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Neural network‑based prediction 
of the secret‑key rate of quantum 
key distribution
Min‑Gang Zhou1, Zhi‑Ping Liu1, Wen‑Bo Liu1, Chen‑Long Li1,2, Jun‑Lin Bai1,2, Yi‑Ran Xue1,2, 
Yao Fu2, Hua‑Lei Yin1* & Zeng‑Bing Chen1,2*

Numerical methods are widely used to calculate the secure key rate of many quantum key distribution 
protocols in practice, but they consume many computing resources and are too time-consuming. 
In this work, we take the homodyne detection discrete-modulated continuous-variable quantum 
key distribution (CV-QKD) as an example, and construct a neural network that can quickly predict 
the secure key rate based on the experimental parameters and experimental results. Compared to 
traditional numerical methods, the speed of the neural network is improved by several orders of 
magnitude. Importantly, the predicted key rates are not only highly accurate but also highly likely 
to be secure. This allows the secure key rate of discrete-modulated CV-QKD to be extracted in real 
time on a low-power platform. Furthermore, our method is versatile and can be extended to quickly 
calculate the complex secure key rates of various other unstructured quantum key distribution 
protocols.

With the concurrent rise of artificial intelligence and quantum information science, these two fields are merging 
in a synergistic manner. In this growing trend, some works try to design new theoretical models based on quan-
tum algorithms to improve classical machine learning for desired quantum speed-up1–10. At the same time, with 
the ever-increasing complexity of quantum systems, advanced quantum information technologies also require 
powerful tools for data processing and data analysis. We therefore urgently need to leverage existing classical 
machine learning techniques to solve practical, but difficult, problems in quantum information science, such 
as tomography11–13, classifying quantum states14–16, quantum metrology17–19, quantum control20,21 and quantum 
cryptography22.

Quantum key distribution (QKD)23,24 is by far the most practical technology in quantum information. It 
allows two distant parties (Alice and Bob) to establish secure keys against any eavesdropper. Various QKD pro-
tocols have been proposed one after another in recent decades25–30. Calculating the secure key rates of these QKD 
protocols is typically done by analytical methods31, but these analytical methods are usually inseparable from 
certain symmetry assumptions. These assumptions are often broken by experimental imperfections in practice. 
Therefore, to analyze the security of QKD protocols that are more suitable for practical implementations, some 
numerical methods based on convex optimization32–35 have been developed.

For instance, continuous-variable (CV) QKD has its own distinct advantages at a metropolitan distance36,37 
due to the use of common components of coherent optical communication technology. In addition, the 
homodyne38 or heterodyne39 measurements used by CV-QKD have inherent extraordinary spectral filtering 
capabilities, which allows the crosstalk in wavelength division multiplexing (WDM) channels to be effectively 
suppressed. Therefore, hundreds of QKD channels may be integrated into a single optical fiber and can be 
cotransmitted with classic data channels. This allows QKD channels to be more effectively integrated into exist-
ing communication networks. In CV-QKD, discrete modulation technology has attracted much attention31,40–50 
because of its ability to reduce the requirements for modulation devices. However, due to the lack of symmetry, 
the security proof of discrete modulation CV-QKD also mainly relies on numerical methods43–48,51.

Unfortunately, calculating a secure key rate by numerical methods requires minimizing a convex function over 
all eavesdropping attacks related with the experimental data52,53. The efficiency of this optimization depends on 
the number of parameters of the QKD protocol. For example, in discrete modulation CV-QKD, the number of 
parameters is generally 1000− 3000 depending on the different choices of cutoff photon numbers44. This leads 

OPEN

1National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of 
Advanced Microstructures, Nanjing University, Nanjing, China. 2MatricTime Digital Technology Co. Ltd., Nanjing, 
China. *email: hlyin@nju.edu.cn; zbchen@nju.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12647-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8879  | https://doi.org/10.1038/s41598-022-12647-x

www.nature.com/scientificreports/

to the corresponding optimization possibly taking minutes or even hours51. Therefore, it is especially important 
to develop tools for calculating the key rate that are more efficient than numerical methods.

