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ABSTRACT: Molecular dynamics (MD) simulations are widely
used to monitor time-resolved motions of biomacromolecules,
although it often remains unknown how closely the conformational
dynamics correspond to those occurring in real life. Here, we used
a large set of open-access MD trajectories of phosphatidylcholine
(PC) lipid bilayers to benchmark the conformational dynamics in
several contemporary MD models (force fields) against nuclear
magnetic resonance (NMR) data available in the literature:
effective correlation times and spin−lattice relaxation rates. We
found none of the tested MD models to fully reproduce the
conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-
based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The
performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However,
for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description
because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single
new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the
indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire
other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true
computational microscopenot only for lipid membranes but for all biomacromolecular systems.

■ INTRODUCTION
Ever since the conception of the Protein Data Bank (PDB)1,2

and Genbank,3,4 open access to standardized and searchable
pools of experimental data has revolutionized scientific research.
Constantly growing and improving in fidelity due to
collaborative effort,5−8 the now hundreds of databanks9 fuel
the data-driven development of biomolecular structure deter-
mination,10 refinement,11 prediction,12 and design13 approaches
as well as the development of drugs,14,15 materials,16,17 and
more.18,19 It is clear that open data enables scientific progress
that is far beyond the resources of a single research group or
institute. Consequently, the call for public availability and
conservation of data has extended to molecular dynamics (MD)
simulation trajectories of biomolecules,20−22 and the discussion
on how and by whom such databanks for dynamic structures
would be set up is currently active.23−26 While there are
currently no general MD databanks in operation, individual
databanks are accepting contributions on nucleic acid,27

protein/DNA/RNA,28 cyclodextrin,29 G-protein-coupled re-
ceptor,30 and lipid bilayer31 simulations.
Since 2013, the NMRlipids Project (nmrlipids.blogspot.fi)

has promoted a fully open collaboration approach, where the
whole scientific research processfrom initial ideas and
discussions to analysis methods, data, and publicationsis all
the time publicly available.32 While its main focus has been on

conformational ensembles of different lipid headgroups and on
ion binding to lipid membranes,32−34 the NMRlipids Project has
also built a databank31 (zenodo.org/communities/nmrlipids)
containing hundreds of atomistic MD trajectories of lipid
bilayers and indexed at nmrlipids.fi.
MD databanks are expected to be particularly relevant for

disordered biomolecules, such as biological lipids composing
cellular membranes or intrinsically disordered proteins. These,
in contrast to folded proteins or DNA strands, cannot be
meaningfully described by the coordinates of a single structure
alone. Realistic MD simulations, however, can provide the
complete conformational ensemble and dynamics of such
molecules as well as enable studies of their biological functions
in complex biomolecular assemblies. Unfortunately, the current
MD force fields largely fail to capture the conformational
ensembles of lipid headgroups and disordered proteins.32,34−37

Therefore, before they can be used to draw conclusions, the
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quality of MD simulations must always be carefully assessed
against structurally sensitive experiments. For lipid bilayers, such
evaluation is possible against NMR and scattering data.38

Here, we demonstrate the use of a pre-existing, publicly
available set of MD trajectories to rapidly evaluate the fidelity of
phospholipid conformational dynamics in state-of-the-art force
fields. The rate at which individual molecules sample their
conformational ensemble is traditionally used to assess if a given
MD simulation has converged. Going beyond such practicalities,
realistic dynamics are particularly desired for the intuitive
interpretation of NMR experiments sensitive to molecular
motions39 as well as to understand the dynamics of biological
processes where molecular deformations play a rate-limiting
role, such as membrane fusion.40 The here presented
comprehensive comparison of dynamics between experiments
and different MD models at various biologically relevant
compositions and conditions is thus likely to facilitate the
development of increasingly realistic phospholipid force fields.
Above all, our results demonstrate the power of publicly

available MD trajectories in creating new knowledge at a
lowered computational cost and high potential for automation.
We believe that this paves the way for novel applications of MD
trajectory databanks as well as underlines their usefulnessnot
only for lipid membranes but for all biomolecular systems.

■ METHODS
Lipid Conformational Dynamics in NMR Data. We

analyzed the veracity of phosphatidylcholine (PC) lipid
dynamics in MD based on two quantities that are readily
available from published39,41−43 13C NMR experiments and
directly quantifiable from atomistic MD simulations: the
effective C−H bond correlation times τe and the spin−lattice
relaxation rates R1.
Effective C−HBond Correlation Times τe. In a lipid bilayer in

the liquid crystalline state, each individual lipid samples its
internal conformational ensemble and rotates around the
membrane normal. Lipid conformational dynamics are reflected
in the second-order autocorrelation functions of its C−H bonds

g P t t( ) ( ( ) ( ))2τ μ μ τ= ⟨ ⃗ · ⃗ + ⟩ (1)

where the angular brackets depict time average, μ⃗(t) is the unit
vector in the direction of the C−H bond at time t, and P2 is the
second-order Legendre polynomial P x x( ) (3 1)2

1
2

2= − .

