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Disordered voices are frequently assessed by speech pathologists using perceptual evaluations. This might lead to problems caused
by the subjective nature of the process and due to the influence of external factors which compromise the quality of the assessment.
In order to increase the reliability of the evaluations, the design of automatic evaluation systems is desirable. With that in mind,
this paper presents an automatic system which assesses the Grade and Roughness level of the speech according to the GRBAS
perceptual scale. Two parameterization methods are used: one based on the classic Mel-Frequency Cepstral Coefficients, which
has already been used successfully in previous works, and other derived from modulation spectra. For the latter, a new group of
parameters has been proposed, namedModulation Spectra Morphological Parameters: MSC, DRB, LMR, MSH, MSW, CIL, PALA,
and RALA. In methodology, PCA and LDA are employed to reduce the dimensionality of feature space, and GMM classifiers to
evaluate the ability of the proposed features on distinguishing the different levels. Efficiencies of 81.6% and 84.7% are obtained for
Grade and Roughness, respectively, usingmodulation spectra parameters, whileMFCCs performed 80.5% and 77.7%.The obtained
results suggest the usefulness of the proposedModulation Spectra Morphological Parameters for automatic evaluation of Grade and
Roughness in the speech.

1. Introduction

With the aim of diagnosing and evaluating the presence of
a voice disorder clinicians and specialists have developed
different assessment procedures [1] such as exploration using
laryngoscopic techniques, acoustic analysis, or perceptual
evaluations.The latter is widely used by clinicians to quantify
the extent of a dysphony. Some well-known perceptual
evaluation procedures are the Buffalo RatingVoice Profile [2],
Consensus Auditory Perceptual Evaluation of Voice (CAPE-
V) [3], and GRBAS [4]. The main problem with perceptual
analysis is the high intra/interrater variability [5, 6] due to
the subjectivity of the assessment in which the experience
of the evaluator, his/her physical fatigue, mental condition,
and some other factors are involved. Hence, means such
as acoustic analysis based on signal processing might be
valuable in clinical scenarios, providing objective tools and

indices which can directly represent the level of affection
or at least help clinicians to make a more reliable and less
subjective perceptual assessment.This noninvasive technique
can complement and even replace other invasive methods of
evaluation.

Besides, the large amount of improvements in the field
of speech signal processing is addressed mostly to areas such
as speech or speaker recognition. Many of these advances
are being transferred to biomedical applications for clinical
purposes; some recent examples are related to different uses
such as telemonitoring of patients [7], telerehabilitation [8],
or clinical-support systems [9]. However, there is a substan-
tial quantity of research to be done for further enhancements.
Roughly speaking, most of the studies in this field can be
divided into three main categories: the first one is focused
on developing automatic detectors of pathological voices
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[10–14] capable of categorizing voices between normal and
pathological; the second group works with classifiers of
pathologies [11, 15, 16] which consists in determining the
speech disorder of the speaker using the acoustic material;
and the third and last group aims to evaluate and assess the
voice quality [8, 17–23]. The present study can be framed
in the third mentioned category, highlighting the fact that
the main goal is the development of new parameterization
methods.

The essential common characteristic of all the automatic
systems found in the literature is the need to extract a set of
parameters from the acoustic signal to accomplish a further
classification task. Regarding these parameters, some works
use amplitude perturbations such as Shimmer or Amplitude
Tremor Intensity Index (ATRI) [24–26] as input features
while others are centered on frequency perturbations using
Jitter [8, 25, 26], frequency and cepstral-based analysis [8,
13, 14, 16, 17, 27, 28], 𝐹0 Tremor Intensity Index (𝐹0TRI)
[24, 26], or Linear Predictive Coding (LPC) [29]. Noise-
based parameters [30, 31] and nonlinear analysis features
[12, 18, 25, 32] are likewise widely used in this kind of
automatic detectors. Moreover, other varieties of feature-
extraction techniques such as biomechanical attributes or
signatures can be applied for the same purposes [10].

Focusing on the third kind of the aforementioned cate-
gories of detectors, those assessing the quality of voice, some
are employed for simulating a perceptual evaluation such
as GRBAS. For instance, several classification methods were
used in [19, 20] to study the influence of the voice signal
bandwidth in perceptual ratings and automatic evaluation
of GRBAS Grade (𝐺) trait using cepstral parameters (Linear
Frequency Spectrum Coefficients and Mel-Frequency Spec-
trum Coefficients). Efficiencies up to 80% were obtained
using GaussianMixtureModels (GMM) classifiers and leave-
x-out [33] cross-validation techniques. Similar parameteri-
zation methods were used in [9] to automatically evaluate
𝐺 with a Back-and-Forth Methodology in which there is
feedback between the human experts that rated the database
and the automatic detector, and vice versa. On [22] a group of
92 features comprising different types of measurements such
as noise, cepstral and frequency parameters among others
were used to detect GRBAS Breathiness (𝐵). After a reduction
to a four-dimensional space, a 77% of efficiency was achieved
using a 10-fold cross-validation scheme. Authors in [34]
fulfilled a statistical study of acoustic measures provided by
two commonly used analysis systems,Multidimensional Voice
Analysis Program by Kay Elemetrics and Praat [35] obtaining
good correlations for 𝐺 and 𝐵 traits. On [21] Mel-Frequency
Spectrum Coefficients (MFCCs) were utilized obtaining 68%
and 63% of efficiency for Grade and Roughness (𝑅) traits,
respectively, using Learning Vector Quantization (LVQ)
methods for the pattern recognition stage but without any
type of cross-validation techniques. The review of the state
of the art reports that only [36] has used the same database
and perceptual assessment used in the present study. The
mentioned work proposed a set of complexity measurements
and GMM to emulate a perceptual evaluation of all GRBAS
traits, but its performance does not surpass 56% for 𝐺 or 𝑅.