In this work, we take the homodyne detection discrete-modulated CV-QKD44 as an example to construct a 
neural network capable of predicting the secure key rate for the purpose of saving time and resource consump-
tion. We apply our neural network to a test set obtained at different excess noises and distances. Excellent accu-
racy and time savings are observed after adjusting the hyperparameters. Importantly, the predicted key rates are 
highly likely to be secure. Note that our method is versatile and can be extended to quickly calculate the complex 
secure key rates of various other unstructured quantum key distribution protocols. Through some open source 
deep learning frameworks for on-device inference, such as TensorFlow Lite54, our model can also be easily 
deployed on devices at the edge of the network, such as mobile devices, embedded Linux or microcontrollers.

Results
Discrete‑modulated CV‑QKD.  To clearly show the problem we try to solve, we briefly introduce the main 
ideas of discrete-modulated CV-QKD and give the convex optimization problem of finding its key rates in this 
section. See Ref.44 and see description of  “Discrete-modulated CV-QKD” in Methods.

The protocol involves two parties, Alice and Bob. Alice randomly prepares one of the four coherent states and 
sends it to Bob by an untrusted quantum channel. Bob measures the received coherent state using homodyne 
detection. After repeating N rounds, Alice and Bob perform sifting, parameter estimation, error correction and 
privacy amplification over the classical authentication channel to obtain the final secure key rates. The key rate 
formula in the asymptotic limit can be expressed according to Refs.32,33 as

where D(ρ�σ) = Tr
(

ρ log2 ρ
)

− Tr
(

ρ log2 σ
)

 is the quantum relative entropy; ρAB is the bipartite state of Alice 
and Bob; G is the mapping to describe the postprocessing of the bipartite state ρAB ; Z is a pinching quantum 
channel for reading out the results of the key rate mapping; S is the set of all density operators that match the 
experimental observations; ppass is a sifting factor that determines how many rounds of data are used for generat-
ing keys; δEC represents the amount of information leakage per bit in the error-correction process.

The key to finding the secure key rates is to solve the minimum value of D
(

G (ρAB)‖Z
[

G (ρAB)
])

 , since 
ppassδEC is a fixed quantity. The associated optimization problem is44

where |x��x|A is a local projective measurement operator of Alice’s side, where x ∈ {0, 1, 2, 3} ; q̂ = 1√
2

(
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)

 , 
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TrA[ρAB(|x��x|A ⊗ idB)] is 

the state of Bob after Alice has performed measurement |x��x| on ρAB , and px is the corresponding probability; 
idB is the identity transformation acting on system B.

The first four constraints in Eq. (2) are derived from experimental observations. The fifth and sixth constraints 
are conditions that the density matrix must satisfy. The seventh constraint comes from the fact that Alice’s states 
do not change because they do not go through insecure quantum channels.

The optimization problem in Eq. (2) is to find the optimal ρAB in S such that R∞ is minimized. ρAB is infinite-
dimensional because the attacker has the ability to arbitrarily perturb the optical mode sent by Alice into an 
infinite-dimensional state to send to Bob. To solve this optimization problem using numerical methods, we need 
to apply the photon-number cutoff assumption to ρAB to ensure that the number of variables is in a reasonable 
range. A detailed description of this method can be found in Ref.44.

After applying the photon-number cutoff assumption, the optimization problem in Eq. (2) can be solved by 
applying the numerical method in Refs.33,44, but this is very time consuming. In this work, to reduce the time 
to predict secure key rates, we use the key rates obtained by the numerical method in Refs.33,44 as labels to train 
our neural network.
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Neural networks for predicting the key rates.  We use an artificial neural network to predict the key 
rates of discrete-modulated CV-QKD. The general spirit of the work is to encode the optimization problem in 
Eq. (2) on the loss function of a feedforward neural network and train the neural network by minimizing this 
loss function. The trained neural network can be seen as a mapping, which has learned the structure of the train-
ing set. For new instances, the neural network outputs the results directly via mapping, unlike traditional numer-
ical methods that perform complex searches. As a result, the trained neural network saves a great deal of time, 
while ensuring a good level of accuracy. A more detailed description of neural networks can be found in Ref.55.

