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A B S T R A C T   

Objectives: The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory 
role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) 
prognosis. Investigating the interplay between m7G modification and miRNAs provides novel 
insights for assessing prognostics and drug responses in BC. 
Materials and methods: RNA sequences (miRNA and mRNA profiles) and clinical data for BC were 
acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 
m7G in this cohort was identified using Cox regression and LASSO. The risk score model was 
evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high- 
risk and low-risk groups. Functional enrichment analyses were conducted to explore potential 
pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, 
was examined and compared between high-risk and low-risk groups. A nomogram that combines 
risk scores and clinical factors was developed and validated. Single-sample gene set enrichment 
analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell 
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relationships in the tumor microenvironment. Additionally, drug susceptibility was compared 
between risk groups. 
Results: Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in 
BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 
0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier 
analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p =
1.3e-6). Multiple regression identified the risk score as a significant independent prognostic 
factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728–0.843) was 
constructed. In immune analysis, low-risk patients exhibited heightened immune function and 
increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. 
Conclusion: This study systematically analyzed m7G-related miRNAs and revealed their regulatory 
mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC 
patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC pa-
tients, facilitating prognostic assessments. These findings can also assist in predicting treatment 
responses and guiding medication selection.   

1. Introduction 

Women are at a heightened risk of developing breast cancer (BC) compared to any other cancer type [1,2]. Over the past two 
decades, advancements in methods and new medications have significantly increased the 5-year overall survival (OS) rate for 
early-stage BC patients to over 80 % [3]. Notably, immunotherapy, including PD-1/PD-L1 inhibitors, has shown substantial potential 
in managing patients with malignant tumors, including BC [4,5]. Some studies, utilizing single-cell technology, are investigating the 
relationship between breast cancer and the immune microenvironment by analyzing circulating blood components or gene expression 
[6–8] [6–8] [6–8]. The objective is to discover breakthroughs in the field of tumor immunotherapy. Nevertheless, despite these 
commendable advancements, certain patients face unfavorable prognoses due to drug resistance, metastasis, and recurrence [9]. 
Consequently, there is an urgent need to identify novel and distinct predictive markers that could aid in classifying patients based on 
prognosis and tailoring personalized treatments. 

RNA epigenetic modifications play crucial roles in various biological processes, with over 100 identified RNA-modified nucleosides 
to date [10,11]. Several types of base modifications are used to regulate messenger RNA (mRNA), including N7-Methylguanosine 
(m7G) as an epigenetic modification [12]. Besides mRNA, m7G also occurs in transfer RNA (tRNA), ribosomal RNA (rRNA), small 
nucleolar RNA (snoRNA), microRNA (miRNA), and small nuclear RNA (snRNA) [13]. A growing body of evidence suggests that m7G 
plays a pivotal role in cancer development and progression by modulating various oncogenes and tumor suppressor genes [14]. Re-
ports indicate that METTL1/WDR4-related m7G modification enhances the expression of cell cycle progression genes by reshaping 
mRNA translation activity, contributing to the development of acute myeloid leukemia [15]. In a study of head and neck tumor, higher 
infiltration of CD4+ T cells and CD8+ T cells was observed in the tumor microenvironment in METTL1 knockout mice, with lower 
infiltration of Tregs and Th17 cells [16]. Tumor immunotherapy may also depend on m7G, according to this result. Despite some 
existing research on m7G, further investigation is required to understand the relationship between m7G and the tumor microenvi-
ronment (TME) more comprehensively. A thorough analysis of this relationship will enhance our understanding of m7G-mediated 
cellular infiltration in the BC TME and unveil potential mechanisms that increase BC prognosis, offering new ideas for precision 
therapy. 

Noncoding miRNAs (about 22 nucleotides long) are responsible for silencing RNA and regulating gene expression post- 
transcription. The distinct miRNA expression patterns observed in cancer represents a valuable resource for sensitive biomarker 
identification in cancer risk assessment, outcome prognosis, and the categorization of histological subtypes [17]. Simultaneously， 
miRNAs also play a significant role in regulating drug sensitivity and predicting drug response in BC. Previous studies have demon-
strated that the methyltransferase METTL1 mediates m7G modification of specific miRNAs, promoting their maturation and inhibiting 
lung cancer cell migration [18]. Xie et al. identified the METTL1/m7G/miR-760/ATF3 axis as a regulator of bladder cancer pro-
gression and presented potential therapeutic targets for treating bladder cancer [19]. Therefore, further exploration of the functional 
and regulatory network involving m7G modification and miRNAs in BC will contribute to novel approaches for prognostic assessments 
or drug response predictions in BC. 