To analyze the internal dynamics of lipids, the C−H bond
autocorrelation function is often written as a product

g g g( ) ( ) ( )f sτ τ τ= (2)

where gf(τ) characterizes the fast decays owing to, e.g., the
internal dynamics and rotation around membrane normal, and
gs(τ) the slow decays that originate from, e.g., lipid diffusion
between lamellae with different orientations and periodic
motions due to magic-angle spinning conditions (Figure 1).
Ferreira et al.41 have experimentally demonstrated that, for all
phospholipid carbons, the motional correlation times contribu-
ting to gf are well below μs and to gs well above 100 μs. This
separation of timescales gives rise to the plateau g(1 μs≲ τ≲ 100
μs) = SCH

2 illustrated in Figure 1. SCH is the C−H bond order
parameter

S t
1
2

3cos ( ) 1CH
2 θ= ⟨ − ⟩

(3)

where θ(t) is the angle between the C−H bond and the bilayer
normal. SCH can be independently measured using dipolar
coupling in 13C or quadrupolar coupling in 2H NMR
experiments. Knowing the set of SCH for all the C−H bonds in
a lipid is highly useful in order to evaluate its conformational
ensemble.38

As SCH describe the conformational ensemble of the lipid, the
fast-decaying component gf of the C−H bond autocorrelation
function intuitively reflects the time needed to sample these
conformations. The complex internal dynamics containing
multiple timescales can be conveniently summarized using the
effective correlation time

g S

S

( )

1
de

0

f CH
2

CH
2∫τ

τ
τ=

−

−

∞

(4)

which is related to the gray shaded area below the correlation
function in Figure 1. The τe detects essentially an average over all
the timescales relevant for the lipid conformational dynamics.
Their relation to process speeds is intuitive: an increase in long-
lived correlations increases τe.

Spin−Lattice Relaxation Rates R1. The C−H bond
dynamics relate to R1, the spin−lattice relaxation rate, through

R
d N

j j j
20

( ) 3 ( ) 6 ( )1
CH

2
H

H C C H Cω ω ω ω ω= [ − + + + ]

(5)

whereωH is the
1H andωC the

13C NMR Larmor frequency and
NH is the number of hydrogens covalently bonded to the carbon.
The rigid dipolar coupling constant dCH≈− 2π× 22 kHz for the
methylene bond. The spectral density j(ω) is given by the
Fourier transformation

Figure 1. C−H bond autocorrelation function g(τ). (A) Idealized
illustration of the fast (white background) and the slow (green) mode
of the correlation function in solid-state NMR experiments. The fast
mode decays to a plateau on which g(τ) = SCH

2, while the slow mode
gives the final descent to zero. Oscillations at the slow mode region are
due to magic-angle spinning. (B) Typical g(τ) obtained from an MD
simulation, showing the decay toward SCH

2. The gray area under the
curve is equal to (1 − SCH

2)τe.
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∫ω ωτ τ τ=
∞

(6)

of the C−H bond autocorrelation function g(τ) (eq 1). Clearly,
the connection between R1 and molecular dynamics is not
straightforward; the magnitude of R1 does, however, reflect the
relative significance of processes with timescales near the inverse
of ωH and ωC. These two frequencies depend on the field
strength used in the NMR experiments: Typically, R1 is most
sensitive to motions with timescales of ∼0.1−10 ns. (In our
experimental data,39,41−43 ωC = 125 MHz and ωH = 500 MHz,
which gives (2π × 125 MHz)−1 = 1.3 ns and (2π × 625 MHz)−1

= 0.25 ns.) A change in given R1, therefore, indicates a change in
the relative amount of processes occurring in a window around
the sensitive timescale; inferring also the direction to which the
processes changed (speedup/slowdown) requires measuring R1
at various field strengths.
Data Acquisition and Analysis. All the experimental

quantities used in this work were collected from the literature
sources39,41−43 cited at the respective figures.
The simulation trajectories were collected from the general-

purpose open-access repository Zenodo (zenodo.org), with the
majority of the data originating from the NMRlipids Project32,33

