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Neurophysiological changes of schizophrenia are currently linked to disturbances in connec-
tivity between functional brain networks. Functional magnetic resonance imaging studies
on schizophrenia have focused on a few selected networks. Also previously, it has not been
possible to discern whether the functional alterations in schizophrenia originate from spatial
shifting or amplitude alterations of functional connectivity. In this study, we aim to discern
the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude
changes in functional connectivity in the whole-brain connectome. We used high model
order-independent component analysis to study some 40 resting-state networks (RSN) cov-
ering the whole cortex. Group differences were analyzed with dual regression coupled with
y-concat correction for multiple comparisons. We investigated the RSNs with and without
variance normalization in order to discern spatial shifting from signal amplitude changes
in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth
Cohort.Voxel-level correction for multiple comparisons revealed 18 RSNs with altered func-
tional connectivity, 6 of which had both spatial and signal amplitude changes. After adding
the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as
well, we found that four RSNs showed still changes. These robust changes actually seem
encompass parcellations of the default mode network and central executive networks.
These networks both have spatially shifted connectivity and abnormal signal amplitudes.
Interestingly the networks seem to mix their functional representations in areas like left
caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas
that have been related to dopaminergic alterations in patients with schizophrenia compared
to controls.

Keywords: fMRI, ICA, resting state, schizophrenia, default mode network, central executive network, caudate
nucleus

INTRODUCTION
Schizophrenia is a psychotic disorder that manifests itself by
altering patients’ mental function, emotional life, and functional
capacity. Common symptoms consist of auditory hallucinations,
paranoid delusions, and disorganized speech and thinking. Neuro-
biological changes of the disease itself are currently believed to be

Abbreviations: ALFF, amplitude of low-frequency fluctuations; BOLD, blood oxy-
gen level dependent; CEN, central executive network; dACC, dorsal anterior cingu-
late cortex; dlPFC, dorsolateral prefrontal cortex; DMN, default mode network;
fMRI, functional magnetic imaging; FPN, frontoparietal network; FSL, FMRIB
Software Library; IC, independent component; ICA, independent component analy-
sis; IPL, inferior parietal lobule; mPFC, medial prefrontal cortex; PCC, posterior
cingulate cortex; PET, positron emission tomography; rAI, right anterior insula;
rsfMRI, resting-state fMRI; RSN, resting-state network; SN, salience network; TPN,
task-positive frontoparietal network; y-concat, y-concatenation.

related to disturbances in functional connectivity between brain
regions (1–5).

A great number of studies have been conducted using blood
oxygen level-dependent (BOLD) functional magnetic resonance
imaging (fMRI) signal, mostly assessing task-related activation of
the brain. However, there has been an increasing interest in study-
ing alterations in resting-state fMRI (rsfMRI). The advantage of
rsfMRI is that patients do not have to perform any particular task
other than maintain consciousness and lay still, as patients may be
unable to perform more complex task or lay still while doing them.
The rsfMRI studies show robust anomalies in the default mode
network (DMN) and other intrinsic, i.e., resting-state networks
(RSN) in schizophrenia patients (6–13).

Literature on schizophrenia research on resting-state data sug-
gests that especially DMN, a task-positive frontoparietal network
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(TPN), and the salience network (SN) are involved. The DMN
is considered to be involved in self-related/internally oriented
processes (14) and it consists of the anterior and posterior cin-
gulate cortex (PCC), the medial prefrontal cortex (mPFC), the
precuneus, the parahippocampal areas, and the inferior parietal
cortices. It is particularly active during “rest” and is deactivated
during the performance of a variety of cognitive tasks when TPN
becomes activated by the task (15–17). Williamson and Allman
(12) listed 25 studies that show reduced task-related suppression
of the DMN and also noted that both increased (18, 19) and
decreased (20–23) connectivity have been found in the DMN.
This could be explained with the assumption that the DMN is not
one network, but a compilation of networks, with only a few of
them being affected by the disease (12, 24). Karbasforoushan and
Woodward (9) reported that in their review of resting-state anom-
alies in schizophrenia, the majority of investigations reported
hyper-connectivity of the DMN.