In general, results seldom exceed 75%of efficiency; hence,
there is still room for enhancement in the field of voice
quality automatic evaluation. Thus, new parameterization
approaches are needed and the use of Modulation spectrum
(MS) emerges as a promising technique. MS provides a
visual representation of sound energy spread in acoustic
and modulation axes [37, 38] supplying information about
perturbations related to amplitude and frequencymodulation
of the voice signal. Numerous acoustic applications use
these spectra to extract features from audio signals from
which some examples can be found in [39–42]. Although
there are few publications centered in the characterization
of dysphonic voices using this technique [11, 12, 23, 43],
it can be stated that MS has not been studied deeply in
the field of the detection of voice disorders and specially
as a source of information to determine patient’s degree of
pathology. Some of the referred works have used MS to
simulate an automatic perceptual analysis but, to the best of
our knowledge, none of them offer well-defined parameters
with a clear physical interpretation but transformations ofMS
which are not easily interpretable, limiting their application
in the clinical practice.

The purpose of this work is to provide new parameters
obtained from MS in a more reasoned manner, making
them more comprehensible. The use of this spectrum and
associated parameters as support indices is expected to be
useful in medical applications since they provide easy-to-
understand information compared to others such as MFCC
or complexity parameters, for instance. The new parameter-
ization proposed in this work has been used as the input to
a classification system that emulates a perceptual assessment
of voice following the GRBAS scale in 𝐺 and 𝑅 traits. These
two traits have been selected over the other three (Aesthenia
(A), Breathiness, and Strain (S)) since its assessment seems
to be more reliable. De Bodt et al. [5] point that 𝐺 is the less
unambiguously interpreted and 𝑅 has an intermediate reli-
ability on its interpretation. These conclusions are coherent
with those exposed in [44, 45]. Similar findings are revealed
in [6] which considers 𝑅 as one of the most reliable traits
when using sustained vowel /𝑎ℎ : / as source of evaluation.
It is convenient to specify that each feature of theGRBAS scale
ranges from 0 to 3, where 0 indicates no affection, 1 slightly
affected, 2 moderately affected, and 3 severely affected voice
regarding the corresponding trait. Thus evaluating according
to this perceptual scale means developing different 4-class
classifiers, one for each trait.

In this work, the results obtained with the proposed MS-
based parameters are compared with a classic parameteriza-
tion used to characterize voice in a wide range of applications:
Mel-Frequency Cepstral Coefficients [46]. MFCCs have been
traditionally used for speech and speaker recognition pur-
poses since the last two decades and many works use these
coefficients to detect voice pathologies with a good outcome.

The paper is organized as follows: Section 2 develops
the theoretical background of modulation spectra features.
Section 3 introduces the experimental setup and describes the
database used in this study. Section 4 presents the obtained
results. Lastly, Section 5 presents the discussions, conclusions,
and future work.
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2. Theoretical Background

2.1. Modulation Spectra. This study proposes a new set of
parameters based on MS to characterize the voice signal.
MS provides information about the energy at modulation
frequencies that can be found in the carriers of a signal. It
is a three-dimensional representation where abscissa usu-
ally represents modulation frequency, ordinate axis depicts
acoustic frequency, and applicate, acoustic energy. This kind
of representation allows observing different voice features
simultaneously such as the harmonic nature of the signal and
the modulations present at fundamental frequency and its
harmonics. For instance, the presence of tremor, understood
as low frequency perturbations of the fundamental frequency,
can be easily noticeable since it implies a modulation of pitch
as an usual effect of laryngeal muscles improper activity.
Othermodulations associatedwith fundamental or harmonic
frequencies could indicate the presence of a dysfunction of
the phonatory system. Some examples can be found in [11].

To obtain MS, the signal is filtered using a short-time
Fourier transform (sTFT) filter bank whose output is used
to detect amplitude and envelope. This outcome is finally
analyzed using FFT [47] producing a matrix 𝐸 where MS
values at any point can be represented as 𝐸(𝑓

𝑎
, 𝑓
𝑚
). The

columns at 𝐸 (fixed 𝑓
𝑚
) are modulation frequency bands,

and rows (fixed 𝑓
𝑎
) are acoustic frequency bands. Therefore,

𝑎 can be interpreted as the index of acoustic bands and𝑚, the
index of modulation bands while 𝑓

𝑎
and 𝑓

𝑚
are the central

frequencies of the respective bands. Due to the fact that
values 𝐸(𝑓

𝑎
, 𝑓
𝑚
) have real and imaginary parts, the original

matrix can be represented using the modulus |𝐸| and the
phase arg(𝐸) of the spectrum.Throughout this work, the MS
has been calculated using the Modulation Toolbox library
version 2.1 [48]. Some different configurations can be used to
obtain 𝐸, where the most significant degrees of freedom are
the use of coherent or noncoherent (Hilbert envelope) [49]
modulation, the number of acoustic bands, and acoustic and
modulation frequency ranges. The three-dimensional phase
unwrapping techniques detailed in [50] are used to solve the
phase ambiguity problems which appear when calculating
arg(𝐸(𝑓

𝑎
, 𝑓
𝑚
)).