A four-layer neural network model is designed to predict the key rates of discrete-modulated CV-QKD 
(Fig. 1). The input layer of the network has 29 neurons, which are used to receive the training inputs. The first 
hidden layer and the second hidden layer of the network have 400 and 200 neurons respectively, and their activa-
tion functions are the tanh function and sigmoid function, respectively. The output layer has only one neuron, 
which is used to predict secure key rates.

To train our neural network, we generate the data set containing 552,000 input instances {xi} and 552,000 cor-
responding labels 

{

yi
}

 using the numerical method in Refs.33,44. Each xi ∈ {xi} represents a vector of 29 variables, 
and label yi represents the corresponding key rate. There are 16 variables in each xi that are the right parts of the 
first four restrictions of Eq. (2), 12 variables in each xi are nondiagonal elements of the right side matrix of the last 
restriction of Eq. (2), and the remaining variable is excess noise ξ . The 29 variables in each xi can be calculated 
in the experiment by using experimental parameters and experimental observations. In our simulation, these 
random input instances {xi} are generated directly from seven experimental parameters (transmission distance 
L, light intensity µ , excess noise ξ , and probability p0, p1, p2 and p3) and the following method.

When the excess noise ξ is within 0.002–0.014, we first generate a two-dimensional grid with excess noise and 
distance in the horizontal and vertical coordinates, respectively. Specifically, the value of the distance is between 
0 and 100 km in a step of 5 km. The value of the excess noise is between 0.002 and 0.014 in a step of 0.001. Then, 
each grid point is sampled 80 times. With each sampling, the excess noise fluctuates around the exact value, and 
the float range is 0.0005 up and down. Once the excess noise for this sampling is determined, the light intensity 
will take a value every 0.01 between 0.35 and 0.60. Each sampling needs to generate 25 input instances with a 
positive key rate; otherwise, the current round of sampling is discarded and restarted. In this way, 2000 input 
instances are generated on each grid point. Correspondingly, a total of 520,000 training inputs are generated on 
this two-dimensional grid. When the excess noise ξ is 0.015, a similar two-dimensional grid is generated. How-
ever, we only sample to 80 km, so only 32,000 instances are generated. In this way, we collect a total of 552,000 
samples with excess noise ξ between 0.002 and 0.015. Using the numerical approach in Refs.33,44, we calculate 
the corresponding key rate for each sample as the label of the data set on the blade cluster system of the High 
Performance Computing Center of Nanjing University. We consume over 40, 000 core hours, and the node we 
used contains 4 Intel Xeon Gold 6248 CPUs, which involves immense computational power.

To improve the convergence speed and accuracy of our neural network, we preprocess the input instances {xi} 
and the corresponding labels 

{

yi
}

 . To demonstrate the necessity of the data preprocessing, we use the network 
structure shown in Fig. 1 to perform a controlled experiment with the mean square error as the loss function. 

Figure 1.   Schematic diagram of our neural network model. We preprocess each training input xi and its 
corresponding label yi to obtain x∗i  and y∗i  . The neural network receives x∗i  and outputs the corresponding y∗pi  . 
The numbers of neurons in the first hidden layer and the second hidden layer of the neural network are 400 
and 200, respectively. y∗pi  and y∗i  are used to compute the loss function designed by us. Minimization of the loss 
function completes the training process.
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With the excess noise of 0.002–0.005, the absolute values of the relative deviations between the key rates predicted 
by our neural network and the corresponding key rates obtained by the numerical method do not exceed 25% 
after the data preprocessing (Fig. 2), whereas the absolute values of the relative deviations exceed 400% without 
the data preprocessing. Here, the relative deviation is the absolute deviation between the predicted value and 
true value divided by the true value. A detailed description of the data preprocessing can be found in “Details 
of data preprocessing” in Methods.

A new loss function is specifically designed to make key rates predicted by our neural network as information-
theoretically secure as possible, rather than using the traditional mean squared error as a loss function. The 
expression of the loss function is as follows:

where n is the number of training inputs. e∗i = y
∗p
i − y∗i  is the residual error between the preprocessed label y∗i  

and the corresponding output y∗pi  of the neural network.
The minimum function part in Eq. (3) is the penalty term and is used to make the key rates predicted by 

the neural network as information-theoretically secure as possible. On the other hand, the part consisting of 
the maximum function and the squared term in Eq. (3) is used to bound the upper limit of e∗i  to obtain higher 
key rates. The parameter γ is used to balance the effects of the two parts. With the help of this loss function, 
we expect that the relative deviations between predicted value and true value can be bound in (ε − 1, 0) after 
choosing the proper ε and γ.