The task-positive network is an anti-correlating network com-
pared to DMN responsible for high-level cognitive functions,
notably the control of attention, working memory, and execu-
tive task-performance (25, 26). More recent studies by Sridharan
et al. (27), and Menon and Uddin (28) have brought up the term
central executive network (CEN) anchored in the dorsolateral pre-
frontal cortex (dlPFC) and posterior parietal cortices (PPC), which
is similar to TPN (26–28). Depending on the researcher, CEN is
often referred to as the executive-control network (ECN), or the
frontoparietal network (FPN), and is sometimes divided to CEN
and the dorsal attention network (DAN) [i.e., Ref. (29)]. The DAN
consists of the intraparietal sulcus/superior parietal lobule, frontal
eye fields, and extrastriate visual areas. Further discussion of CEN
in this paper includes DAN in line with the work of Sridharan et al.
(27) and Menon and Uddin (28).

The CEN is involved in goal-directed/externally oriented tasks.
Altered connectivity within a FPN has been reported in several
studies (23, 29–34). Lui et al. (35) did not find abnormal dlPFC
connectivity in antipsychotic naïve first-episode patients. Alto-
gether, the severity of illness is indicated to be correlated with
differences in functional connectivity (15, 23, 33, 36–42).

Some researchers usually regard DMN and CEN as the only
areas of RSNs, but actually the whole-brain cortex can be par-
celled into at least 42 functional networks using independent
component analysis (ICA) (24, 43). During past few years, ICA
has become one of the most often used blind source separation
tools for resting-state brain networks since it effectively sepa-
rates noise from neurophysiological noise sources (44). Changes
in functional connectivity in other anatomical areas of the other
RSNs have also been reported in schizophrenia. Given the large
number of RSNs, and the wealth of literature on separate regional
alterations in schizophrenia resting-state BOLD studies, it seems
logical that several functionally connected brain networks can be
affected by schizophrenia simultaneously. Previous resting-state
reports have often focused either on no specific functional net-
work with global brain signal analysis tools, or, focused on one
single network, due to statistical limitations in comparing multi-
ple networks simultaneously. Graph theoretical studies do analyze
multiple drawn brain atlas regions simultaneously, but tend to
analyze data on a graph theoretical frame without functional

parcellation of areas (45, 46). Hand drawn regions of interest or
atlas-based regions of interest are not accurate parcellations of
brain functional connectome (47). These methods often either
focus on signal properties or anatomical differences, but rarely
on both.

Our group has developed techniques that can detect fine
grained functional parcellations of the brain networks with high
model order ICA; for example, DMN can be parcelled into three
networks (48). The high model order ICA combined with a more
rigorous correction for multiple comparisons (y-concat) enables
the analysis of all detected functionally independent brain net-
works simultaneously (49). Moreover, by using different variance
normalization options in dual regression, one can assess whether
the difference is a more spatially shifted activity or whether the
difference originates from amplitude changes in signals reflecting
functional connectivity (49, 50).

In this study, we explored the whole-brain functional connec-
tome with the high model order ICA method in subjects with
schizophrenia and matched birth cohort controls. We compared
the high model order functional connectome parcellations of
schizophrenia subjects with matched population controls using a
dual regression approach. We aimed to assess (a) if multiple differ-
ences between the groups can be detected simultaneously in several
RSNs, and (b) whether the group differences in functional con-
nectivity are due to anatomical shift or signal amplitude change in
functional activity mediating connectivity. We assessed the statis-
tical significance of the group difference results by y-concatenated
threshold-free cluster enhanced (TFCE) randomize analysis (43,
51, 52). Finally, we compared our whole-brain analysis results to
the existing literature on functional connectivity alterations that
had been detected previously in schizophrenia.

MATERIALS AND METHODS
THE NORTHERN FINLAND 1966 BIRTH COHORT
All subjects of this study are members of the Northern Finland
1966 Birth Cohort (NFBC1966, http://kelo.oulu.fi/NFBC/index.
html). The NFBC1966 is an unselected population birth cohort
ascertained during mid-pregnancy. The cohort is based upon
12,058 children with an expected date of birth during 1966 (53).
Permission to collect data was obtained from the Ministry of
Social and Health Affairs. The Ethical committee of the North-
ern Ostrobothnia Hospital District (Oulu, Finland) has accepted
and continuously supervised the study design.