Figure 1 shows an example of MS extracted from two
different voices on which the voice of a patient with gastric
reflux, edema of larynx, and hyperfunction exhibits a more
spread modulation energy in comparison to a normal voice.

However, one of the principal drawbacks of MS is that it
provides a large amount of information that can not be easily
processed automatically due to limitations of the existing
pattern recognition techniques and voice disorders databases
available. In this sense, MS matrices have to be processed to
obtain a more compact but precise enough representation of
the represented speech segments. Thus, after obtaining the
MS, some representative parameters are extracted to feed a
further classification stage. With this in mind, a new group
ofMorphological Parameters based onMS is proposed in this
work: centroids [51] (MSC), dynamic range per band (DRB),
Low Modulation Ratio (LMR), Dispersion Parameters (CIL,
PALA, and RALA), Contrast (MSW), and Homogeneity

(MSH). All these parameters use the MS modulus as input
source, except the last two which also use the phase.

2.1.1. Centroids (MSC) and Dynamic Range per Band (DRB).
Centroids provide cues about the acoustic frequency that
represents the central energy or the energy center at each
modulation band. To obtain MSC, MS modulus is reduced
to an absolute number of modulation bands usually ranging
from 4 to 26, each containing information about the modu-
lation energy in that band along the acoustic frequency axis.
Once the reduced MS is computed, centroids are calculated
following the expression

MSC (𝑓
𝑚
) =

∑
𝑎
𝑓
𝑎
⋅
󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
)
󵄨󵄨󵄨󵄨

𝑓pitch ⋅ ∑𝑎
󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
)
󵄨󵄨󵄨󵄨

, (1)

where 𝑓
𝑎
and 𝑓

𝑚
represent the central frequency of the

acoustic and modulation bands, respectively, and 𝑓pitch is the
pitch frequency.

As a matter of example, Figure 2 depicts a representation
of MSC extracted from a MS.

Once MS is reduced to a small number of modulation
bands, the dynamic range is calculated for every band (DRB)
as the difference between the highest and the lowest levels in
the band. These parameters provide information about the
flatness of the MS depending on the modulation frequency.

2.1.2. Low Modulation Ratio (LMR). LMR, expressed in dB,
is the ratio between energy in the first modulation band
𝜀(𝑓
𝑎(𝑓pitch)

, 𝑓1) at acoustic frequency 𝑓pitch and the global
energy in all modulation bands covering at least from 0
to 25Hz at acoustic frequency 𝑓pitch, 𝜀(𝑓𝑎(𝑓pitch), 𝑓𝑚(25Hz)).
Its calculation is carried out according to the following
expressions. These bands are represented in Figure 3:

LMR = 10 ⋅ log(
𝜀 (𝑓
𝑎(𝑓pitch)

, 𝑓1)

𝜀 (𝑓
𝑎(𝑓pitch)

, 𝑓
𝑚(25Hz))

) (2)

being

𝜀 (𝑓
𝑎
, 𝑓
𝑘
) =

𝑘

∑

𝑚=1

󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
)
󵄨󵄨󵄨󵄨

2
, (3)

where 𝑎(𝑓pitch) is the index of the acoustic band including
pitch frequency and 𝑚(25Hz), the index of the modulation
band including 25Hz.

The 0–25Hz band has been selected to represent all
possible cases of tremor and low frequency modulations
around pitch frequency [52, 53].

2.1.3. Contrast and Homogeneity. Representing MS (modu-
lus or phase) as two-dimensional images let observe that
pathological voices usually have more complex distributions.
Images related to normal voices are frequently more homo-
geneous and present less contrast, as can be seen in Figure 1.
Accordingly, Homogeneity and Contrast are used as two MS
features since they provide information about the existence
of voice perturbations.
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Figure 1: MS modulus of a normal voice (a) and pathological voice of a patient with gastric reflux, edema of larynx, and hyperfunction (b).
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Figure 2: MS centroids of a normal voice (a) and a pathological voice (b) of a patient with gastric reflux, keratosis, and laryngocele.

Homogeneity is computed using the Bhanu method
described by the following expression, as stated in [54]:

MSH = ∑

𝑎

∑

𝑚

[𝐸 (𝑓
𝑎
, 𝑓
𝑚
) − 𝐸 (𝑓

𝑎
, 𝑓
𝑚
)3×3]

2
, (4)

with MSH being the MS Homogeneity value; 𝐸(𝑓
𝑎
, 𝑓
𝑚
) the

modulation spectra computation (modulus or phase) at point
(𝑓
𝑎
, 𝑓
𝑚
); and 𝐸(𝑓

𝑎
, 𝑓
𝑚
)3×3 the average value in a 3×3 window

centered at the same point.
Contrast is computed using a variation of the Weber-

Fechner contrast relationship method described by the fol-
lowing expression as stated in [54]:

MSW (𝑓
𝑎
, 𝑓
𝑚
) = ∑

𝑎
󸀠

∑

𝑚
󸀠

𝐶
𝑓
𝑎
,𝑓
𝑚

, (5)

where

𝐶
𝑓
𝑎
,𝑓
𝑚

=

󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
) − 𝐸 (𝑓

𝑎
󸀠 , 𝑓
𝑚
󸀠)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
) + 𝐸 (𝑓

𝑎
󸀠 , 𝑓
𝑚
󸀠)
󵄨󵄨󵄨󵄨

(6)

representing (𝑓
𝑎
󸀠 , 𝑓
𝑚
󸀠) the vertical and horizontal adjacent

points to (𝑓
𝑎
, 𝑓
𝑚
). The global MSW is considered the sum

of all points in MSW(𝑓
𝑚
, 𝑓
𝑎
) divided by the total number of

points to normalize.
TheMS used to calculate MSH andMSW at each point of

the matrix is represented in Figure 3.

