification performance for this particular task.

Experiment 2: Identifying CaP Patients with Biochemical
Recurrence following Surgery

For each of 40 patients, the largest annotated cancer region for

each of the 40 patients was selected. We compare the efficacy of

CGA features with other state of the art QH features (Table 3) for

differentiating patients who will develop BCR from those who will

not, following RP. Similar to the procedure described in

Experiment 1, the CGA and QH features were used to train

classifiers to distinguish the BCR and NR cases over 100 runs of 3-

fold cross-validation.

As illustrated in Table 5, CGAs outperformed each of the 6

other QH features in predicting BCR in 40 CaP patients in terms

of wAUC
and wAcc

. These results were statistically significant

(pv0:05). Not only do these results suggest that the CGA features

were able to outperform other QH features, they also seem to

suggest that in more aggressive CaP, disorder in glandular

orientations appears to progressively increase.

Experiment 3: Comparing CGA Features versus Risk
Assessment Tools

The data was collected from two independent sources: Cohort

A from the department of Pathology and Laboratory Medicine at

the University of Pennsylvania and Cohort B from the department

of Clinical Epidemiology and Biostatistics at the University of

Pennsylvania. Of the 40 patients, only 20 patients in Cohort B had

associated clinical variables for nomogram prediction of BCR. A

further breakdown of the data is summarized in Table 2. We

utilize this independent data collection to perform an independent

study with a larger predicted training set compared to the 3-fold

cross-validation performed in the other experiments.

Similar to the CGA classifier, a nomogram based classifier is

also constructed based off the corresponding risk scores, s. For the

results in Table 6, training and evaluation of these classifiers was

performed as described in Experiments 1 and 2 within Cohort B.

CGAs outperformed 4 state-of-the-art prostate cancer nomo-

grams, demonstrating 85% classification accuracy compared to

59% accuracy for the MS-KCC nomogram, which had the second

highest wAcc
(Table 6). CGAs showed statistically significant

improvement in wAUC
over all nomograms. Perhaps the most

significant message in the results shown in Table 6 is that the CGA

features in the absence of clinical variables PSA, Gleason score,

stage, etc. were still able to outperform the 4 nomograms.

To increase the size of the testing set to 20 patients, we

performed a study using two independent cohorts. Analysis via the

calculation of the Receiver Operating Characteristic (ROC) curve

is used to determine the overall performance across all classifica-

tion thresholds of each classifier W.

For the results in Table 7, we perform the classification on

Cohort B by creating a classifier W trained from Cohort A. For the

Random Forest classifier, each prediction is given a fuzzy decision

value p̂p between 21 and 1. Nomograms do not require further

training beyond the original fitting done in the original study from

which the nomogram was developed. Each nomogram is designed

to predict BCR risk based on a score s. By setting decision

thresholds at different p̂p and s for W respectively, we obtained

sensitivity and specificity scores at each threshold. The area under

the ROC curve (wAUC
) is subsequently calculated for each W to

compare their performance in predicting BCR within Cohort B.

CGA features demonstrate a clear improvement over 4 state-of-

the-art nomograms, showing an AUC of 0.76 compared to AUCs
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near 0.5 for the comparative nomograms. The weak performance

on this independent cohort suggests the difficulty that these

nomograms may have in predicting the risk of BCR for men with

intermediate-risk Gleason scores and suggests that the addition of

QH features could improve upon the current nomogram

standards.

This training and testing procedure was repeated for Kaplan-

Meier analysis of 20 patients within Cohort B. Kaplan-Meier

surves demonstrate the difference in BCR free survival time

associated with each risk assessment tool. The logrank test was

used to determine a p-value associated with the difference between

the survival curves. A lower p-value indicates greater differences in

the BCR-free survival between the predicted BCR and NR

groups.

In Figure 7, we show Kaplan-Meier survival curves based on the

predicted BCR and NR groups of each W. Based on the logrank

test (shown in Table 8), patients were best differentiated via the

CGA features, with a p-value of 0.0016 compared to 0.0596 for

the MS-KCC nomogram, which had the next lowest p-value. The

CGA features represent the only feature set which show

statistically significant differentiation (pv0:05) in the survival

outcomes of its predicted patient cohorts.

Concluding Remarks

In this paper, we present a novel set of quantitative histomor-

phometric features, co-occurring gland angles (CGAs), calculated

on local subgraphs. CGAs represent a novel combination of

subgraphs, gland angles, and angular co-occurrence matrices to

quantify the local disorder in the gland angles on histopathology.

For a cohort of 40 patients with Gleason scores 6–8 and treated

with radical prostatectomy, we found CGA features demonstrated

a statistically significant (pv0:05) improvement in classification

accuracy in distinguishing (a) cancer from benign regions and (b)

biochemical recurrence from non-recurrence patients following

surgery compared to 6 other state of the art QH features.

Furthermore, we found CGAs to outperform 4 state-of-the-art

postoperative nomograms for predicting BCR in CaP patients.

Kaplan-Meier analysis of the independent cohort of prostate

cancer patients with intermediate-risk pathological Gleason scores

(via the logrank test) demonstrated that only the CGAs showed a

statistically significant (pv0:05) difference in predicting the

survival distributions.

We do however acknowledge that our work did have its

limitations. Firstly, even though randomized cross-validation

strategies were employed to remove bias in the classifier, it would

be optimal to validate our classifier on an independent testing set.

Additionally, we also wish to control for the clinical variables used

in this study (grade, stage, PSA levels, etc.) to further remove

potential noise in the study cohorts. We hope to address these

limitations in future work. An immediate next step will be to

evaluate the performance of the CGA features in predicting

aggressive disease from needle core biopsies alone as opposed to

prostatectomy specimens.
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