(nmrlipids.blogspot.fi). The trajectories were chosen by hand
based on how well the simulation conditions matched the
available experimental data (lipid type, temperature, cholesterol
content, and hydration) and how precisely one could extract the
quantities of interest from the trajectory (length of simulation
and system size). Note that, apart from the sampling accuracy,
simulation size does not affect τe and R1 (Figure 2). Table 1 lists
the chosen trajectories of pure POPC (1-palmitoyl-2-oleoyl-
glycero-3-phosphocholine) bilayers at/near room temperature

and at full hydration; Table 2 lists the trajectories with
cholesterol; and Table 3 those with varying hydration. Full
computational details for each simulation are available at the
cited Zenodo entry.
The trajectories were analyzed using in-house scripts. These

are available in ref 83, along with a Jupyter notebook outlining an
example analysis run. To enable automated analysis of several
force fields with differing atom naming conventions, we used the
mapping scheme developed within the NMRlipids Project to
automatically recognize the atoms and bonds of interest for each
trajectory.
After downloading the necessary files from Zenodo, we

processed the trajectory with Gromacs gmx trjconv to make the
molecules whole; that is, we made sure that, for each covalent
bond, the partaking atoms are from the same periodic image of
the molecule. For the united atom Berger model, hydrogens
were added using the Gromacs 4.0.2 tool g_protonate. We then
calculated the SCH (eq 3) with the OrderParameter.py script that
uses the MDanalysis84,85 Python library. The C−H bond
correlation functions g(τ) (eq 1) were calculated with Gromacs
5.1.486 gmx rotacf (note that on MD timescales gs = 1 so that g =
gf) after which the SCH were used to normalize the gf to obtain
the reduced and normalized correlation function

g
g S

S
( )

( )

1f
f CH

2

CH
2τ

τ
′ =

−

− (7)

that is, the integrand in eq 4.
The effective correlation times τe were then calculated by

integrating gf′(τ) from τ = 0 until τ = t0. Here, t0 is the first time
point at which gf′ reached zero: t0 =min{t | gf′(t) = 0}. If gf′ did not
reach zero within tanal/2, the τe was not determined, and we
report only its upper and lower estimates.
To quantify the error on τe, we first estimate the error on gf′(τ),

where we account for two sources of uncertainty: gf(τ) and SCH
2.

Performing linear error propagation on eq 7 gives

g
S

g
g S

S
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1
1

( )
2( ( ) 1)

(1 )f
CH

2 f
f CH

CH
2 2 CHτ τ

τ
Δ ′ =

−
Δ +

−

−
Δ

(8)

Here, the ΔSCH was determined as the standard error of the
mean of the SCH over the Nl individual lipids in the system.32

Similarly, we quantified the error on gf(τ) by first determining
the correlation function gf

m(τ) for each individual lipid m over

Figure 2. Effective correlation times (τe, upper panel) and R1 rates
(lower panel) do not markedly depend on the system size. Shown are
two CHARMM36 POPC data sets that varied the size while keeping
other simulation parameters fixed: ref 44 (blue, system sizes 72 and 648
lipids)45 and ref 46 (red, system sizes 200, 800, and 1800 lipids). Both
data sets are shown normalized against their smallest system. The 15
datapoints shown for each system correspond, from left to right, to the
carbon segments γ, β, α, g3, ..., C17/C15′, C18/C16′, cf. Figure 3.

Table 1. Analyzed Open-Access MD Trajectories of Pure
POPC Lipid Bilayers at Full Hydration

force-field lipid/water Nl
a Nw

b Tc (K) tanal
d (ns) filese

Berger-POPC-0747/SPC48 256 10,240 300 300 [49]
CHARMM3650/TIP3P51 256 8704 300 300 [52]
MacRog53/TIP3P54 128 5120 300 500 [55]
Lipid1456/TIP3P54 72 2234 303 50 [57]
Slipids58/TIP3P54 200 9000 310 500 [59]
ECC60/SPC-E61 128 6400 300 300 [62]
aNumber of POPC molecules. bNumber of water molecules.
cSimulation temperature. Note that the temperature varied across
these openly available simulation data, but in no case was T lower
than in the experiment. Thus, as dynamics slows down when the
temperature drops, any overestimation of τe by MD (as typically seen
in Figure 3) would get worse if the simulations were done at the
experimental 298 K. dTrajectory length used for analysis. eReference
for the openly available simulation files.
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the whole trajectory and then obtaining the error estimate
Δgf(τ) as the standard error of the mean over the Nl lipids.
Importantly, this gives an uncertainty estimate for gf(τ) at each
time point τ.
To obtain the lower bound on τe, we integrate the function

gf′(τ) − Δgf′(τ) over time from τ = 0 until τ = tl. Here

t t g t g t
t

min ( ) ( ) 0 ,
2l f f

anal{ }= { | ′ − Δ ′ = }
(9)