The performance of the neural networks is related to hyperparameters γ and ε . Without loss of generality, we 
take the examples of neural networks with excess noise ξ between 0.002 and 0.005 (Fig. 3). When γ = 0.20 and 
ε = 0.80 , the key rates predicted by the neural network are strictly lower than those obtained by the numerical 
method in Refs.33,44, which means that the key rates predicted by the neural network are information-theoretically 
secure. Meanwhile, the absolute values of the relative deviations are mainly distributed between 0.05 and 0.20 
(Fig. 3a,b). Figure 3c–f plot the corresponding results for the hyperparameters γ = 0.20 , ε = 0.90 and γ = 0.80 , 
ε = 0.80 , respectively. Note that the partial key rates predicted by the neural networks under γ = 0.20 , ε = 0.90 
and γ = 0.80 , ε = 0.80 are higher than the key rates obtained by the numerical method. This indicates that the 
performance of neural networks trained with hyperparameters γ = 0.20 , ε = 0.90 and γ = 0.80 , ε = 0.80 is not 
as good as that of neural network trained with hyperparameters γ = 0.20 and ε = 0.80 . Therefore, we need to 
carefully tune hyperparameters of the neural networks to ensure their stable performance.

The 552,000 data generated by the numerical method are split into a training set containing 524,400 data and 
a test set containing 27,600 data. The test set is sampled from the original data set and covers instances generated 
under all combinations of excess noise and distance. The data preprocessing procedure follows data splitting. The 
Adam optimization algorithm56 is used to train our neural network. The initial learning rate is set to 0.001. For 
each training, we set 200 epochs and 256 batch sizes. In addition, techniques such as early stopping and dropout57 
are used to prevent overtting. The relative deviations of the trained network on the test set and the training set 
have similar distributions, which indicates that the model has good generalization performance.

Key rate comparison.  We use our neural network to predict, given the optimal light intensity, key rates of 
discrete-modulated CV-QKD at different distances and different excess noises after training the neural network 

(3)C = 1

n

n
∑

i=1

γ
(

e∗2i +max
(

e∗i ,− log10(ε)
))

− (1− γ )
(

min
(

e∗i , 0
))

,

Figure 2.   Relative deviations before and after data preprocessing. We use the network structure shown in 
Fig. 1 with the mean square error as the loss function to compare the results of data preprocessing (a) and 
without data preprocessing (b). The data set is generated under the excess noise of 0.002–0.005, and is split into 
a training set containing 158,000 samples and a test set containing 2000 samples. The horizontal coordinate 
represents the different samples in the test set. The vertical coordinate represents the relative deviations between 
the key rate predicted by our neural network and the key rate obtained by the numerical method at each sample.
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Figure 3.   Performance comparison of neural networks with different hyperparameters. (a) The results of the 
neural network with the hyperparameters γ = 0.20 and ε = 0.80 in predicting 2000 samples with excess noise 
between 0.002 and 0.005 in the test set. The predicted key rates are strictly below the key rates obtained by the 
numerical method in Refs.33,44. (b) The histogram of the relative deviation distribution in (a). The absolute value 
of the relative deviations remains roughly in the region of 5–20%. (c–f) plot the corresponding results for the 
hyperparameters γ = 0.20 , ε = 0.90 and γ = 0.80 , ε = 0.80 , respectively.

Figure 4.   Secure key rate versus the transmission distance for homodyne detection discrete-modulated 
CV-QKD with excess noise ξ of 0.002, 0.004, 0.008, 0.011 and 0.014 using our neural network (circles) and the 
numerical method in Refs.33,44 (triangles). The light intensity is chosen to be optimal in the interval [0.35, 0.6]. 
Tht transmission efficiency η = 10

−0.02L . The reconciliation efficiency β = 0.95 . The neural network used for 
comparison is trained by setting the hyperparameters γ = 0.20 and ε = 0.80 . The cutoff photon number in the 
numerical method is set as 10.
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under γ = 0.20 and ε = 0.80 according to the method described in “Methods” above. As shown in Fig. 4, we 
compare the key rates with the corresponding key rates obtained by the numerical method in Refs.33,44. The 
results show that all key rates predicted by the neural network are strictly lower than those obtained by the 
numerical method. It is worth noting that the relative deviations between them are basically within 20% (relevant 
data can be found in “Detailed data” in Methods).