2.1.4. Dispersion Parameters. As MS differs from normal
to pathological voices, changes in the histograms of MS
modulus reflect the effects of a dysfunction in a patient’s voice.
A short view to the MS permits to observe that voices with
high 𝐺 and 𝑅 traits usually have a larger number of points
with levels above the average value of |𝐸(𝑓

𝑚
, 𝑓
𝑎
)|. The level of
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these points can be interpreted as the dispersion of the energy
present in the central modulation band (0Hz) towards side
bands respecting the case of a normal voice.

With this in mind, three Morphological Parameters are
proposed to measure such dispersion effect: Cumulative
Intersection Level (CIL), Normalized Number of Points above
Linear Average (PALA), and Ratio of Points above Linear Aver-
age (RALA). CIL is the intersection between the histogram
increasing and decreasing cumulative curves. Histogram is
processed from MS modulus in logarithmic units (dB). As
shown in Figure 4, CIL tends to be higher in pathological than
in healthy voices. In that case, the difference is 19 dB. On the
other hand, PALA is the number of points in MS modulus
which are above average (linear units) divided by the total
number of points of MS. RALA is quite similar to PALA but
in this case it represents the ratio of points in MS modulus
which are over the average and the number of points which
are above this average instead of the total number of points in
𝐸(𝑓
𝑎
, 𝑓
𝑚
). Calculation of PALA and RALA is detailed in the

following expressions:

PALA =
NA
NT

,

RALA =
NA
NB

(7)

being

NA = ∑

𝑓
𝑎

∑

𝑓
𝑚

𝛾 (𝑓
𝑎
, 𝑓
𝑚
) ,

NB = ∑

𝑓
𝑎

∑

𝑓
𝑚

1− 𝛾 (𝑓
𝑎
, 𝑓
𝑚
) ,

𝛾 (𝑓
𝑎
, 𝑓
𝑚
) =

{

{

{

1 󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
)
󵄨󵄨󵄨󵄨 ≥ |𝐸|

0 󵄨󵄨󵄨󵄨𝐸 (𝑓
𝑎
, 𝑓
𝑚
)
󵄨󵄨󵄨󵄨 < |𝐸|,

(8)

where |𝐸| is the MS modulus average, NA the number of
points above |𝐸|, NB the number of points below |𝐸|, and NT
the total number of points in 𝐸(𝑓

𝑎
, 𝑓
𝑚
).

In the cases in which the number of points above linear
average increases, the difference between PALA and RALA
increases too as the denominator in PALA stays constant
and the denominator in RALA decreases. Figure 5 represents
these points in a healthy and a pathological voice. It is
noticeable that, as expected, the MS of dysphonic voices
presents more points above the modulus average.

3. Experimental Setup

3.1. Database. The Kay Elemetrics Voice Disorders Database
recorded by the Massachusetts Eye and Ear Infirmary Voice
Laboratory (MEEI) was used for this study [55] due to its
commercial availability. The database contains recordings of
the phonation of the sustained vowel /𝑎ℎ : / (53 normal, 657
pathological) and utterances corresponding to continuous
speech during the reading of the “Rainbow passage” (53
normal, 661 pathological). The sample frequency of the
recordings is 25 kHz with a bit depth of 16 bits. From the
original amount of speakers recorded in the database, a first
corpus of 224 speakers was selected according to the criteria
found in [56] being named henceforward as the original
subset. The utterances corresponding to the sustained vowel
and the continuous speech recordings were used to rate
𝐺 and 𝑅 for each patient according to the GRBAS scale.
The degree of these traits has been estimated three times
by two speech therapists. One of them evaluated the whole
database once, and the second one performed the assessment
twice in two different sessions. Regarding this study, only the
sustained vowels are considered. With the aim of obtaining
more consistent labels, two reduced subsets of 87 and 85
audio files for 𝐺 and 𝑅, respectively, were considered. Those
files are chosen from the initial corpus of 224 recordings
on the basis of selecting only those whose labeling was in a
total agreement for the three assessments making up the 𝐺
and 𝑅 agreement subsets. This reduction was performed to
avoid modeling inter/intraraters variability inherent to the
process of assigning perceptual labels to each speaker. In any
case, all tests were performed for the three subsets to provide
evidences about such reduction. Some statistics of database
are shown in Table 1.

With the aim of sharing relevant information and to pro-
mote a more reliable comparison of techniques and results,
the names of the recordings extracted fromMEEI corpus that
were used for this study along with their respective 𝐺 and 𝑅

levels are included in Appendix, Table 6.

3.2. Methodology. One of the purposes of this work is to test a
new source of parameters to characterize voice perturbations
by replicating clinician’s 𝐺 and 𝑅 perceptual evaluations.
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Table 1: Subsets statistics.

Subset name Number of subjects Age range Average age
Female Male Female Male Female Male

Original (226 files) 90 134 21–52 26–59 35.8 ± 8.2 39.9 ± 9.1
Agreement-𝐺 (87 files) 52 35 24–52 26–58 36.6 ± 7.6 39.5 ± 9.7
Agreement-𝑅 (85 Files) 51 34 22–52 26–58 35.4 ± 7.6 37.9 ± 9.2
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Figure 4: CIL calculation in a normal voice (top) and a pathological voice (bottom) diagnosed of bilateral laryngeal tuberculosis.