That is, tl equals the first time point at which the lower error
estimate of gf′ reached zero, or tl = tanal/2, if zero was not reached
before that point.
To obtain the upper error estimate on τe, we first integrate the

function gf′(τ) + Δgf′(τ) over time from τ = 0 until tu = min{t0,
tanal/2}. Note, however, that this is not yet sufficient, because
there could be slow processes that the simulation was not able to
see. Although these would contribute to τe with a low weight,
their contribution over long times could still add up to a sizable
effect on τe. That said, it is feasible to assume (see Figure 1A)
that there are no longer-time contributions to gf than something
that decays with a time constant of 10−6 s. We use this as our
worst case estimate to assess the upper bound for τe, that is, we
assume that all the decay of gf from the time point tu onward
comes solely from this hypothetical slowest process that decays
with a time constant of 10−6 s. The additional contribution to the
upper bound for τe then reads

g t g t
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The R1 rates were calculated using eq 5. The spectral density
j(ω) was obtained from the normalized correlation function gf′
by fitting it with a sum of 61 exponentials

g ( ) e
i

if
1

61
/ i∑τ α′ ≈ τ τ

=

−

(11)

with logarithmically spaced timescales τi ranging from 1 ps to 1
μs and then calculating the spectral density of this fit based on
the Fourier transformation41

j S( ) 2(1 )
1i

i
i

i
CH

1

61

∑ω α
τ

ωτ
= −

+= (12)

The R1 rate of a given C−H pair was first calculated separately
for each lipid m (using eq 5 withNH = 1, and j

m(ω) obtained for
the normalized correlation function gf′m). The resulting Nl
measurements per C−H pair were then assumed independent:
their mean gave the R1 rate of the C−H pair, and the standard
error of the mean its uncertainty. The total R1 rate of a given
carbon was obtained as a sum of the R1 rates of its C−H pairs.
When several carbons contribute to a single experimental R1 rate

Table 2. Analyzed Open-Access MD Trajectories of Cholesterol-Containing POPC Bilayers at Full Hydration

force-field POPC/water+cholesterol cchol
a Nchol

b Nl
c Nw

d Te (K) tanal
f (ns) filesg

Berger-POPC-0747/SPC48 0% 0 128 7290 298 50 [63]
+Höltje-CHOL-1364,65 50% 64 64 10,314 298 50 [66]
CHARMM3650/TIP3P51 0% 0 200 9000 310 500 [67]
+CHARMM3668 50% 200 200 18,000 310 500 [69]
MacRog53/TIP3P54 0% 0 128 6400 310 500 [70]
+MacRog53 50% 64 64 6400 310 500 [70]
Slipids58/TIP3P54 0% 0 200 9000 310 500 [59]
+Slipids71 50% 200 200 18,000 310 500 [59]

aBilayer cholesterol content (mol %). bNumber of cholesterol molecules. cNumber of POPC molecules. dNumber of water molecules. eSimulation
temperature. fTrajectory length used for analysis. gReference for the openly available simulation files.

Table 3. Analyzed Open-Access MD Trajectories of PC Lipid Bilayers under Varying Hydration Level

force field lipid/water lipid nw/l
a Nl

b Nw
c Td (K) tanal

e (ns) filesf

Berger-POPC-0747/SPC48 POPC 40 256 10,240 300 300 [49]
POPC 7 128 896 298 60 [72]

Berger-DLPC-1373/SPC-E61 DLPCg 24 72 1728 300 80 [74]
DLPCg 16 72 1152 300 80 [75]
DLPCg 12 72 864 300 80 [76]
DLPCg 4 72 288 300 80 [77]

CHARMM3650/TIP3P51 POPC 40 128 5120 303 140 [78]
POPC 34 256 8704 300 500 [55]
POPC 31 72 2232 303 20 [79]
POPC 15 72 1080 303 20 [80]
POPC 7 72 504 303 20 [81]

MacRog53/TIP3P54 POPC 50 288 14,400 310 40 [82]
POPC 25 288 7200 310 50 [82]
POPC 15 288 4320 310 50 [82]
POPC 10 288 2880 310 50 [82]
POPC 5 288 1440 310 50 [82]

aWater/lipid molar ratio. bNumber of lipid molecules. cNumber of water molecules. dSimulation temperature. eTrajectory length used for analysis.
fReference for the openly available simulation files. g1,2-Dilauroyl-sn-glycero-3-phosphocholine.
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due to the overlapping peaks (for example, in C2 carbon in the

acyl chains and the γ carbons), the R1 from simulations was

obtained as an average over carbons with overlapping peaks. The

segment-wise error estimates were obtained by standard error

propagation, starting from the uncertainties of the R1 rates of the

C−H pairs.

To gain some qualitative insight on the timescales at which the
main contributions to the R1 rates arise, we also calculated
“cumulative” R1 rates, R1(τ), which contained those terms of the
sum in eq 12 for which τi < τ. Note that here the gf′ averaged over
lipids was used; therefore, the “cumulative” R1(τ→∞) does not
necessarily have exactly the same numerical value as the actual
R1.