In this study, we developed a miRNA prognostic model utilizing m7G and constructed a nomogram for BC patients to assess their 
prognosis. Leveraging the m7G-related miRNA signature, we conducted comprehensive analyses of the TME, immune cell infiltration, 
immune function, and drug sensitivity using pertinent publicly available data. This approach holds the potential to improve the 
prediction and prognosis of BC patients while identifying potential therapeutic targets. 

2. Materials and methods 

2.1. Data collection and processing for breast cancer 

The Cancer Genome Atlas (TCGA) database, available at https://portal.gdc.cancer.gov, housed comprehensive RNA sequencing 
data and clinical records about BC. The miRNA sequencing data (Isoform Expression) encompassed 1103 BC samples and 104 samples 
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from healthy breast tissue. The mRNA sequencing data (TCGA-BRCA, HTSeq-FPKM) comprised 1104 BC samples and 114 healthy 
samples. Statistical analysis was conducted without patients who had incomplete data or had not been followed up for 30 days. In the 
next step, 1026 BC samples were analyzed clinically. 

2.2. Identification of m7G-Related genes and differentially expressed miRNAs in BC 

According to previous studies [20,21], 44 genes related to m7G were identified. We predicted a total of 5761 miRNAs that target 
these m7G-related genes using the TargetScan database, accessible at http://www.targetscan.org. We used the R package "limma" to 
evaluate the expression of 5761 miRNAs associated with m7G in the TCGA BC cohorts and normal samples. Then, we screened the 
miRNAs with the standard of |log2FC| > 1.5, FDR <0.05, and eventually, 204 m7G-related differentially expressed miRNAs (DEmi-
RNAs) were selected. The volcano plot and heatmap illustrate the expression of m7G-related DEmiRNAs. 

2.3. Construction and validation of prognostic signature 

We also conducted a univariate Cox regression analysis to investigate whether the 204 m7G-related DEmiRNAs were linked to 
survival in the TCGA dataset. We selected candidate prognostic miRNAs through the LASSO regression model (utilizing the R package 
"glmnet") based on univariate analysis with p-values below 0.05. A risk score was established for each miRNA identified in the LASSO 
analysis based on multivariate Cox regression analysis. The forest plot of prognostic miRNAs was drawn by a "forestplot" R package. 
Based on the identified DEmiRNAs, the subsequent equation was employed for determining the risk assessment: 

Risk score=
∑n

i=1
Coefi ∗ Expi,

In LASSO regression, N represents the number of selected miRNAs, Coefi stands for the regression coefficient, and Expi represents the 
expression value of each miRNA. Patients from the TCGA BRCA dataset were categorized into low and high risk groups using the 
median risk score as the threshold, and we compared the two risk groups using Kaplan-Meier survival estimates. We also estimated 
sensitivity and specificity for survival at 3-, 5-, and 10-year intervals using time-dependent ROC curves and area under the ROC curves 
(AUC). 

2.4. Construction and validation of nomogram 

A nomogram was constructed using the packages "survival", "survminer", "regplot" and "rms" in R. To assess the prognostic value of 
the risk score signature and traditional clinical factors (including age, stage, T, N, progestogen receptor (PR) status, estrogen receptor 
(ER) status, and HER2 receptor status), univariate and multivariate Cox regression analyses were conducted. A nomogram was con-
structed to forecast survival probabilities over 3-, 5-, and 10-year periods based on the clinicopathologic features and m7G-related risk 
score. To evaluate the accuracy of the modelling method, the AUC value was calculated. Subsequently, calibration plots measured the 
nomogram’s discriminant capacity using the concordance index (C-index). 

2.5. Functional enrichment analysis 

We identified differentially expressed genes (DEGs) between the high-risk and low-risk groups utilizing the R packages "limma" and 
"edgeR" applying the following criteria: | log2Fold Change (FC)| > 0.5 and False discovery rate (FDR) < 0.05. ESTIMATE (Estimation of 
Stromal Cells and Immune Cells in Malignant Tumor Tissues), a bioinformatics algorithm, was used to quantitate each BRCA patient’s 
TME score (https://bioinformatics.mdanderson.org) [22]. BRCA patients were divided into two groups, high immunoscore and low 
immunoscore, based on their immunoscore within the TME. We obtained immune-related genes that were differentially expressed 
using the following criteria: | log2FC | > 1 and FDR <0.05. We identified immune-related genes associated with risk through an 
intersection with immune-risk genes. To reveal the biological processes and potential signaling pathways associated with diseases, we 
performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) analyses. The an-
alyses were conducted using R packages such as "org.Hs.eg.db", "clusterProfiler", and "enrichplot" [23,24]. 