So as to quantify the contribution of this new approach, a
baseline parameterization has been established to compare
with the novel one. Consequently, all tests are performed
using the parameters of the baseline system (MFCCs) and the
MS Morphological Parameters. A large number of tests were
accomplished to find the best setting, modifying the number
of centroids or the frame duration among other degrees of
freedom.

The methodology employed in this paper is shown in
Figure 6, while each one of its stages is explained next.
Basically, it is the classical supervised learning arrange-
ment, which can be addressed using either classification
or regression techniques. For the sake of simplicity and to
concentrate on the novel parameterization approach, a simple
GaussianMixtureModel (GMM) classification back-end was
employed to recognize the presence of the perturbations in
the voice signal which presumably would produce high levels
of 𝐺 and 𝑅 during perceptual analysis.

3.2.1. Characterization. Two parameterization approaches
are considered in this study: MFCCs and MS Morphological
Parameters. The MFCCs are the ground of the baseline
system and were used for comparison due to their wide use
in speech technology applications.

The MFCCs are calculated following a method based
on the human auditory perception system. The mapping
between the real frequency scale (Hz) and the perceived
frequency scale (mels) is approximately linear below 1 kHz

and logarithmic for higher frequencies. Such mapping con-
verts real into perceived frequency. In this work MFCCs
are estimated using a nonparametric FFT-based approach.
Coefficients are obtained by calculating the Discrete Cosine
Transform (DCT) over the logarithm of the energy in several
frequency bands. The bandwidth of the critical band varies
according to the perceived frequency. Each band in the
frequency domain is bandwidth dependant of the filter
central frequency. The higher the frequency is, the wider the
bandwidth is. To obtain these parameters, a typical setup
of 30 triangular filters and cepstral mean subtraction was
used. Their computation is carried out over speech segments
framed and windowed using Hamming windows overlapped
50%. Duration of frames oscillates from 20 to 100ms in
20ms steps. For the sake of comparison the number of
MFCCs ranges from 10 to 22 coefficients. 0’th order cepstral
coefficient is removed.

Regarding theMSMorphological Parameters, each signal
is also framed and windowed using Hamming windows
overlapped 50%. The window lengths are varied in the range
of 20–200ms in 20ms steps. The feature vector extracted
from MS is composed of the following: MSC, DRB, LMR,
MSW, MSH, CIL, PALA, and RALA. The number of bands
to obtain centroids and dynamic range features is varied in
the range of [6, 22] with a step size of 2. Considering that
MSW and MSH provide two features each (one for modulus
and other for phase), the feature vector corresponding to each
frame ranges from 20 to 44 values before using data reduction
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Figure 5: Points above (black) andbelow (white)modulus average inMS for a normal voice (a) PALA = 0.11, RALA = 0.12, and a pathological
voice due to bilateral laryngeal tuberculosis (b) PALA = 0.21, RALA = 0.27.
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Figure 6: Outline of the automatic detector presented in the paper.

techniques. Both, coherent and noncoherent modulation
(Hilbert envelope) were used for testing separately. Acoustic
frequency span [0–12.5 kHz] is divided into 128 bands and
maximum modulation frequency varied from 70 to 500Hz
to allow different configurations during tests.

In addition, first derivative (Δ) and second derivative
(ΔΔ), representing the speed and acceleration in the changes
of every characteristic, are added to the features in order to
include interframe attributes [46]. The calculation of Δ and
ΔΔ was carried out employing finite impulse response filters
using a length of 9 samples to calculate Δ and 3 in the case of
ΔΔ.

All these features are used to feed a subsequent classi-
fication phase in two different ways depending on the test:
some experiments are accomplished using features as they are
obtained, and others use a reduced version to relieve the curse
of dimensionality effect.

In the dimensionality reduction stage, PCA [57] and LDA
[58] techniques are used varying the dimension of the feature
vectors used for classification. In the case of LDA, all feature
vectors are reduced to a 3-dimensional space. Concerning

PCA, reduction ranges from 80 to 95%. With respect to
these techniques, only the training data set is used to obtain
the models which are employed to reshape all the data:
training and test data sets. This process is repeated for every
iteration of the GMM training-test process carried out for
validation. The dimensionality reduction is applied for both
MSMorphological Parameters andMFCCs features with and
without derivatives separately.

3.2.2. Validation. Following the characterization, a Leave-
One-Out (LOO) cross-validation scheme [33] was used for
evaluating the results. On this scheme one file is considered
for testing and the remaining files of the database are used
as training data, generating what is called a fold. As a result,
there are as many folds as number of files, and each of them
will provide a classification accuracy. The global result for
a certain parameterization experiment is the average of the
results in all folds. In spite of having a higher computational
cost, this cross-validation technique has been selected instead
of other less computationally costly such as 𝑘-folds [59] due
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Table 2: Results expressed as efficiency ± confidence interval and Cohen’s Kappa Index using MFCCs and MS features.