Figure 3. Effective correlation times (τe, top) and R1 rates (bottom) in experiments39 (black) and MD simulations (colored) of POPC bilayers in the
Lα phase under full hydration. Inset shows the POPC chemical structure and carbon segment labeling. Each plotted value contains contributions from
all the hydrogens within its carbon segment; the data for segments 8−11 are only from the sn-2 (oleoyl) chain, whereas the (experimentally non-
resolved) contributions of both tails are included for segments 2−3 (2′−3′ in the sn-1 chain) and 16−18 (14′−16′). Simulation results are only shown
for the segments for which experimental data were available. For τe, a simulation data point indicates the average over C−Hbonds; however, if τe could
not be determined for all bonds, only the error bar (extending from the mean of the lower to the mean of the upper error estimates) is shown. The
Berger data for segments γ, C18, and C16′ are left out as the protonation algorithm used to construct the hydrogens post-simulation in united atom
models does not preserve the methyl C−H bond dynamics. Table 1 provides further simulation details, while information on the experiments is
available at ref 39.
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Finally, we note that the fit of eq 11 provides an alternative to
estimating τe because

g ( )d
i

i ie
0 f∫ ∑τ τ τ α τ= ′ ≈

∞

(13)

When the simulation trajectory is not long enough for the
correlation function to reach the plateau, integrating gf′ gives a
lower bound estimate for τe, while the sum of eq 13 includes also
(some) contribution from the longer-time components via the
fitting process. However, in practice, the fit is often highly
unreliable in depicting the long tails of the correlation function,
and thus we chose to quantify τe using the area under gf′ and
estimate its uncertainty as detailed above.

■ RESULTS AND DISCUSSION
Using open-access MD simulation trajectories, we benchmark
phospholipid conformational dynamics in six MD force fields.
We start with pure POPC bilayers in their liquid crystalline fully
hydrated state (see Table 1 for simulation details and Figures 3
and 4 for the data) and then proceed to check the changes in
dynamics when cholesterol is added to the bilayer (Table 2 and
Figure 5) and when the hydration level is reduced (Table 3 and
Figure 6). Our yardsticks are the effective correlations times τe
(eq 4) and the R1 rates (eq 5) measured at 125 MHz 13C (500
MHz 1H) Larmor frequency; an MD model with correct
rotational dynamics in a window around ∼1 ns will match the
experimental R1 rates, whereas the τe reflect all the sub-μs
timescales (Figure 1).
Pure POPC at Full Hydration: Slipids and CHARMM36

Reproduce τe Excellently. The top panels of Figure 3
compare the effective correlation times τe obtained for fully
hydrated POPC bilayers in experiments (black) and in six
differentMD force fields (color).We see thatas implied by the
discussion leading to eq 10sub-μs MD simulations typically
lead to asymmetric error bars on τe; if these open-access
trajectories were extended, the τe values would more likely
increase than decrease. Qualitatively, every force field captures
the general shape of the τe profile: dynamics slows down toward
the glycerol backbone in both the headgroup and the tails.
Quantitatively, most MD simulations tend to produce too

slow dynamics in the glycerol region (Figure 3). This is
consistent with previous results for the Berger model41 and with
the insufficient conformational sampling of glycerol backbone
torsions observed in 500-ns-long CHARMMc32b287,88 simu-
lations of a PC lipid.89

The best overall τe performance is seen in Slipids and in
particular CHARMM36 (Figure 3). This is in line with
CHARMM36 reproducing the most realistic conformational
ensembles for the headgroup and glycerol backbone among the
MD simulation force fields benchmarked here.32,34 Indeed, it is
important to keep in mind that the conformational ensembles
greatly differ between force fields and are not exactly correct in
any of them.32,34 Consequently, the calculated τe times and R1
rates depict the dynamics of sampling a somewhat different and
incorrect phase space for each model. To this end, we try to
avoid overly detailed discussion on the models and rather
concentrate on common and qualitative trends. That said, there
are a few carbon segments in the data for which the experimental
order parameters, R1, and τe are all (almost) reproduced by
simulations, suggesting that both the conformational ensemble
and the dynamics are correctly captured by MD in these cases.
For example, Slipids performs well at the β and α and

CHARMM36 at the g3, g2, and C2 segments. These are,
however, exceptions.

An Excellent τe May Be Accompanied by a Poor R1, or
Vice Versa. The lower panels of Figure 3 compare the
experimental and simulated R1 rates under the same conditions
that were used for the τe above. Notably, there are several
instances where the R1 comparison distinctly differs from what
was seen for τe.
There are cases where a matching R1 is accompanied by a

larger-than-experimental τe. MacRog for the β, α, and g1
segments provides a prominent example of this. Such a