2.6. Immune analysis 

Utilizing single-sample gene set enrichment analysis (ssGSEA), we quantified 29 immune signatures, including 13 functions related 
to the immune system and 16 distinct immune cell types. We initially employed the Pearson coefficient test to assess the internal 
correlations among various immune characteristics, followed by the Wilcoxon test to determine disparities in both immune cells and 
functions between the two groups. Lastly, we examined the expression levels of 32 immune checkpoint-related genes in the two risk 
groups to anticipate the potential efficacy of immune checkpoint blockade therapy. 

2.7. Immunotherapy sensitivity analysis 

Immunotherapy susceptibility data were downloaded from The Cancer Immunome Atlas (TCIA, https://tcia.at/home) [25,26]. 
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TCIA contains a comprehensive immunogenomic analysis of RNA-seq data from 20 solid cancers. The immunophenotype score (IPS) 
refers to the assessment of effector cells, immunosuppressive cells, MHC molecules, and immunomodulators that determine immu-
nogenicity and is based on unbiased gene expression in representative cell types using machine learning methods, calculated within a 
range of 0–10 for the IPS. IPS results for BC patients were downloaded from the TCIA database. This study utilized data from the 
TCGA-BRCA cohort to discover the association between immunotherapy sensitivity and risk grouping of m7G-related miRNAs. 

2.8. OncoPredict for drug sensitivity analysis 

Maeser and colleagues created the R package "oncoppredict" to forecast drug responsiveness in cancer individuals [27]. We utilized 
the "calcPhenotype" function within the "oncoppredict" R package to compute the half-maximal inhibitory concentrations (IC50) for 
tumor cell lines, leveraging the tissue’s gene expression profile to predict sensitivity to the chemotherapy drugs. Data on cancer drug 
sensitivity from Sanger’s Genomics of Drug Sensitivity in Cancer (GDSC; http://www.cancerrxgene.org/en/) and the Broad Institute’s 

Fig. 1. DEmiRNAs targeting m7G-related genes (A) A flow chart of the study. (B) The volcano plot of 204 DEmiRNAs. (C) A heatmap of the top 20 
DEmiRNAs between normal (N) and tumor (T) breast samples. DEmiRNAs, Differentially expressed miRNAs. 
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Cancer Therapeutics Response Portal (CTRP) were incorporated into the "oncoppredict" R package as training datasets. Gene 
expression profiles of cell lines, used to predict drug responses, were sourced from the Cancer Cell Line Encyclopedia project (CCLE; 
http://portals.broadinstitute.org/ccle). Our study encompassed a total of 198 drugs, and we employed an unpaired t-test to assess drug 
sensitivity between the high- and low-risk groups, with a significance threshold set at P < 0.05. 

2.9. Statistical analysis 

We conducted an analysis of miRNA and mRNA expression levels, contrasting tumor samples with neighboring non-cancerous 
samples using Student’s t-test. Additionally, we utilized Pearson’s chi-square test to compare categorical variables. To assess pa-
tient survival, we employed the Kaplan-Meier analysis and the two-sided log-rank test to compare survival curves. We applied both 
single-variable and multiple-variable Cox regression models to evaluate independent prognostic models. Both groups underwent 
comparison using the Mann-Whitney test for both filtration and immune pathway activation. Statistical analysis was performed using 
R software (v4.2.1). Some of the images in this study were generated using the Sangerbox online drawing tool (http://www.sangerbox. 
com/tool) [28]. We considered a P-value less than 0.05 from both sides to indicate statistical significance. 

3. Results 

3.1. m7G-related miRNAs and their expression levels 

The study process flowchart is depicted in Fig. 1A. We selected 44 m7G-related genes based on previously documented literature 

Table 1 
Characteristics of TCGA-BRCA patients.  