To illustrate the more general case, we test the test set containing 27,600 samples mentioned at the end of 
“Methods”. The results show that the number of samples, for which the key rates predicted by the neural network 
are lower than the corresponding results calculated by the numerical method, is 27,379. Namely, the probability 
that the key rate predicted by the neural network on the test set is secure is as high as 99.2%.

Our neural network shows greater advantages over the numerical method in terms of time and resource 
consumption. We compare the time required to predict the key rates with our neural network and the time 
required to calculate the key rates with the numerical method on a high-performance personal computer with a 
3.3 GHz AMD Ryzen 9 4900H and 16 GB of RAM (Fig. 5). The neural network is 6–8 orders of magnitude of the 
numerical method for predicting the key rates of the discrete-modulated CV-QKD within 0–100 km for excess 
noise ξ = 0.008–0.012. In addition, as the excess noise increases, the speed of the neural network increases even 
more. Refer to “Detailed data” for more detailed data.

Discussion
We have constructed neural networks and shown that these neural networks can predict the information-the-
oretically secure key rates of homodyne detection discrete-modulated CV-QKD with a great probability (up to 
99.2% ) at a distance of 0–100 km and an excess noise of no more than 0.015. In particular, with excess noise up 
to 0.008 or more, the speed of our method is at least improved by six orders of magnitude compared to that of 
the numerical method in Refs.33,44. For example, it takes an average of 190 s to numerically calculate the point 
with the excess noise ξ around 0.008, which greatly affects the efficiency of QKD systems to calculate the secure 
key rate. In contrast, a neural network can calculate tens of thousands of key rates in 1 s. Considering that it 
takes a certain amount of time for the QKD system to collect data, the speed of predicting the key rates by the 
neural network completely meets practical applications. This advantage brings us one step closer to achieving 
low latency for discrete modulated CV-QKD on a low-power platform. Our method is applicable in principle 
to any protocol that already has reliable numerical methods. However, for protocols such as 16/64/256 QAM 
DM-CVQKD protocol with analytical methods whose effects are very close to those of numerical methods, it is 
not necessary to use the method proposed in this paper.

Figure 5.   Time consumption comparison between the neural network method and numerical method. The 
comparison results with excess noise of 0.008, 0.010 and 0.012 are shown as diamonds, circles and triangles, 
respectively. Each point represents the logarithm of the ratio of the running time of the numerical method 
divided by the running time of the neural network method. The neural network used for comparison is trained 
by setting the hyperparameters γ = 0.20 and ε = 0.80 . The cutoff photon number in the numerical method is 
set as 10.
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Recently, there have been two main types of situations in which machine learning is used in QKD. One is 
used for experimental parameter optimization58,59 and the other is used to assist experimental control60–62. They 
all use machine learning to replace traditional optimization or feedback control algorithms, which are signifi-
cantly different from our work. To the best of our knowledge, this is the first time we have tried to apply machine 
learning methods to predict key rates of QKD. This poses a greater challenge than parameter optimization with 
machine learning methods. This is because the parameters predicted by the neural networks are substituted into 
numerical or analytical methods to find the corresponding key rates, which naturally ensures that the key rates 
are information-theoretically secure. However, the key rates obtained by neural networks do not guarantee this 
naturally, which forces us to redesign the loss function and seek better data preprocessing methods to guarantee 
the acquired key rate with information-theoretic security. Note that the probability ( 0.8% ) of our neural network 
predicting an insecure key rate is too large compared to conventional security parameters of the QKD protocol 
(e.g. 10−6 ). In practice, however, we need to sample thousands of data points and calculate their respective key 
rates to obtain a usable keystring. The key here is that when we sum and average the key rates of all data points 
predicted by our neural network, the insecure probability of this averaged key rate can be reduced very low. If 
there are enough data points, this insecure probability can also approximate conventional security parameters 
of the QKD protocol.