Figure 4. Contributions to the dynamics of the headgroup segments.
(A) Zoom on the headgroup τe (left panel) and R1 (right). (B)
“Cumulative” R1(τ) of the γ (top panel), β (middle), and α (bottom)
segments. R1(τ) is obtained, as detailed in Methods, by including in the
sum of eq 12 only terms with τi < τ. Consequently, at τ→∞, the R1(τ)
approaches the actualR1. (C) Prefactor weights αi from eq 11 of γ (top),
β (middle), and α (bottom). Note that panels (B) and (C) show a
sliding average over three neighboring data points.
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combination suggests that MD has the correct relative weight of
1 ns-scale dynamics but has too slow long-time dynamics.
There are also cases where τe matches experiments but R1

does not, such as the β and α segments in CHARMM36.
Therein, a cancellation of errors occurs in τe: the overestimation
of the relative weight of 1 ns-scale dynamics is compensated by
wrong dynamics at the other timescales. As CHARMM36
overall performs rather well for C−Hbond order parameters,R1,
and τe, we proceed to study this shortcoming on the headgroup
R1 rates in some more detail.
Conformational Dynamics of PC Headgroup Seg-

ments in MD. Figure 4A zooms in on the headgroup (γ, β,
and α) segments, whose τe were not clearly visible on the scale of
Figure 3. We see that, for γ, no force field provides both τe and
R1, but Slipids comes closest. For β and α, Slipids captures both
measurables near perfectly. In other words, among the
benchmarked force fields, Slipids gives the most realistic
description of the conformational dynamics in the headgroup

region. CHARMM36, e.g., overestimates (R1) the relative
weight of timescales around ∼1 ns.
To investigate closer how the differences between force fields

arise, Figure 4B shows the “cumulative” R1(τ), where the ranges
of steepest increase indicate timescales that most strongly
contribute to R1 rates.
For the γ segment, Figure 4B shows that, for models that

overestimate the R1 rate (MacRog, CHARMM36, and Slipids,
see Figure 4A), the major contribution to R1 arises at τ > 50 ps,
whereas for models that underestimate R1 (Lipid14 and ECC),
themajor contribution comes from τ < 50 ps. This alsomanifests
in the distribution of fitting weights (αi in eq 11) in Figure 4C:
the later non-zero weights occur, the larger is the resulting R1 of
γ.
For the β and α segments, Figure 4B shows that the main

contribution to R1 rates arises from processes between 100 ps
and 1 ns. CHARMM36 has the largest relative weights of all
models in this window (Figure 4C), which explains its
overestimation of R1 of β and α. All the other models have R1
rates close to experiments, but only Slipids simultaneously gives
also the τe correctly. Notably, Slipids has its largest weights at τ <
100 ps. Indeed, the considerable weights at short (<10 ps)
timescales in all models except MacRog and at long (>10 ns)
timescales in MacRog and Berger hardly manifest in R1.
However, the latter contribute heavily to τe, which is thus
considerably overestimated by MacRog and Berger (Figure 3).
It would be highly interesting to identify the origins of the

observed artificial timescales, particularly for the 0.1−1 ns
window overpresented in CHARMM36, and propose how to
correct those in the simulation models. After all, it is known that
the R1 rates of mono- and disaccharides90 and proteins91 in
solution agree satisfactorily with experiments when the
artificially low viscosity of TIP3P water is accounted for by a
simple scaling. Viscosity at the bilayer−water interface, however,
remains an open questionalthough one which a careful
comparison between spin relaxation rates of lipid headgroups in
simulations and experiments might be able to answer.
Nevertheless, we refrain from further analysis here as the
connection between the fitted correlation times and the
correlation times of distinct motional processes, such as dihedral
rotations and lipid wobbling, turns out to be highly non-trivial.

Effect of Cholesterol. An essential component in cell
membranes, cholesterol has various biological functions. It is
well known to order the acyl chains in lipid bilayers, but its effect
on the headgroup is more controversial.65,92 For example, it has
been proposed that lipid headgroups reorganize to shield
cholesterol from water.92 However, while acyl chains do
substantially order, NMR experiments show no significant
conformational changes in the headgroup upon addition of even
50% of cholesterol, which suggests that the tail and head regions
behave essentially independently.32,65 In principle, the head-
groups could shield cholesterol from water even without
changing their conformational ensemble: by reorienting only
laterally on top of the cholesterol. In this case, one would expect
the rotational dynamics of headgroup segments to change when
cholesterol is added.
Top panels of Figure 5A depict the experimental effective

correlation times τe in pure POPC bilayers and in bilayers
containing 50% cholesterol. The τe at the glycerol backbone slow
down markedly when cholesterol is added. Tail segment
dynamics slows down too, most notably close to the glycerol
backbone. In stark contrast, the τe of the headgroup segments (γ,
β, and α) remain unaffected. Furthermore, cholesterol induces