Characteristics BRCA cohort Percentage(%) 

Total number of patients 1026 100.0 
Age (median, range),year 58(26–89)  
Sex 

Female 1014 98.8 
Male 12 1.2 

Survival time 
OS days (median, range) 894.5(30–8605)  

Stage 
I 180 17.5 
II 577 56.2 
III 228 22.2 
IV 19 1.9 
Unknown 22 2.1 

T 
T1 277 27.0 
T2 583 56.8 
T3 127 12.4 
T4 36 3.5 
Unknown 3 0.3 

N 
N0 479 46.7 
N1+N2+N3 530 51.7 
Unknown 17 1.7 

M 
M0 848 82.7 
M1 20 1.9 
Unknown 158 15.4 

PR status 
Negative 312 30.4 
Positive 669 65.2 
Unknown 45 4.4 

ER status 
Negative 219 21.3 
Positive 764 74.5 
Unknown 43 4.2 

HER2 status 
Negative 526 51.3 
Positive 147 14.3 
Equivocal 187 18.2 
Unknown 166 16.2 

Abbreviation: TCGA, the Cancer Genome Atlas; BRCA, Breast invasive carcinoma; OS, Overall survival; T, 
Tumor; N, Lymph nodes; M, Metastasis; PR, Progesterone receptor; ER, Estrogen receptor; HER2, Human 
epidermal growth factor receptor 2. 
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sources (Supplementary Table S1) and retrieved 5761 m7G-related miRNAs from the TargetScan database (Supplementary Table S2). 
A total of 1207 breast samples with miRNA sequencing data from The Cancer Genome Atlas (TCGA) were included, comprising 1103 
tumor tissues and 104 normal tissues. Furthermore, we identified 204 differentially expressed miRNAs (DEmiRNAs) related to m7G (| 
log2FC|>1.5 and FDR <0.05), with 151 upregulated and 53 downregulated DEmiRNAs (Fig. 1B). The heatmap illustrates the 
expression of the top 20 m7G-related DEmiRNAs (Fig. 1C). 

3.2. miRNA signatures related to m7G constructed and validated 

Considering samples with incomplete clinical data, a total of 1026 samples were analyzed (Table 1). Initially, 204 DEmiRNAs were 
screened using univariate Cox regression analysis. To maintain the prognostic value of the final model, a cutoff value of p < 0.05 was 

Fig. 2. Construction of a novel m7G-related miRNA risk signature and its prognostic value.  
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set, resulting in 22 miRNAs with prognostic significance (Fig. 2A). Further screening through Cox regression analysis yielded 15 
miRNA combinations with the optimal λ value (Fig. 2B and C). These 15 miRNAs correspondingly regulate four m7G-related genes, 
including AGO2, CCNB1, DCP2 and CYFIP1 (Supplementary Table S3). Multivariate Cox regression on 15 miRNAs revealed that miR- 
7705 (p = 0.0496), miR-148b-5p (p = 0.0113), miR-6715a-3p (p = 0.0310), and miR-4501 (p = 0.0035) may act as risk factors; while 

Fig. 3. Development and assessment of Nomogram.  
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Fig. 4. Functional analysis based on the Intersection of genes.  
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miR-20b-3p (p = 0.0457) and miR-4658 (p = 0.0021) may function as protective factors (Fig. 2D). To compute the risk scores for BC 
patients, the following formula was employed: Riskscore=(0.0393*miR-7705 expression)+(0.0262*miR-148b-5p)+(0.0423*miR- 
6715a-3p)+(− 0.0006*miR-1247-3p)+(0.0103*miR-7706)+(− 0.0004*miR-142-5p)+(0.0202*miR-4501)+(− 0.0097*miR-20b-3p)+
(− 0.0153*miR-449c-5p)+(− 0.0724*miR-556-3p)+(0.0446*miR-3127-3p)+(− 0.0783*miR-3619-3p)+(− 0.0553*miR-5691)+
(0.0014*miR-9-3p)+(− 0.2170*miR-4658). Patients were categorized into high-risk and low-risk groups based on the median risk 
scores (Fig. 2E). A Kaplan-Meier analysis examined the association between risk signatures and prognosis, revealing survival differ-
ences between high-risk and low-risk groups of BC patients. The median OS of the low-risk group was nearly five months longer than 
that of the high-risk group (Fig. 2F). The sensitivity and specificity of prognostic signatures of m7G-related miRNAs were assessed by 
time-dependent ROC analysis, revealing area under the curve (AUC) values of approximately 0.742 for 3-year, 0.726 for 5-year, and 
0.712 for 10-year (Fig. 2G). 