STUDY SAMPLE
NFBC1966 members with a possible psychosis were identified
using the following sources:

1. the Finnish Hospital Discharge Register (FHDR) 1982-2008
(FHDR covers all hospitals, both mental and general, and beds
in local health care centers throughout the country);

2. the Finnish Social Insurance Institutions (SII) register data
until the end of 2008 (i.e., sick leave or disability pension due
to psychosis, or the right for reimbursement for psychoactive
medication);

3. the cohort questionnaire at 31 years of age [self reporting either
a physician detected psychosis, or the regular and substantial
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use of antipsychotics (more than 300 mg chlorpromazine
equivalents daily)].

Altogether 266 members with a possible psychosis were invited
to a field study (2008–2010). A random sample of 450 presum-
ably non-psychotic controls was selected from the NFBC1966 and
invited to the field study. Participation figures of the field study
were 107 (40%) in the psychosis group and 194 (43%) in the con-
trol group. Fifty-five subjects in the psychosis group were classified
as having schizophrenia.

Exclusion criteria included organic psychosis (n= 7), a his-
tory of head trauma with a loss of consciousness for over 30 min
(n= 4), major neurologic disorder (e.g., multiple sclerosis or
epilepsy with antiepileptic medication, n= 2). Failure in com-
pleting the MRI scan resulted in the exclusion of two subjects
with schizophrenia from the present study. Simultaneous non-
psychotic mental disorders were not considered as exclusion
criteria in either of the study groups.

Participants answered questionnaires and underwent psychi-
atric interviews, cognitive testing, and an MRI of the brain (54,
55). All participants gave written informed consent and were inter-
viewed using a Structured Clinical Interview for DSM-IV (SCID-I)
(56). In addition to the 55 subjects diagnosed as having schizophre-
nia based on the three above mentioned sources, three cases were
included in the schizophrenia group based on the clinical inter-
views conducted during the field study. These individuals were
originally invited based on some other psychotic disorder.

In the end, a total of 43 subjects with schizophrenia and a
successful MRI scan formed the case group of the present study.
In the present study, an equal amount (n= 43) of non-psychotic
subjects was randomly chosen for the control group. The con-
trols were matched by gender and by handedness. Because both
groups were selected from the same birth cohort, the matching by
age occurred as a by-product. Most (36/43) of the schizophrenia
patients have current antipsychotic medication, 8 patients having
benzodiazepines and 11 antidepressants (see Table 1).

DATA ACQUISITION AND PRE-PROCESSING
Resting-state BOLD data were collected on a GE Signa 1.5 T whole
body system with an eight channel receive coil, using an EPI GRE
sequence (TR 1800 ms, TE 40 ms, 280 time points, 28 oblique
axial slices, slice thickness 4 mm, inter-slice space 0.4, covering the
whole brain, FOV 25.6 cm× 25.6 cm, with 64× 64 matrix, parallel

Table 1 | Demographics of the participants of the study.

M SD M SD

Gender males/females 26/17 26/17

Age 43.1 0.7 43.5 0.8

PANNS score total 71 26 n/a n/a

Positive 16 7.5 n/a n/a

Negative 19 10 n/a n/a

Medication (CPZ equivalent dose mg/day) 315 286 n/a n/a

Duration of illness 18.8 11.2 n/a n/a

CPZ, chlorpromazine equivalents; PANSS, Positive and Negative Syndrome Scale.

imaging factor 2, and a flip angle of 90°). T1-weighted scans were
imaged using a 3D FSPGR BRAVO sequence (TR 12.1 ms, TE
5.2 ms, slice thickness 1.0 mm, FOV 24.0 cm, matrix 256× 256,
and flip angle 20°, and NEX 1) in order to obtain anatomical
images for co-registration of the fMRI data to standard space
coordinates.

Head motion in the fMRI data was corrected using multi-
resolution rigid body co-registration of volumes, as implemented
in FSL 3.3 MCFLIRT software (57). Brain extraction was carried
out for motion corrected BOLD volumes with optimization of
the deforming smooth surface model, as implemented in FSL
3.3 BET software (58). Then, the BOLD volumes were spatially
smoothed with a Gaussian kernel (7.5 mm FWHM) and voxel
time series were high-pass filtered using a Gaussian linear filter
with a 100 s cutoff. The FSL 4.1.4 fslmaths tool was used for these
steps. Multi-resolution affine co-registration, as implemented in
the FSL 4.1.4 FLIRT software (57), was used to co-register mean
non-smoothed fMRI volumes to 3D FSPGR volumes of cor-
responding subjects, and 3D FSPGR volumes to the Montreal
Neurological Institute (MNI) standard structural space template
(MNI152_T1_2mm_brain template included in FSL). However,
for computational reasons pertaining to later analysis steps, 4 mm
resolution was retained after spatial normalization.