Figure 5. Effect of cholesterol on POPC conformational dynamics. (A)
Experimental effective correlation times τe (top panels) and R1 rates
(bottom) in 100/0 and 50/50 POPC/cholesterol bilayers at full
hydration, see ref 39 for further details. (B) Change in τe (Δτe, top
panels) and R1 (ΔR1, bottom), in NMR (black) and MD (color), when
the bilayer composition changes from pure POPC to 50% cholesterol.
Error estimates for the simulatedΔτe are the maximal possible based on
the errors at 0% and 50% cholesterol; for other data, regular error
propagation is used. The BergerΔτe is not shown because the available
open-access trajectories were too short to determine meaningful error
estimates. Table 2 provides further simulation details; for segment
labeling, see Figure 3.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01299
J. Chem. Inf. Model. 2021, 61, 938−949

944

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01299?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01299?ref=pdf


no measurable change in the headgroup β and α segment
dynamics at short (∼1 ns) timescales, as demonstrated by the
experimental R1 rates (Figure 5A, bottom panels). That said,
there is a small but measurable impact on R1 at γ. In summary,
these experimental findings support the idea39 that the acyl
chains and the headgroup can respondin agreement with the
relative uncoupling of the PC head and tails reported in
simulations93almost independently to changes in conditions
and composition.
All four benchmarked force fields (Figure 5B) qualitatively

reproduce the experimental increase in τe: Slipids and
CHARMM36 give rather decent magnitude estimates, while
MacRog grossly overestimates the slowdown of glycerol, C2,
and C3 segments. Notably, MacRog appears to predict
slowdown also for the headgroup (β and α), for which
experiments detect no change. Note that, while CHARMM36
correctly shows no change in τe of the γ, β, and α segments, it
does predict an erroneous ΔR1 for all three, indicating some
inaccuracies in the headgroup rotational dynamics. Such
inaccuracies might be reflected in the recent findings94

(obtained using CHARMM36) that the headgroups of PC-
lipids neighboring (within 6.6 Å) a lone cholesterol spend more
time on top of the said cholesterol than elsewhere. Interestingly,
the tail ΔR1 seem to be qualitatively reproduced by all three all-
atom force fields, whereas Berger fails to capture the trend at the

oleoyl double bond. All these findings are in line with the general
picture obtained from C−H bond order parameters:38 MD
simulations capture the changes in the acyl chain region rather
well but changes in and near the glycerol backbone region can be
overestimated. Of the benchmarked force fields, CHARMM36
appears most realistic in reproducing the effects of cholesterol
on the glycerol backboneand Slipids on the PC headgroup
conformational dynamics.

Effect of Drying. Understanding the impact of dehydration
on the structure and dynamics of lipid bilayers is of considerable
biological interest. Dehydrated states are found, e.g., in skin
tissue. Most prominently, the process of membrane fusion is
always preceded by removal of water between the approaching
surfaces, and thus the dehydration-imposed changes can
considerably affect fusion characteristics, such as its rate.
Figure 6A shows how a mild dehydration affects C−H bond

dynamics in the PC headgroup and glycerol backbone; the plot
compares the experimental effective correlation times τe
measured for POPC at full hydration and for DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine) at 13 waters per lipid.
The τe are the same within experimental accuracy, which
suggests two conclusions. First, the headgroup (γ, β, and α) τe
are rather insensitive to the chemical identities of the tails. This
is analogous to what was seen experimentally when adding
cholesterol (Figure 5A): structural changes in the tail and

Figure 6. Effect of drying on PC headgroup and glycerol backbone conformational dynamics. (A) Experimental effective correlation times τe for
DMPC at low hydration (from ref 42) do not significantly differ from the τe for POPC at full hydration (from ref 39). (B) Calculated τe for POPC at
decreasing hydration in three MDmodels. Symbols indicate the mean of segment hydrogens if τe could be determined for all of them; otherwise, only
the error bar (extending from themean of the lower to the mean of the upper uncertainty estimates) is drawn. The area limited by the error bars shaded
for visualization. Note that four Berger data points (24, 16, 12, and 4 w/l) are from DLPC. (C) 13C NMR R1 rates (at ωC = 125 MHz) of the PC
headgroup segments in experiments and simulations: experiments indicate an increasing trend upon dehydration. Experimental POPC (T = 298 K)
data at 28 w/l is from ref 39 (solid boxes), POPC (298 K) at 20 and 5 w/l from ref 43 (solid diamonds), and DMPC (303 K) at 13 w/l from ref 42
(open boxes). See Table 3 for simulation details.
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glycerol regions do not (need to) affect the headgroup
dynamics. Second, a mild dehydration does not alter the τe in
the headgroup and glycerol regions.
Figure 6B shows the effects of dehydration in three MD

models. Combination of the unrealistically slow dynamics,
especially in the glycerol backbone (Figure 3), and the relatively
short lengths of the available open-access trajectories (Table 3)
led to large uncertainty estimates; thus, we only point out
qualitative trends here. For all headgroup and glycerol segments,
the simulated τe indicate slowdown upon dehydration. This is
manifested in the increase in the magnitude of the error estimate
(cf. the Berger data for β and α) as well as in the increase in the
lower limit of the error. For CHARMM36 the lower error
estimates stay almost constant all the way until 7 w/l, whereas
for Berger and MacRog, they hint that a retardation of dynamics
starts already between 15 and 10 w/l.
These simulational findings suggest that experiments

reducing hydration levels below 10 w/l would also show an
increase in τe. This prediction is in line with the exponential
slowdown of the headgroup conformational dynamics upon
dehydration that was indicated by 2HNMR R1 measurements of
DOPC bilayers: R1 ≈ exp( − nw/l/4).