Features
Original subset Agreement subset

𝐺 𝑅 𝐺 𝑅

Efficiency (%) 𝜅 Efficiency (%) 𝜅 Efficiency (%) 𝜅 Efficiency (%) 𝜅

MFCC 54.5 ± 6.5 0.37 53.1 ± 6.5 0.51 75.9 ± 9.0 0.64 76.5 ± 9.0 0.64
MFCC + PCA 56.3 ± 6.5 0.39 52.2 ± 6.6 0.31 78.2 ± 8.7 0.67 74.1 ± 9.3 0.60
MFCC + LDA 45.5 ± 6.5 0.27 48.2 ± 6.6 0.29 65.5 ± 10.0 0.48 68.3 ± 9.9 0.50
MS 60.3 ± 6.4 0.45 54.9 ± 6.5 0.36 81.6 ± 8.1 0.72 76.5 ± 9.0 0.63
MS + PCA 58.5 ± 6.5 0.43 58.0 ± 6.5 0.41 79.3 ± 8.5 0.69 78.8 ± 8.7 0.68
MS + LDA 58.9 ± 6.4 0.44 59.8 ± 6.4 0.43 81.6 ± 8.1 0.72 83.5 ± 7.9 0.74

Table 3: Results expressed as efficiency ± confidence interval and Cohen’s Kappa Index for MFCCs and MS features including Δ and ΔΔ.

Features Dimensionality reduction
Agreement subset

𝐺 𝑅

Efficiency (%) 𝜅 Efficiency (%) 𝜅

MFCC + Δ
PCA 78.2 ± 8.7 0.67 74.1 ± 9.3 0.60
LDA 72.4 ± 9.4 0.58 58.8 ± 10.5 0.35

MFCC + Δ + ΔΔ
PCA 80.5 ± 8.3 0.71 77.7 ± 8.8 0.66
LDA 72.4 ± 9.4 0.58 62.4 ± 10.3 0.41

MS + Δ
PCA 81.6 ± 8.1 0.73 80.0 ± 8.5 0.69
LDA 80.5 ± 8.3 0.72 81.2 ± 8.3 0.71

MS + Δ + ΔΔ
PCA 79.3 ± 8.5 0.63 80.0 ± 8.5 0.70
LDA 80.5 ± 8.3 0.71 84.7 ± 7.7 0.76

to its suitability in view of the reduced number of recordings
contained in the agreement subsets.

3.2.3. Classification. The features extracted during the
parameterization stage are used to feed the classifier, which
is based on the Gaussian Mixture Model (GMM) paradigm.
Having a data vector x of dimension 𝑑 resulting from the
parameterization stage, a GMM is a model of the probability
density function defined as a finite mixture of 𝑔multivariate
Gaussian components of the form:

𝑝 (x | Θ
𝑖
) =

𝑔

∑

𝑟=1
𝜆
𝑟
N (x;𝜇

𝑟
,Σ
𝑟
) , (9)

where 𝜆
𝑟
are scalar mixture weights,N(⋅) are Gaussian den-

sity functions with mean 𝜇
𝑟
of dimension 𝑑 and covariances

Σ
𝑟
of dimension 𝑑 × 𝑑, and Θ

𝑖
= {𝜆
𝑟
,𝜇
𝑟
,Σ
𝑟
}|
𝑔

𝑟=1 comprises
the abovementioned set of parameters that defines the class
to be modeled. Thus, for each class Θ

𝑖
to be modeled (i.e.,

values of the 𝐺 and 𝑅 perceptual levels: 0, 1, 2, or 3), a GMM
is trained.Θ

𝑖
is estimated using the expectation-maximization

algorithm (EM) [60]. The final decision about the class that a
vector belongs to is taken establishing for each pair of classes
𝑖, 𝑗 a threshold Γ over the likelihood ratio (LR), that in the
logarithmic domain is given by

LR = log (𝑝 (x | Θ
𝑖
)) − log (𝑝 (x | Θ

𝑗
)) . (10)

The threshold Γ is fixed at the Equal Error Rate (ERR)
point.

In this stage, the number of Gaussian components of the
GMMwas varied from4 to 48.The assessment of the classifier
was performed by means of efficiency and Cohen’s Kappa
Index (𝜅) [61]. This last indicator provides information about
the agreement between the results of the classifier and the
clinician’s perceptual labeling.

4. Results

Thebest results obtained for each type of test can be observed
in Table 2, which disposes the outcomes taking into account
the type of characterization, dimensionality reduction, and
database subset used. All tests were performed using the
aforementioned sets of the database with and without PCA
and LDA techniques. Table 3 shows the outcomes adding
first and second derivative to the original parameterizations
before dimensionality reduction. All results are expressed in
terms of efficiency and Cohen’s Kappa Index. For the sake of
simplicity, only results obtained with the third labeling of the
original subset are shown, corresponding to columns 𝐺3 and
𝑅3 in Appendix, Table 6.

Concerning 𝐺 trait, absolute best results (81.6%) are
obtained in the agreement database, using MS + Δ in 140ms
frames, 22 centroids, Hilbert envelope, 240Hz as max. mod-
ulation frequency, dimensionality reduction through PCA
(93% reduction), and 4GMM.RespectingMFCC, best results
are obtained using MFCCs + Δ + ΔΔ, 22 coefficients, PCA,
20ms frames, and 8GMM.

Relating to 𝑅, as expected, absolute best results (84.7%)
are also obtained in the agreement database using MS +
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Table 4: Confusion matrices related to absolute best results in MS
parameters and MFCCs. 𝐺

𝑇
and 𝑅

𝑇
are target labels while 𝐺

𝑃
and

𝑅
𝑃
are predicted labels.