ICA analysis
We have previously addressed the influence of ICA model order
selection on the patterns of between-group differences (48). Based
on this, we assessed functional connectivity at the local optimum
hierarchical level of model order 70. ICA analysis was carried out
using FSL 4.1.4 MELODIC software implementing probabilistic-
independent component analysis (PICA) (59). The multisession
temporal concatenation tool in MELODIC was used to perform
PICA-related pre-processing and data conditioning in the group
analysis setting. ICA using high model order of 70 independent
component maps (IC maps) was applied to detect RSNs. The IC
maps were thresholded using an alternative hypothesis test based
on fitting a Gaussian/gamma mixture model to the distribution of
voxel intensities within spatial maps (60) and controlling the local
false-discovery rate at p < 0.5. The data for between-subject analy-
sis of the resting data were obtained using a regression technique
(dual regression) that allows voxel-wise comparisons of data (48,
52, 61–64). In dual regression, the spatial maps of group ICA are
regressed to the pre-processed BOLD signal data of each individual
to find spatial representations of ICs at an individual level. Then,
a derived temporal signal, measuring the fit of the given spatial
map to the BOLD signal is again regressed to the data, whence the
name dual regression. This gives the possibility to assess group-
derived RSNs at the individual level. The RSNs were identified by
two neuroradiologists (Harri Littow and Vesa J. Kiviniemi) using
previous selection criteria (24). Dual regression was performed
using all the ICs in order to effectively separate motion, pulsa-
tion, and other physiological sources. However, in the second level
correction for multiple comparisons due to several RSNs, only
RSN-related ICs were used. The dual regression was performed
using both non-normalized (des_norm= 0) and normalized sig-
nal variance (des_norm= 1 in FSL). This is important to notice
since non-normalized results reflect spatial connectivity changes
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and normalized variance results reflect signal power changes in the
RSNs, respectively.

Statistical analysis and correction for multiple comparisons at the
whole-brain level
In order to measure functional connectivity of several RSNs cover-
ing the whole brain, one needs to correct for multiple comparisons
both at the voxel level and over several RSNs. Especially at high
model orders, the commonly used voxel-level correction does not
adjust for the risk of a type 1 error (false positives) induced by
increasing the number of components tested simultaneously. We
have previously developed a method that enabled the correction
for multiple comparisons due to simultaneous assessment of sev-
eral RSNs (49). We call this method y-concatenation (y-concat)
correction due to its nature of concatenating data in a y-direction
and the term is used from here on.

Initially, between-group statistical difference was assessed non-
parametrically using permutation testing implemented in FSLs
Randomize tool (v2.1), incorporating also TFCE (43) for cluster-
like statistic and use of maximal statistics for multiple comparisons
correction. This involved deriving null distributions of TFCE-
values for the contrasts, reflecting the between-group effects by
performing 10,000 random permutations of group labels, and
testing the difference between groups against the distribution of
maximal statistic values from all permutations (65).

In the second level, y-concat correction was performed by
taking the temporally concatenated subject-specific RSN maps
derived from the initial dual regression, and concatenating the
RSN maps in the y-direction (Figure 1). Then, statistical analysis
using permutation testing (implemented in the FSLs randomize
tool, 10,000 random permutations) was performed on the result-
ing concatenated map (86 subjects temporally concatenated and
39 RSN maps spatially concatenated). After brain extraction, vox-
els outside the brain are set to zero and consequently non-zero
voxels in maps remain spatially disjointed after spatial concate-
nation. Therefore, the computation of the TFCE-statistic (and
other cluster-related statistics) in individual maps remain unaf-
fected with respect to concatenation. In practice, the second level
(inter-RSN) multiple comparison correction computes a maximal
statistic for each permutation over TFCE-statistics of all voxels of
the concatenated maps (relative to the initial analysis that com-
putes TFCE-statistics in each map separately). Then, the resulting
distribution of maximal values is used to derive threshold levels
for p-values.