95 The slowdown was
attributed to the reduced effective volume available for the
headgroup95 as it tilts toward the membrane upon dehydration;
such tilt is observed via changes of the lipid headgroup order
parameters96 and is qualitatively reproduced by all the
simulation models.32

Figure 6C shows a collection of experimental 13C NMR R1
rates for the headgroup segments at different water contents; in
addition to the full hydration POPC data from Figure 3, DMPC
at 13 w/l42 and POPC at 20 and 5 w/l43 are shown.
Experimentally, an increasing trend with decreasing hydration
is observed for all three segments, indicating changes of
headgroup dynamics at short (∼1 ns) timescales. Interestingly,
only CHARMM36 captures this, whereas Berger and MacRog
give decreasing R1 rates for β and α.
The slowdown characteristics discussed here are of

significance not only for computational studies of intermem-
brane interactions, such as fusion, but also when simulating a
bilayer (stack) under low hydration: slower dynamics require
longer simulation times for equilibration, for reliably quantifying
the properties of the bilayers, and for observing rare events.

■ CONCLUSIONS
We have here demonstrated that open-access databanks of MD
trajectories enable the creation of new scientific information
without running a single new simulation. More specifically, we
have benchmarked (against published NMR data39,41−43) the
conformational dynamics of a wide range of phosphatidylcho-
line MDmodels using existing open-access trajectories from the
Zenodo repository, in particular those belonging to the
NMRlipids Databank (zenodo.org/communities/nmrlipids).
We found that every MD model captures the 13C NMR

effective correlation time (τe) profile of POPC qualitatively, but
that most are prone to too slow dynamics of the glycerol
backbone C−H bonds (Figure 3). While no force field perfectly
reproduces all the experimental data, CHARMM36 and Slipids
have overall impressive τe. This is a particularly exciting finding
concerning CHARMM36 as it is also known to reproduce quite
well the experimental conformational ensemble.32 That said, we
do find that CHARMM36 struggles with the balance of
dynamics in the headgroup region: The R1 rates, sensitive for
∼1 ns processes, are too high for the γ, β, and α segments (Figure

4). In fact Slipids, which also reproduces the experimental
headgroup order parameters,32 appears to outperform
CHARMM36 when it comes to headgroup conformational
dynamics (Figure 4).
Further, we found that when cholesterol is mixed into a POPC

bilayer, MD qualitatively captures the slowdown of conforma-
tional dynamics in the tail and glycerol regions (Figure 5).
However, the benchmarked force fields overestimate the
changes in the ∼1 ns dynamics of the headgroupexcept
Slipids, which captures well the effects of cholesterol on PC
headgroup conformational dynamics.
Finally, we found that, upon reducing the water content below

10 waters per lipid, MD exhibits slowdown of headgroup and
backbone dynamics in qualitative agreement with experimental
data. That said, only CHARMM36 (but not Berger or MacRog)
qualitatively captures the experimentally detected increase in R1

rates upon dehydration (Figure 6).
While work is still needed in capturing even the correct

phospholipid conformations,32 realistic dynamics will be an
essential part of developing MD into a true computational
microscope. Here, we gathered a set of published experimental
13C NMR data on phosphatidylcholine conformational
dynamics and charted the typical features of the existing MD
models against it, thus laying the foundation for further
improvement of MD force fields. Importantly, our work
demonstrates the potential of open-access MD trajectories in
achieving such benchmarks at a reduced computational and
labor costbut it also highlights the challenges inherent in using
such data: not all system permutations might readily exist (here
the dehydration data for Lipid14 and Slipids were lacking, see
Figure 6); the available sampling (simulation length and size)
might vary, requiring extreme care with error estimation; and
one has to remain aware of the subtle differences in the many
simulation parameters (barostats, temperatures, characteristics
of the MD engines, etc.). That said, it has not escaped our notice
that a pool of well indexed and documented open-access data
provides an ideal platform for automation, which in turn will
facilitate faster progress in pinpointing the typical failures of the
existing force fields, in identifying key differences in models
describing chemical variations of the same molecule type (such
as different lipid headgroups), and in developing better models
through data-driven approaches.
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