(A) A Cox univariate analysis identified 22 prognostic miRNAs related to m7G. (B) An analysis of 22 prognostic miRNAs related to 
m7G using LASSO. (C) In the TCGA BRCA cohort, 22 miRNA signatures were identified and evaluated using the Lasso algorithm, and 
15 miRNAs were screened for developing patient prognosis risk signatures. The red line shows the final number of miRNAs selected. 
(D) Based on the multivariate Cox regression analysis, the forest plot illustrates the independent prognostic value of the 15 miRNAs. (F) 
In the Kaplan-Meier method, the overall survival rate of BC patients was compared between high-risk and low-risk groups. (G) A time- 
dependent ROC curve for predicting OS based on the m7G-related miRNA risk score. LASSO, Least absolute shrinkage selection 
operator; TCGA, The Cancer Genome Atlas; BRCA, Breast invasive carcinoma; ROC, Receiver operating characteristic; OS, Overall 
survival. 

3.3. Nomogram construction and verification 

To evaluate the potential of the risk score as an independent prognostic indicator, both univariate and multivariate Cox regression 
analyses were conducted, incorporating clinical factors (such as age, stage, T, N, progesterone receptor (PR) status, estrogen receptor 
(ER) status, and HER2 status) along with the risk scores. Univariate analysis showed that age (HR = 1.040, 95%CI[1.020–1.060]), 
stage (HR = 2.897, 95%CI[1.775–4.730]), T (HR = 2.039, 95%CI[1.132–3.672]), N (HR = 1.752, 95%CI[1.074–2.859]), ER (HR =
0.567, 95%CI[0.340–0.944]), and risk score (HR = 1.139, 95%CI[1.076–1.205]) were associated with OS in BC patients (Fig. 3A). 
However, following multivariate Cox analysis (Fig. 3B), only age (HR = 1.046, 95 % CI [1.026–1.066]), stage (HR = 3.115, 95 % CI 
[1.514–6.412]), ER status (HR = 0.341, 95 % CI [0.138–0.844]), and risk score (HR = 1.115, 95 % CI [1.044–1.191]) retained their 
status as independent factors for OS. Combining all independent prognostic factors, we constructed a nomogram for predicting 3-, 5-, 
and 10-year OS rates for all BC patients (Fig. 3C). The C-index of the nomogram model is 0.785 (95 % CI [0.728–0.842]), indicating 
good discriminative performance. Additionally, the time-dependent AUCs for 3-, 5-, and 10-year intervals were 0.86 (95 % CI 
[0.77–0.95]), 0.82 (95 % CI [0.75–0.89]), and 0.77 (95 % CI [0.65–0.89]), respectively, demonstrating strong predictive performance 
(Fig. 3D). Calibration curves illustrated the nomogram’s high discriminative ability (Fig. 3E). Overall, the nomogram model accurately 
predicted OS for BC patients. 

(A and B) Forest plots show the prognostic value of Uni-Cox and multi-Cox regression analysis combined with clinical and risk score 
factors. (C) Combined with age, stage, ER and risk score, a nomogram was established to quantitatively predict the 3-, 5- and 10-year 
survival of BC patients. *p < 0.05, **p < 0.01, ***p < 0.001, ****P < 0.0001. (D) The time-dependent ROC curves for prognosis of 3-, 
5-, and 10-year. (E) Nomogram calibration curves of OS prediction at 3-, 5-, and 10-year for BC patients. ER, Estrogen receptor; ROC, 
Receiver operating characteristic; OS, Overall survival. 

3.4. Functional analysis within the BRCA cohort utilizing risk score and immune score 

To elucidate the biological functions and pathways associated with both the immune score and risk score, we initially identified the 
overlap between the 482 risk-related differentially expressed genes (DEGs) in the risk groups and the 650 immune-related DEGs in the 
immune groups, resulting in the identification of 115 risk-immune-related genes (Fig. 4A and Supplementary Table S4). A functional 
analysis of these risk-immune-related genes was then conducted using DO analysis, GO enrichment, and KEGG pathways. The top five 
relevant terms in the DO analysis were chronic lymphocytic leukemia, lymphocytic leukemia, human immunodeficiency virus in-
fectious disease, multiple sclerosis, and hyperthyroidism (Fig. 4B). The GO enrichment encompassed biological processes (BP), cellular 
components (CC), and molecular functions (MF). The intersecting genes were significantly enriched in processes such as the regulation 
of immune effector process, external side of the plasma membrane, and immune receptor activity (Fig. 4C). The KEGG analysis 
indicated that these genes were associated with various immune pathways, including cytokine-cytokine receptor interaction, natural 
killer cell-mediated cytotoxicity, and antigen processing and presentation, among others (Fig. 4D). 

(A) Venn plot of the intersection genes in both risk score and immune score. (B) Top 10 crucial terms for DO analysis. (C) Top 5 
critical terms for GO functional enrichment, including biological process (BP), cellular components (CC), and molecular functions 
(MF). (D) The circle diagram is enriched in the KEGG analysis. DO, Disease ontology; GO, Gene ontology; KEGG, Kyto encyclopedia of 
genes and genomes; BP, Biological process; CC, Cellular component; MF, Molecular function. 