The mean relative motion was regressed from the data in order
to further minimize motion. In addition to motion, CSF/blood
flow, pulsation, respiration, etc., nuisance ICs were discarded prior
to y-concat correction in order to specifically sensitize the analy-
sis to RSNs. The resulting statistical between-group difference
maps were then divided back into 39 ICs from the concate-
nated data, thresholded at p < 0.05 (corrected now for family-wise
errors within and between all concatenated RSN maps), and,
resampled into 2 mm. The Juelich histological atlas (66) and the
Harvard–Oxford cortical and subcortical atlases (Harvard Center
for Morphometric Analysis) provided with the FSL software were
used to identify the anatomical characteristics of both RSNs and
between-group differences.

FIGURE 1 | Dual regression analysis with non-normalized variance in
IC1 and IC20 showing anatomically shifted differences between
groups. Normalized variance analysis below shows in IC11 and IC43 signal
amplitude changes between groups. Changes overlaid on MNI152 template
with coordinate planes in white. Color encoding of individual RSN in hot
colors with z -score thresholds and in green the y-concatenated differences
between groups. fCEN, frontal central executive network; lCEN, left central
executive network; rDLPFC, right dorsolateral prefrontal cortex; DMN,
default mode network.

RESULTS
In this study, before the y-concatenation, our findings between
schizophrenia patients and controls at the voxel level were remark-
ably extensive. We found 18 RSNs with significant (p < 0.05,
corrected for family-wise errors for each RSN map separately
at voxel level) changes between groups. Thirteen RSNs showing
increased functional signal amplitude connectivity and 10 RSNs
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with anatomically aberrant activity in patients with schizophrenia
compared to controls. ICs 20, 43, 49, 56, and 60 overlapped and
had both anatomic and amplitude differences between groups (see
Figures S1 and S2 and Table S1 in Supplementary Material).

We found anatomically aberrant resting-state connectivity in
the visual cortex BA18 (IC6) and BA17 L (IC60), juxtapositional
lobule cortex (IC13), supramarginal gyrus and infraparietal lob-
ule (IC20), paracingulate gyrus (IC22), postcentral gyrus (IC42),
lateral occipital cortex (IC43, IC56), left caudatus (IC43), middle
temporal gyrus (IC49), and anterior cingulate gyrus (IC63).

Higher signal amplitude in schizophrenia patients was found
in the middle frontal gyrus within the frontal parts of the CEN
(IC1), inferior frontal gyrus (IC11, IC46), frontal orbital cortex
(IC11), bilateral primary auditory cortex, superior temporal gyrus
and thalamus (IC19), inferior parietal lobule (IC20, IC43), infe-
rior supramarginal gyrus (IC20), precentral gyrus (IC29), frontal
pole (IC31), lateral occipital cortex (IC43, IC56, IC60), left insula
(IC43), left caudatus (IC43), juxtapositional lobule cortex (IC43),
Broca’s area BA45 (IC46), cerebellum (IC49), and the premotor
cortex (IC67).

Correction for multiple RSN comparisons with y-concat
diminished the number of altered networks markedly. After the
y-concat procedure, higher signal amplitude was detected within
the schizophrenia group in IC11 and IC43. IC11 consists mainly
of a right dlPFC with functional connectivity to the left superior
frontal gyrus, left angular gyrus, and left dlPFC. Schizophrenia
patients have greater signal amplitude in the core area of right
dlPFC within the network depicted by IC 11. IC43 is the DMN
variant focused on the angular gyrus and consists of bilateral infe-
rior parietal lobules and portions of bilateral cingulate gyri. The
right side shows an extension to the temporal lobe. The schizo-
phrenia group has greater amplitude in the right inferior parietal
lobule, in bilateral medial frontal gyri (BA6) and in the left caudate
nucleus compared to the control group (see Figure 1; Table 2).

Anatomically, we found two ICs with spatial differences
between the subjects with schizophrenia and the controls (a.k.a
dual regression without variance normalization). The subjects
with schizophrenia show slightly wider connectivity in the left infe-
rior parietal lobule within the left CEN (lCEN, IC20) consisting of
the left PPC and left superior frontal gyrus. In addition, the schizo-
phrenia group has a very small spot of aberrant connectivity in the

right medial visual cortex in connection with the frontal parts of
the CEN (IC1), which consists of anterior bilateral paracingulate
gyri, bilateral medial frontal gyri, and left inferior parietal lob-
ule. Notably, the control group neither exhibited a greater signal
amplitude nor a greater spatial extent of connectivity in any of the
ICs (see Figure 1).