We expect that larger excess noises and longer distances will require a deeper network, more sophisticated 
loss functions, and more detailed data preprocessing methods to improve the performance of neural networks 
on the training set. More training data are also necessary to improve the generalization ability of the neural 
networks. For deep neural networks, the rapid growth or rapid disappearance of the transmitted gradient hin-
ders the optimization process; therefore, the debugging process is highly technical. The debugging process can 
be guided by monitoring the activation function values of the neurons and histograms 1 of those gradients55.

Our machine learning approach is at least six orders of magnitude of the numerical method at predicting 
the secure key rates of homodyne detection discrete-modulated CV-QKD with excess noise up to 0.008 or 
more. However, training our neural network is still time consuming. This is because we need to use traditional 
numerical methods to obtain a number of key rates as the training set of the neural networks. In particular, the 
performance of our neural network is dependent on the choice of hyperparameters γ , ε and initial learning rate. 
This means that we may need to train several times to obtain a suitable neural network. To make our machine 
learning method more intelligent, further work is necessary to design another neural network to automatically 
find the most suitable hyperparameters. We have also tried other machine learning methods, such as boosting 
decision trees. These methods have smaller relative deviations, but have greater variances. We have left the fusion 
of these methods to future research.

The important contribution of our work is that it opens the door to using classical machine learning to pre-
dict QKD key rates. In particular, our ideas and methods are very easy to generalize to other QKD protocols. 
We expect that our work will stimulate further research to help most QKD systems run on low-power chips63 
in mobile devices64.

Methods
Discrete‑modulated CV‑QKD.  According to Ref.44, homodyne detection discrete-modulated CV-QKD 
is described below:

(1) State preparation.-Alice prepares a coherent state |ψk� from the set {|α�, | − α�, |iα�, | − iα�} according to 
the probability of [pA/2, pA/2, (1− pA)/2, (1− pA)/2] , where α ∈ R is a predetermined amplitude and k is the 
number of rounds. Then Alice sends the state |ψk� to Bob.

(2) Measurement.-Bob performs a homodyne measurement on the received state. He chooses to measure 
a certain orthogonal component (q or p) according to the probability of [pB, 1− pB] . If q is chosen, Bob notes 
bk = 0 , otherwise he notes bk = 1 . Then, Bob records his measurement outcome yk ∈ R.

(3) Announcement and sifting.-After repeating the first two steps N times, Alice and Bob communicate via 
the classical authentication channel and divide the obtained data into the following four subsets:

where [N] denotes the set of all integers from 1 to N. Then Alice and Bob randomly select a subset I key of size 
m from Iqq for generating keys. The key string X = (x1, x2, . . . , xm) at Alice is also determined according to 
the following rules:

where f(j) is a function that maps from I key to Iqq . The remaining data in Iqq , Iqp , Ipq and Ipp are integrated 
into the set I test and used for parameter estimation.

(4) Parameter estimation.-Alice and Bob perform parameter estimation based on the data in I test . First, they 
calculate the first and second moments of q and p quadratures for each of the four coherent states sent by Alice. 
Then they calculate the secret key rate based on the convex optimization problem in Eq. (8).

If the result shows that the key rate is equal to 0, Alice and Bob abort the protocol and start over. Otherwise, 
they continue with the next step.

(4)

Iqq = {k ∈ [N] : |ψk� ∈ {|α�, | − α�}, bk = 0},
Iqp = {k ∈ [N] : |ψk� ∈ {|α�, | − α�}, bk = 1},
Ipq = {k ∈ [N] : |ψk� ∈ {|iα�, | − iα�}, bk = 0},
Ipp = {k ∈ [N] : |ψk� ∈ {|iα�, | − iα�}, bk = 1},

(5)∀j ∈ [m], xj =
{

0 if
∣

∣ψf (j)

〉

= |α�,
1 if

∣

∣ψf (j)

〉

= | − α�,
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(5) Reverse reconciliation key map.-The key string Z = (z1, z2, . . . , zm) at Bob is determined according to 
Bob’s measurement outcome yk in step 2 and the following rules:

where �c ≥ 0 is determined by the postselection of data.
Alice and Bob then pick out the location of the symbol ⊥ and remove the data at that location by classical 

communication. The set X and Z after removing ⊥ is the raw key string.
(6) Error correction and privacy amplification.-Alice and Bob choose a suitable error-correction protocol 

and a suitable privacy-amplification protocol to generate secret key rates.
The key rate can be calculated using the well-known Devetak-Winter formula65 in the asymptotic limit 

and under collective attacks. To apply this formula, we transform the prepare-and-measure protocol into the 
entanglement-based protocol.