3.5. The relationship between m7G-related risk signature and immune microenvironment 

Considering the close relationship between immunotherapy efficacy and the tumor microenvironment (TME), we further enriched 
scores for 16 immune cell subsets and 13 immune functions in the TCGA-BRCA cohort using single-sample gene set enrichment analysis 
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(ssGSEA) (Fig. 5A). A correlation analysis of immune cells revealed a strong positive relationship between tumor-infiltrating lym-
phocytes (TIL) and CD8+ T cells (r = 0.89), as well as pCDs (r = 0.87) (Fig. 5B). Regarding immune functions, T cell co-inhibition and 
checkpoint exhibited the highest positive correlation (r = 0.96), while the remaining immune functions showing notably strong 

Fig. 5. The ssGSEA analyses of immune cells and immune-related pathways.  
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positive correlations (Fig. 5C). Subsequently, we assessed the differences in the immune profile differences between the high-risk and 
low-risk cohorts. Except for mast cells, the presence of other immune cells was notably reduced in high-risk patients (Fig. 5D). 
Similarly, compared to the low-risk group, all immune functions in the high-risk group, except for APC co-stimulation, exhibited 
significant down-regulation (Fig. 5E). Therefore, miRNAs related to m7G show promise in predicting immune responses. 

(A) The heatmap shows the infiltration of 16 immune cells and 13 immune-related pathways. (B) Correlation between immune cells 
(the redder the color, the higher the correlation). (C) Correlation between immune-related pathways (the redder the color, the higher 
the correlation). (D) The boxplot for 16 types of immune cells between the high- and low-risk groups. (E) The boxplot for 13 immune- 
related pathways between the high- and low-risk groups. P values were showed as: *P < 0.05; **P < 0.01; ***P < 0.001; NS, not 
significant. 

3.6. Expression levels of immune checkpoints and prediction of immune efficacy 

As immune cell infiltration abundance correlates with immune checkpoint gene expression levels, we further examined the 
expression levels of 32 immune checkpoint genes between high and low-risk groups. In the TCGA-BRCA cohort, 30 ICGs (including 
CTLA-4 and PDCD1) were significantly overexpressed in the low-risk group compared with the high-risk group, except for ICOSSLG 
and CD276 gene expression levels. Given that CTLA-4 and PD-1 inhibitors are commonly used in BC immunotherapy, we selected these 
two immune checkpoints as representatives to evaluate the therapeutic effect of immune checkpoint inhibitors (ICIs) through the IPS. 
When evaluating Immune Prognostic Scores (IPS), which included CTLA4- PD1-, CTLA4- PD1+, CTLA4+ PD1-, and CTLA4+ PD1+, 

Fig. 6. Immune checkpoint related genes expression and immunotherapy prediction in two risk groups.  
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Fig. 7. Chemotherapy drug sensitivity assessment in two risk groups.  
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across various risk groups, using data from the TICA website, we observed that in all of these condition types, the low-risk group 
displayed significantly higher IPS (Fig. 6B–E, all p < 0.05). These results indicate that individuals classified as low-risk may exhibit 
heightened responsiveness to ICIs treatment. 

(A) Expression of 32 immune checkpoint-related genes in both groups. Responsiveness to CTLA-4 and PD-1 therapy based on TCIA 
database. (B) Violin plot of IPS scores in Negative CTLA-4 and Negative PD-1. (C) Violin plot of IPS scores in Negative CTLA-4 and 
Positive PD-1. (D) Violin plot of IPS scores in Positive CTLA-4 and Negative PD-1. (E) Violin plot of IPS scores in Positive CTLA-4 and 
Positive PD-1. P values were showed as: *P < 0.05; **P < 0.01; ***P < 0.001; NS, not significant. TCIA, The Cancer Immunome Atlas; 
IPS, Immunophenoscore. 

3.7. Comparison of susceptibility to chemotherapeutic drugs among risk groups 

To fortify the connection between m7G-related miRNA signatures and clinical applications, we utilized the "oncoPredict" package 
to predict drug sensitivities for 16 commonly used drugs in BC patients. The findings indicated that the low-risk group exhibited 
enhanced sensitivity to ribociclib among targeted drugs, vincristine in plant-based anticancer drugs, gemcitabine in anti-metabolites, 
as well as epirubicin and mitoxantrone within the category of anti-tumor antibiotics. Conversely, the high-risk group demonstrated 
increased sensitivity to lapatinib (Fig. 7A–E). However, the sensitivity of the two risk groups to other targeted drugs (nilotinib and 
palbociclib), plant anticancer drugs (docetaxel, paclitaxel, and vinblastine), cisplatin, antimetabolite (5-fluorouracil, and rapamycin) 
and endocrine anticancer drugs (tamoxifen and fulvestrant) showed no statistically significant difference. 