Grade Roughness
𝐺
𝑃
0 𝐺

𝑃
1 𝐺

𝑃
2 𝐺

𝑃
3 𝑅

𝑃
0 𝑅

𝑃
1 𝑅

𝑃
2 𝑅

𝑃
3

MS Morphological Parameters
𝐺
𝑇
0 28 1 0 1 𝑅

𝑇
0 38 1 0 0

𝐺
𝑇
1 3 3 1 0 𝑅

𝑇
1 3 1 2 0

𝐺
𝑇
2 1 1 11 1 𝑅

𝑇
2 1 0 13 1

𝐺
𝑇
3 3 0 4 29 𝑅

𝑇
3 3 1 1 20

MFCCs
𝐺
𝑇
0 27 0 2 1 𝑅

𝑇
0 35 0 1 3

𝐺
𝑇
1 2 0 5 0 𝑅

𝑇
1 3 0 3 0

𝐺
𝑇
2 0 0 13 1 𝑅

𝑇
2 1 0 9 5

𝐺
𝑇
3 0 0 6 30 𝑅

𝑇
3 1 0 2 22

Table 5: Altman interpretation of Cohen’s index.

𝜅 Agreement
≤0.20 Poor
0.21–0.40 Fair
0.41–0.60 Medium
0.61–0.80 Good
0.81–1.00 Excellent

Δ + ΔΔ calculated in 100ms frames, 14 centroids, Hilbert
envelope, 240Hz as max. modulation frequency, dimen-
sionality reduction through LDA, and 16GMM. Respecting
MFCC, best results are obtained using MFCCs + Δ + ΔΔ, 22
coefficients, PCA, 20ms frames, and 48GMM.

Table 4 shows confusion matrices for MFCC and MS
Morphological Parameters as the sum of the confusion
matrices obtained at each of the test folds.They are calculated
using the mentioned configurations that leaded to the best
results.

5. Conclusion and Discussions

This study presents a new set of parameters based on MS
being developed to characterize perturbations of the human
voice. The performance of these parameters has been tested
with an automatic system that emulates a perceptual assess-
ment according to the 𝐺 and 𝑅 features of the GRBAS scale.
The proposed automatic system follows a classical supervised
learning setup, based on GMM. The outcomes have been
compared to those obtained with a baseline setup using the
classic MFCCs as input features. Dimensionality reduction
methods as LDA and PCA have been applied to mitigate
the curse of dimensionality effects induced by the size of the
corpus used to train and validate the system. Best results are
obtained with the proposed MS parameters, providing 81.6%
and 84.7% of efficiency and 0.73 and 0.76 Cohen’s Kappa
Index for 𝐺 and 𝑅, respectively, in the agreement subset.
Having in mind Altman interpretation of Cohen’s index [62],
shown in Table 5, the agreement can be considered “good”,
almost “excellent.” Likewise, most errors raised by the system

correspond with adjacent classes, as it can be deduced from
the confusionmatrices represented in Table 4. It is noticeable
that inmany cases the second class (level 1 in traits𝐺 and𝑅) is
not detected properly and the main reason may be the lack of
subjects of class 2 (level 1 in 𝐺 and 𝑅) in the used corpus. The
fact that GMM classifiers were trained with a poor quantity
of class 2 frames with respect to the other classes explains the
higher percentage of errors obtained for this class. In order to
solve this problem in futureworks itmight be necessary to use
classification techniques for imbalanced data [63]. Another
possible reason for the mismatching of intermediate classes
(𝐺 and 𝑅 equal to 1 or 2) is that these are the less reliable
levels in GRBAS perceptual assessment as it was described by
de Bodt et al. [5].

In reference to the outcomes obtained with features with-
out dimensionality reduction, results are better for the agree-
ment subsets usingMSMorphological Parameters. Moreover,
when applying LDA to the MS feature space, an absolute
improvement of a 9% is obtained for 𝑅 in comparison to
MFCCs, leading to the best absolute outcome obtained and
denoting that the MS Morphological Parameters are in some
sense linearly separable. As a starting point,most of the agree-
ment subset tests were performed with what we have called
the original subset (224 files) using the three available label
groups separately: one of them generated by one of the speech
therapists and the other two created by the other specialist
in two different sessions. In these cases, in spite of having a
higher number of files and a more class-balanced database,
results barely exceed 60%of efficiency.This demonstrates that
the consistency of the database labeling (i.e., removing the
noise introduced during the labeling process due to intra-
and interrater’s variability) is crucial to obtain more accurate
results. An interesting conclusion is that further studies
should utilize only consistent labels obtained in agreement
with several therapists and in different evaluation sessions.

In order to search for some evidences proving that
the selected cross-validation technique is not influencing
the results by producing corpus-adjusted trained models,
most of the tests are launched again using a 6-fold cross-
validation technique as a prospecting experiment. Almost
the same maximum efficiencies were obtained in all cases
with a difference of around ±1%, suggesting that the selected
cross-validation technique is not producing corpus-adjusted
trained models.

Regarding the use of derivatives Δ and ΔΔ, they improve
performance mainly when using MFCCs in 20ms frames for
𝐺 trait. This suggests that derivatives provide relevant extra
information related to the short term variations occurred in
pathological voices [64]. In the rest of the cases the improve-
ments are limited; therefore, the influence of derivatives in
𝐺 and 𝑅 detection systems should be studied in detail in the
future work.

Comparing this work with other studies mentioned in
Section 1, results with MFCCs are coherent with these
obtained in [17, 21, 36], although methodologies followed in
them are different to the one proposed in this study. As it
is stated in Section 1, previous studies seldom exceed 75%
efficiency. Taking into account 𝐺 and 𝑅 traits, only [19, 20]
surpass that value achieving 80% for 𝐺 trait.
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Table 6: Subsets labeling.