Alice prepares the state according to the ensemble 
{

|ϕx�, px
}

 in the prepare-and-measure proto-
col. In the equivalent entanglement-based protocol, Alice prepares the bipartite state in the form of 
|��AA′ =

∑

x

√
px|x�A|ϕx�A′ . Here Alice keeps |x�A in register A and sends |ϕx�A′ to Bob. |ϕx�A′ changes as it 

passes through an insecure quantum channel. The process can be described by a completely positive and trace-
preserving map EA′→B . The bipartite state ρAB thus transforms into

where idA is the identity transformation acting on A. Under reverse reconciliation66, the key rate formula can be 
expressed according to Refs.32,33 as

 

(6)zj =







0 if yf (j) ∈ [�c ,∞),
1 if yf (j) ∈ (−∞,−�c],
⊥ if yf (j) ∈ (−�c ,�c),

(7)ρAB =
(

idA ⊗ EA′→B

)

(|����|AA′) ,

(8)R∞ = min
ρAB∈S

D
(

G (ρAB)�Z
[

G (ρAB)
])

− ppassδEC.
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Table 1.   Relative deviations between key rates predicted by our neural network and the corresponding key 
rates obtained by the numerical method for the given optimal light intensity at different distances and different 
excess noises.

L (km)

Relative deviations

ξ = 0.002 ξ = 0.005 ξ = 0.008 ξ = 0.011 ξ = 0.014

5 0.27 0.16 0.15 0.16 0.15

10 0.17 0.14 0.14 0.12 0.12

15 0.14 0.12 0.11 0.10 0.10

20 0.12 0.10 0.09 0.08 0.09

25 0.11 0.09 0.08 0.07 0.10

30 0.09 0.09 0.06 0.08 0.11

35 0.08 0.07 0.06 0.09 0.11

40 0.07 0.07 0.08 0.10 0.13

45 0.07 0.08 0.09 0.10 0.14

50 0.08 0.09 0.10 0.11 0.14

55 0.09 0.10 0.11 0.12 0.15

60 0.09 0.11 0.11 0.12 0.14

65 0.10 0.11 0.12 0.13 0.14

70 0.10 0.11 0.12 0.13 0.13

75 0.10 0.12 0.12 0.13 0.14

80 0.10 0.12 0.13 0.13 0.15

85 0.11 0.13 0.13 0.14 0.17

90 0.11 0.13 0.14 0.14 0.20

95 0.11 0.14 0.14 0.15 0.19

100 0.11 0.14 0.14 0.14 0.06

Table 2.   Time consumption of the neural network versus the numerical method with excess noise ξ of 0.008, 
0.010 and 0.012. NM and NN are the abbreviations of the numerical method and neural network, respectively. 
L is the distance between Alice and Bob.

ξ = 0.008 ξ = 0.010 ξ = 0.012

L (km) NM (s) NN (s) L (km) NM (s) NN (s) L (km) NM (s) NN (s)