(A) Sensitivity assessment of targeted drugs by lapatinib, nilotinib, palbociclib, and ribociclib, respectively. (B) Sensitivity 
assessment of plant aiticancer drugs by docetaxel, paclitaxel, vinblastine, and vincristine, respectively. (C) Sensitivity assessment of 
platinum drug by cisplatin. (D) Sensitivity assessment of antimetabolic anticarcinoma drug by 5-fluorouracil, gemcitabine, and 
rapamycin. (E) Sensitivity assessment of antitumor antibiotic drugs by epirubicin and mitoxantrone, respectively. (F) Sensitivity 
assessment of hormonal anticancer drugs of fulvestrant and tamoxifen, respectively. A smaller value for drug sensitivity indicated that 
the tumor was predicted to be more sensitive to that drug. P values were showed as: *P < 0.05; **P < 0.01; ***P < 0.001; NS, not 
significant. 

4. Discussion 

In the era of precision medicine, the quest for a more precise method to assess the prognosis of BC patients and guide treatment is an 
urgent and essential topic. The epigenetic and immune microenvironment factors play critical roles in BC’s tumorigenesis, progression, 
and drug sensitivity [29,30]. Increasingly, more and more studies have revealed the close relationship between the TME and 
immune-related features with tumor prognoses. For instance, the degree of tumor infiltration by immune cells has been identified as a 
predictor of early recurrence and patient prognosis [31]. Additionally, m7G-related METTL1 has been found to regulate the accu-
mulation of polymorphonuclear myeloid-derived suppressor cells in the TME and influence the efficacy of anti-PD-1 therapy [32]. 
However, there is a scarcity of studies constructing BC prognosis models based on m7G-related miRNAs and systematically analyzing 
the TME and immunotherapy. 

Numerous studies have confirmed that miRNAs can regulate a wide range of oncogenes and tumor suppressor genes, with their 
expression patterns integrated into clinical practice as diagnostic and prognostic indicators [33]. Afterwards, 204 DEmiRNAs between 
normal breast tissue and BC tissue were analyzed by TCGA database, of which 22 DEmiRNAs had prognostic value. Further, the risk 
signature, including 15 miRNAs, was obtained by LASS-COX regression analysis. Interestingly, 12 out of the 15 miRNAs primarily 
regulated m7G-related genes with AGO2 being a prominent target (Supplementary Table S3). AGO2, a translation protein, inhibits 
mRNA translation by binding to the m7G cap of mRNA targets [34]. The enriched LncRNA CCAT1, for instance, can negatively regulate 
miR-148b expression through the AGO complex, thereby reducing the radiosensitivity of BC [35]. Except for miR-6715a, miR-3127-3p 
and miR-4658, other miR-1247-3p [36], miR-142-5p [37], miR-20b-3p [38], miR-449c-5p [39], miR-556-3p [40], miR-3619-3p [41], 
miR-5691 [42], miR-9-3p [43] also have been reported to have a direct or indirect regulatory relationship with AGO2. For instance, 
miR-1247 is associated with cancer prognosis, with its upregulation inhibiting the malignant progression of cancer [44,45]. Elevated 
expression of miR-142-5p can suppress PD-L1 expression in tumor cells, enhancing anti-tumor immune responses [46]. In contrast, 
increased levels of miR-9-3p were observed to promote cell proliferation and inhibit apoptosis in cases of medullary thyroid carcinoma 
[47]. Consistent with our findings, precursors miR-1247-3p and miR-142-5p were identified as protective factors for BC prognosis, 
while miR-9-3p was categorized as a risk factor (Fig. 2A). The interaction between miRNAs and m7G is still under investigation, and 
the insights gained from this study may contribute to the development and selection of BC treatments by identifying prognostic 
miRNAs targeting m7G modification. 