DISCUSSION
In the present paper, we demonstrate that dual regressed ICA can
be used to study all the networks of the human brain connec-
tome in rsfMRI simultaneously. Our results show that variance
normalization can indeed help in discerning some of the signal
amplitude changes in functional connectivity from spatial shifts
of activity within the networks. Patients with schizophrenia have
increased signal amplitude changes in the functional connectivity
of the frontal CEN with the dlPFC compared to controls. Also the
right parietal lobe (BA 19),and the bilateral superior medial frontal
cortices (BA6) had increased signal amplitude changes within the
posterior DMN network in schizophrenia patients compared to
matched controls. These changes were detected within the RSN
areas. Increased signal amplitude may reflect abnormally strong
function within the network itself, without abnormal input from
external sources.

The spatially shifted connectivity changes were either com-
pletely outside the network or in its border zones. Abnormality
in network border zone connectivity was detected in the left infe-
rior parietal lobule (BA 40) with left prominent ICA parcellation
of CEN. Spatially, markedly aberrant connectivity of the right pri-
mary visual cortex (V1, BA 17R) was detected with the anterior
CEN network – an area not usually belonging to the CEN at all.
Spatially shifted connectivity can in theory mark abnormal func-
tional input into the network’s activity and reflect external input
into a functional unit of the brain. In addition, it may be that spa-
tial shifting of the networks indicates abnormal spatial movement
of networks recently detected using sliding window ICA.

MIXED RE-WIRINGS BETWEEN DEFAULT MODE AND CENTRAL
EXECUTIVE NETWORKS
In our study, CEN represented an aberrant shifting of functional
connectivity in the left inferior parietal lobule within IC20 and
in the medial visual cortex, with IC1 that covered the anterior

Table 2 | Group comparison of independent components after second level (inter-RSN)Y -concatenation correction.

IC # Vox Anatomical location of

maximal change

Mean

T -score

Std Min Max Max

coordinates

X Y Z

Spatial

fCEN 1 1 Right medial visual cortex 5.68 – 5.68 5.68 36 28 42

lCEN 20 11 Left inferior parietal lobule 3.67 0.26 3.34 4.28 76 40 52

Amplitude

rDLPFC (CEN) 11 79 Right dorsolateral prefrontal cortex 3.54 0.29 3.18 4.48 18 76 26

DMN 43 96 Left caudate 3.95 0.33 3.43 4.86 28 20 52

Co-ordinates indicating the centroid of the cluster of altered brain activity.
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parts of CEN. Also, greater signal amplitude in the right dlPFC in
IC11 was demonstrated. The dlPFC is usually regarded as a key
hub of CEN (34, 67). Studies regarding dlPFC and CEN primar-
ily report reduced connectivity between cortical and subcortical
brain regions (23, 29, 30, 32, 34, 68). The abnormal shifting of the
connectivity in ICA dual regression analyses might in part explain
reductions seen in ROI-based studies; as functional activity moves
to aberrant location, the activity within a spatially stable ROI
may reduce. The increased signal amplitude then seems to oppose
the reduced connectivity findings by others. However, according
to preliminary analyses, it might be that the spatial stability of
the network hubs might explain some key features detected in
schizophrenia patients (69).

Tu et al. (34) used an ROI-based study to measure connectivity
of key hubs of the CEN, and discovered reduced subcortical con-
nectivity of several CEN key hubs, especially to the right caudate.
Similarly, Su et al. (68) in their ROI-based study found reduced
functional connectivity between the left dlPFC and bilateral cau-
date nucleus. Interestingly, in our study, the left caudate nucleus
seems to be abnormally connected with the DMN rather than
CEN. Strangely enough it becomes evident in the analysis focus-
ing more on signal amplitude changes. Also Salvador et al. (18)
reported an anterior node of DMN to have increased connectivity
to the bilateral caudate,bilateral putamen, right pallidum, and pos-
terior hippocampus, as well as to the right dlPFC. Taken together, it
seems that functional connectivity between DMN, CEN, and sub-
cortical regions, especially the caudate, seems to have abnormal
wiring between the networks in schizophrenia.