5 1.42× 10
2

1.98× 10
−4 5 1.54× 10

2
3.28× 10

−4 5 2.16× 10
2

1.31× 10
−4

10 7.86× 10
1 7.25× 10

−5 10 9.94× 10
1 5.85× 10

−5 10 1.27× 10
2 4.70× 10

−5

15 1.04× 10
2 6.60× 10

−5 15 1.72× 10
2 5.70× 10

−5 15 2.24× 10
2 4.15× 10

−5

20 1.09× 10
2 6.50× 10

−5 20 2.37× 10
2 5.40× 10

−5 20 3.07× 10
2 4.30× 10

−5

25 1.20× 10
2 6.65× 10

−5 25 2.45× 10
2 6.30× 10

−5 25 4.40× 10
2 4.25× 10

−5

30 1.98× 10
2 5.65× 10

−5 30 3.30× 10
2 4.75× 10

−5 30 4.92× 10
2 4.20× 10

−5

35 2.34× 10
2 5.90× 10

−5 35 3.71× 10
2 5.90× 10

−5 35 5.33× 10
2 4.65× 10

−5

40 2.47× 10
2 5.70× 10

−5 40 4.18× 10
2 5.85× 10

−5 40 5.72× 10
2 4.60× 10

−5

45 2.50× 10
2 6.10× 10

−5 45 2.73× 10
2 5.70× 10

−5 45 5.94× 10
2 4.35× 10

−5

50 2.62× 10
2 6.35× 10

−5 50 6.24× 10
2 5.60× 10

−5 50 5.79× 10
2 4.55× 10

−5

55 2.74× 10
2 6.50× 10

−5 55 5.55× 10
2 5.10× 10

−5 55 5.83× 10
2 4.30× 10

−5

60 2.68× 10
2 6.65× 10

−5 60 5.28× 10
2 5.85× 10

−5 60 5.96× 10
2 4.30× 10

−5

65 2.55× 10
2 6.70× 10

−5 65 5.48× 10
2 5.10× 10

−5 65 5.96× 10
2 4.20× 10

−5

70 2.72× 10
2 6.55× 10

−5 70 4.82× 10
2 5.65× 10

−5 70 5.91× 10
2 5.30× 10

−5

75 2.60× 10
2 6.70× 10

−5 75 4.78× 10
2 6.70× 10

−5 75 5.87× 10
2 4.10× 10

−5

80 2.30× 10
2 6.00× 10

−5 80 4.19× 10
2 5.20× 10

−5 80 5.57× 10
2 4.35× 10

−5

85 2.34× 10
2 5.70× 10

−5 85 3.63× 10
2 5.95× 10

−5 85 5.45× 10
2 4.35× 10

−5

90 1.99× 10
2 5.75× 10

−5 90 3.48× 10
2 5.35× 10

−5 90 4.37× 10
2 4.10× 10

−5

95 1.72× 10
2 5.75× 10

−5 95 2.92× 10
2 5.10× 10

−5 95 3.81× 10
2 4.35× 10

−5

100 1.54× 10
2 5.85× 10

−5 100 2.43× 10
2 6.60× 10

−5 100 3.47× 10
2 4.65× 10

−5
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Details of data preprocessing.  To improve the performance of our neural network, we preprocess the 
training inputs {xi} before training the neural network. The process can be expressed as

where xij represents the j-th component of the i-th sample; x̄j and σj are the mean and variance of the j-th com-
ponent in all samples, respectively; x∗ij is the j-th component of the i-th sample after being preprocessed.

The preprocessed data {x∗i } follow a standard normal distribution with a mean of 0 and a variance of 1. The 
process removes dimensional restrictions and facilitates the comparison of features of different dimensions. Since 
the maximum difference between different key rates in these samples is 4 orders of magnitude, we preprocess 
the labels as follows to speed up the training process of the neural networks:

where y∗i  is the label corresponding to the i-th sample after being preprocessed. Note that the outputs predicted by 
the neural networks trained with preprocessed labels {y∗i } need to be inverse solved using the following equation:

where y∗pi  and ypi  are the output value and the predicted key rate of the neural networks for the i-th sample, 
respectively.

Algorithms  1 and  2 show the detailed training process of the neural networks and the process of using trained 
neural networks to predict new samples, respectively.

Detailed data.  Table  1 shows the relative deviations between the key rates predicted by our neural network 
and the corresponding key rates obtained by the numerical method for the given optimal light intensity at dif-
ferent distances and different excess noises. This table is a supplement to Fig. 4.

Table  2 shows the specific data of the time consumption of the neural network and the numerical method with 
excess noise ξ of 0.008, 0.010 and 0.012. In the numerical method, each point with excess noise ξ of approximately 
0.01 takes 200 s on average, which greatly affects the efficiency of the QKD system to calculate the secure key 
rate. In contrast, the neural network can calculate tens of thousands of key rates in 1 s. Considering that it takes 
a certain amount of time for the QKD system to collect data, the speed of predicting the key rates by the neural 
network completely meets practical applications.
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