This study categorized BC patients into risk groups to assess their prognosis. Individuals in the high-risk group exhibited a 
significantly lower survival rate compared to those in the low-risk category. The ROC curve illustrated that the model’s AUC surpassed 
0.7, signifying enhanced accuracy in predicting prognosis based on the risk signature. The construction of prognostic models incor-
porating relevant miRNA signatures has gained widespread recognition in clinical practice [48]. Subsequently, we developed a 
nomogram by combining risk scores and clinical features. The model demonstrated relatively high AUC values for predicting patient 
survival at 3, 5, and 10 years, confirming its robust predictive abilities. Furthermore, multivariate Cox regression analysis indicated 
that miRNA risk scores function as autonomous prognostic factors. 

Recent years have witnessed increased attention devoted to immune infiltration as a prognostic and immunotherapy factor. To 
further explore the relationship between risk-scoring models and immune status, the prognostic signature was strongly associated with 
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immune diseases, immune cells, and immune-related pathways, as revealed by functional enrichment analysis. Analysis of distinct 
types of DEGs in the risk groups showed that these DEGs were predominantly associated with processes beyond the plasma membrane. 
They were primarily engaged in regulating immune receptor processes, leading to functions such as immune receptor activity and 
cytokine receptor binding (Fig. 4). These findings imply that this pathway might influence tumor migration and invasion, potentially 
reshaping the state of the TME. 

Utilizing TCGA-BRCA data, we examined the relationship between immune cell subtypes and immune function through ssGSEA to 
elucidate the impact of m7G on tumor immunity. In contrast to the high-risk group, the low-risk group exhibited elevated levels of 
immune cell infiltration, including CD8+ T cells, T helper cells, and tumor-infiltrating lymphocytes (TILs), except mast cells (Fig. 5D). 
The concept of tumors being either "immune-desert" or "immune-inflamed" implies that the absence of T cell infiltration within tumors 
significantly contributes to the restricted effectiveness of immunotherapies, such as immune checkpoint inhibitors (ICIs), in treating 
immune-desert tumors [49]. We noted a significant contrast in the TMEs between the two cohorts, with the low-risk group displaying a 
relatively heightened immune response compared to the higher-risk group. Although risk group-based analyses cannot identify hot 
tumors, they can predict relative efficacy. During our analysis of immune checkpoint gene expression, we predominantly observed 
heightened expressions of ICOSLG and CD276 in the high-risk cohort (Fig. 6A). Iwata et al. previously reported that ICOSLG promotes 
the proliferation of regulatory T cells and the production of IL-10, thereby promoting the advancement of glioblastoma [50]. Addi-
tionally, CD276 suppresses T cells and is usually associated with important functions in patients [51]. Furthermore, low-risk patients 
may also be more susceptible to anti-CTLA-4 and anti-PD-1 therapies (Fig. 6B). Indeed, the efficacy of anti-CTLA-4 and PD-1 has been 
demonstrated in the clinical treatment of BC and represents a new opportunity for treating BC [52]. It is, therefore, likely to be more 
effective to use ICIs in low-risk groups, according to this study. 

An analysis of drug sensitivity also indicated that the low-risk groups might exhibit increased susceptibility to ribociclib, 
vincristine, gemcitabine, epirubicin, and mitoxantrone. In high-risk patients, lapatinib conferred a more substantial benefit. The 
RIBECCA trial demonstrated that the combination of ribociclib plus letrozole decreased regulatory T cell and immunosuppressive 
cytokine signaling in peripheral blood, activating adaptive immune responses in BC patients [53]. Another study showed that lapatinib 
plus anthracyclines could enhance tumor infiltration by T cells secreting IFN-γ, playing an important role in building an antitumor 
immune response [54]. These findings may help develop clinical strategies for combining chemotherapeutic and immunotherapeutic 
drugs to mitigate drug resistance. Hence, we posit that the m7G-related miRNA signature can provide valuable insights for tailoring 
personalized treatment approaches for BC patients. 

Nevertheless, there are certain constraints within this study. For instance, the data utilized in this research are derived from 
publicly available databases, and our internal validation relies solely on TCGA data, potentially introducing some degree of selection 
bias into the analysis results. A follow-up large, multi-center, prospective study is needed to confirm our results further. In addition, the 
accuracy of the m7G-related miRNA scoring model in predicting drug efficacy also needs to be confirmed by clinical trials. 

5. Conclusion 

To summarize, this study thoroughly analyzed m7G-related miRNAs, providing insights into their regulatory mechanisms within 
the tumor microenvironment, pathological features, and prognosis in BC patients. The results demonstrate the clinical value of m7G- 
related miRNAs and establish and validate a nomogram. By predicting chemotherapy and immunotherapy response, m7G-related 
miRNA signatures may also guide individualized BC treatment. 
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