Our result of aberrant connectivity to the right medial visual
cortex suggests a dysfunction of visual sensory regions in schizo-
phrenia; however, the alteration seems to be more closely related
to the frontal parts of the CEN rather than anterior insula as
suggested by Palaniyappan et al. (70). Reduced visual inflow
could explain a wider brain connectivity locally. Following this,
reduced connectivity of visual areas has been reported during
task-performance (71, 72). A recent task-related fMRI study (73)
showed that schizophrenia patients have reduced working mem-
ory with disturbed functional connectivity between prefontal and
visual areas compared to healthy controls. Our results can be
a resting-state connectivity manifestation of the same disease
process, which causes the memory dysfunction.

HYPERDOPAMINERGIC STATE AND STRIATAL REWIRING
To this day, there is a sizeable amount of literature demonstrating
dysfunction of dopaminergic neurotransmission in the striatum of
schizophrenia patients, which also addresses connectivity changes
in the caudate and key brain networks. However, direct proof
is lacking for the role of dopamine in these functional impair-
ments. Also, the exact location of dopamine dysfunction within
the striatum remains to be addressed (74). Recent PET study
findings suggested that schizophrenia is associated with elevated
dopamine function in associative regions of the striatum, espe-
cially in pre-commissural dorsal caudate (75). The region found
in the PET study is anatomically exactly the same as that found in
our study being abnormally strongly connected to posterior DMN.
Also, a recent semantic processing fMRI study has been shown to
have diminished activation in the left caudate nucleus and greater

activation in the left inferior frontal gyrus in a schizophrenic group
compared to healthy controls (76). A decreased capacity to activate
left caudate in semantic processing may be related to our finding
of increased functional connectivity in a resting state. The study by
Gradin et al. (36) showed reduced ventral striatal responses during
reward and no-reward conditions, and, in addition, patients exhib-
ited reduced functional connectivity between the midbrain and
the right insula, correlating with increased severity of psychotic
symptoms; this gives support for the argument that dopamine
acts as a modulator. Hoptman et al. (77) in their resting-state study
reported reduced right caudate resting-state signal amplitude of
low-frequency fluctuations (ALFF) in schizophrenia patients. As
stated earlier, we detected increased signal amplitude effects in left
caudate nucleus with regards to aberrant connectivity to DMN.
Taken together, our results and those of recent studies localize
abnormal functional connectivity and brain activity in striatum,
which is regarded as a dopaminergic system.

SELF-REFLECTIVENESS IN SCHIZOPHRENIA
Recent meta-analyses on self-reflective processing occur in brain
areas encompassing the dorsomedial and ventromedial prefrontal
cortices, ACC, PCC, AI, inferior frontal gyrus, and temporo-
parietal junction/angular gyrus/IPL (78, 79). Furthermore, intro-
spective mental processes have been linked to a recruitment of
the lateral prefrontal cortex (80), which is considered to be a
portion of the CEN (26, 27). Jardri et al. (81) stated that the
right IPL signal was found to correlate positively with the sever-
ity of first-rank symptoms in schizophrenia. After y-concat, IC43
(the angular variant of DMN) shows greater amplitude in the
right inferior parietal lobule, and in bilateral medial frontal gyri
(BA6), representing the involvement of DMN, and possibly impli-
cating alterations in self-reflectiveness. Similarly to our findings,
increased connectivity within the medial frontal gyrus in the DMN
has been reported in several studies (22, 39, 82–84). Taken together,
increased signal amplitude changes in DMN areas with increased
signal connectivity may be related to altered introspective brain
functions.

Increased connectivity in the medial frontal gyrus has also
been reported in early-onset schizophrenia (85). Recently, also
the familial risk to schizophrenia has been related to abnormal
DMN connectivity in parietal regions (86). Interestingly, Guo et al.
(87) recently also found a posterior parietal DMN abnormality in
drug naïve first-episode subjects with schizophrenia in very sim-
ilar areas. Our present results agree with these results that DMN
is involved; however, the length of the disease (and treatment)
seems to induce aberrancy of functional connectivity outside the
DMN proper. Huang et al. (88) presented in their rsfMRI study
of treatment-naïve first-episode schizophrenia patients that there
are functional abnormalities of mPFC and putamen at an early
stage of the disease. Neither Huang et al. nor Guo et al. detected
abnormality in caudate, whereas we did; this may be an indication
of a spreading disease involvement.

STATISTICAL SIGNIFICANCE AND LIMITATIONS
Aberrations in functional connectivity in subjects with schizophre-
nia were found throughout the brain after the initial dual regres-
sion, showing difference in 18 RSNs between groups. However,
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given the large number of RSNs tested, it is possible that some of
these group differences could be false positive findings. The main
focus of our discussion will, therefore, be restricted to the results
obtained after the second level y-concat correction, adjusting for
the risk of type 1 error (false positives) induced by increasing the
number of independent components tested simultaneously.

Our findings at voxel level proved to be quite extensive and,
more notably, the affected areas in our study seem to follow the
lines of the results of previously conducted studies on schizo-
phrenia (7, 9, 10, 12, 89). Our voxel-level results (without y-
concatenation correction) indicate changes in the frontal parts and
DMN of the brain, with both spatial and amplitude alterations in
the prefrontal cortex, and amplitude changes in the inferior frontal
gyrus and the frontal pole. Also, the involvement of the SN is more
vividly displayed in our voxel-level findings. IC1, which portrays
a part of the SN, shows a higher signal amplitude in the middle
frontal gyrus. Our striatal findings consist of wider spatial activity
and larger amplitude in the left nucleus caudate, also IC43 and
IC49 demonstrate an amplitude difference in the cerebellum.

The fact that our results diminished to four ICs parcellations of
two main RSNs displays the relatively stringent thresholding effect
of the second level y-concat correction. Y-concatenation, like many
other methods controlling for false positives, emphasizes the spa-
tial extent of clustered group differences over sparse activity. In
addition to the task of removing the risk of type 1 error (false pos-
itives) induced by the use of a high number of components tested
simultaneously, a number of “true” results could also be affected.
For example, there are differences between groups in IC 46 (left
DLPFC) that are spatially sparse and fail to survive y-concat, while
its mirror component IC 11 (right DLPFC) had a spatially tight
cluster, with 20 voxels surviving y-concatenation.

In this study, we are not measuring correlation coefficients
between anatomical regions, and therefore, we are not talking
about connectivity between anatomical regions so much. ICA
depicts RSN networks as a whole, and not based on functional
connectivity strength between areas. ICA rather looks at the statis-
tical independence of functional parcellations compared to other
signal sources in the BOLD data as a whole. DMN, like any net-
work representation after dual regrression, can be analyzed for
areas, which show abnormal connectivity to that given network.
ICA can also show if connectivity strength is abnormal in a net-
work. One could also talk about “belongliness” of an area with a
network in principle. Therefore, we tend to prefer to talk about
areas with aberrant connectivity to a network rather than between
some specific regions per se.

The results of spatial shifting and amplitude changes are not
explicit in nature. The default mode and CEN, especially those
showing the most prominent changes, present differences in both
signal amplitude analysis and anatomical shifting to aberrant
connectivity areas commonly considered to be outside the net-
work itself. For example, caudate nuclei showed increased signal
intensity based connectivity within the DMN, even though most
changes in DMN were related to signal amplitude changes within
the network proper. It also seems that the variance normalization
effects in dual regression tend to emphasize the differences toward
being either spatial or signal amplitude in nature. This was also
stated in original work by Allen and co-workers (50). Therefore,

the results may in some cases be somewhat overlapping, it might be
beneficial to use caution in order not to over-interpret the ICA dual
regression based group differences strictly to be either spatial or
signal amplitude in origin. Also, novel ultra-fast fMRI sequences
may provide a more comprehensive picture of the events in the
future.

Antipsychotic drugs are a difficult and common covariate in
this field of study, and they have exhibited changes in DMN
(90); the results of a motor task fMRI study suggested that
antipsychotics reduce activation in motor (cortical and subcorti-
cal including caudate) and DMNs in schizophrenia patients (91).
Antipsychotic treatment could be a factor confounding the find-
ings, especially in nucleus caudate, but also brain-wide. However,
no effect of medication was found in our preliminary studies when
using the medication as a covariate with the same study sample
(results not shown here). Deeper analysis on duration, compliance,
and dose needs to be performed in further studies in this regard.

CONCLUSION
The most persistent differences between schizophrenia patients
and healthy controls in the human connectome were detected
in default and central executive networks. These networks por-
trayed mixed, both anatomically shifted and altered signal strength
alterations in functional connectivity between groups. Notably,
schizophrenia patient data always portrayed increases in func-
tional connectivity, never the controls. Our results suggest that
abnormalities in schizophrenia consist of mixed rewiring alter-
ations focusing in left caudate, parietal lobule, and dlPFC in default
mode and central excecutive networks.
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