File G1 G2 G3 R1 R2 R3 File G1 G2 G3 R1 R2 R3 File G1 G2 G3 R1 R2 R3 File G1 G2 G3 R1 R2 R3
alb18an 2 3 3 2 3 3 gpc1nal 0 0 0 0 0 0 lba15an 2 0 0 1 0 0 pmc26an 2 3 3 2 2 2
amc14an 1 3 3 1 3 3 gsb11an 3 3 3 3 3 3 lba24an 2 0 0 1 0 0 pmd25an 2 3 2 2 3 2
aos21an 3 3 3 3 3 3 gxl21an 1 0 0 1 0 0 ldp1nal 1 0 0 0 0 0 pmf03an 2 1 1 2 1 1
axd19an 0 0 0 0 0 0 gxt10an 3 3 3 3 3 3 les15an 3 3 3 3 0 0 rcc11an 2 3 3 2 2 2
axh1nal 0 0 0 0 0 0 gzz1nal 1 0 0 1 0 0 lgm01an 1 0 0 1 0 0 rhg1nal 0 1 0 0 1 0
axt13an 1 1 1 1 0 1 hbl1nal 1 0 0 1 0 0 ljh06an 2 2 2 2 2 2 rhm1nal 0 0 0 0 0 0
bah13an 1 3 2 1 3 2 hjh07an 2 3 3 2 3 3 ljs31an 2 1 1 1 1 0 rhp12an 2 3 2 2 3 2
bef05an 2 3 3 2 0 0 hlm24an 1 2 2 1 2 2 lla1nal 1 0 0 0 0 0 rjf22an 2 3 3 2 3 3
bjb1nal 0 0 0 0 0 0 hxi29an 1 3 2 1 3 2 llm22an 3 3 2 3 3 2 rjl28an 3 3 2 2 3 2
bjv1nal 0 0 0 0 0 0 hxl58an 1 0 0 1 0 0 lmv1nal 1 0 0 1 0 0 rjr15an 1 1 1 1 1 1
bkb13an 1 0 1 2 0 1 jaf1nal 0 0 0 0 0 0 lmw1nal 1 0 0 0 0 0 rjs1nal 0 0 0 0 0 0
blb03an 2 3 2 2 3 2 jan1nal 1 1 1 1 1 1 lnc11an 1 0 0 0 0 0 rjz16an 1 0 0 1 0 0
bpf03an 1 2 1 1 2 1 jap02an 2 1 1 2 0 1 lrd21an 1 0 0 0 0 0 rmb07an 2 3 3 2 3 3
bsg13an 1 1 1 1 1 1 jap1nal 0 0 0 0 0 0 lvd28an 2 3 2 2 2 2 rpj15an 3 3 3 3 3 3
cac10an 2 3 3 2 0 0 jcc10an 2 2 2 2 2 2 lwr18an 1 3 3 1 0 0 rpq20an 2 3 3 2 3 3
cad1nal 0 0 0 0 0 0 jcr01an 3 3 3 3 3 3 lxc01an 2 2 2 2 0 0 rtl17an 1 0 1 1 0 1
cak25an 2 1 1 2 1 1 jeg1nal 0 0 0 0 0 0 lxc06an 3 3 3 3 3 3 rwc23an 2 3 3 2 3 3
ceb1nal 0 0 0 0 0 0 jeg29an 2 3 2 2 0 0 lxr15an 3 3 2 3 3 2 rxm15an 1 0 0 1 0 0
cls31an 2 1 1 2 1 1 jfg08an 3 3 3 3 3 3 mab06an 2 1 1 2 1 1 rxp02an 1 3 3 1 3 3
cma06an 1 2 1 1 2 1 jfn21an 3 2 2 3 2 2 mam08an 2 3 3 2 3 3 sac10an 2 3 3 2 3 3
cmr06an 0 0 0 0 0 0 jhw29an 2 1 1 2 1 1 mam1nal 0 0 0 0 0 0 sae01an 1 0 0 1 0 0
crm12an 3 3 3 3 2 2 jkr1nal 1 0 0 1 0 0 mas1nal 0 0 0 0 0 0 sav18an 3 3 3 3 3 3
ctb30an 2 2 1 2 1 1 jld24an 2 3 2 2 3 2 mcb1nal 1 0 0 1 0 0 sbf11an 0 0 0 0 0 0
daj1nal 0 0 0 0 0 0 jls11an 2 1 1 2 1 1 mcw21an 2 1 1 2 1 1 scc15an 3 3 3 3 0 1
dap17an 2 2 1 2 2 1 jmc18an 1 0 0 1 0 0 mec06an 2 0 0 2 0 0 sck1nal 1 0 0 1 0 0
das30an 1 — 1 1 — 1 jmc1nal 1 0 0 1 0 0 mec28an 2 2 1 1 2 1 sct1nal 1 0 0 1 0 0
dbf18an 2 2 1 2 2 1 jpp27an 3 3 3 3 0 0 mfc20an 3 3 3 2 3 3 seb1nal 1 0 0 1 0 0
dfp1nal 0 0 0 0 0 0 jrf30an 1 0 0 1 0 0 mfm1nal 1 0 0 1 0 0 sec02an 2 0 1 2 0 1
djg1nal 0 0 0 0 0 0 jth1nal 1 0 0 0 0 0 mju1nal 0 0 0 0 0 0 sef10an 1 0 0 1 0 0
djp04an 2 2 2 2 2 2 jtm05an 1 2 1 1 2 1 mpb23an 3 3 3 3 3 3 seg18an 2 1 1 2 1 1
dma1nal 0 0 0 0 0 0 jxc1nal 1 0 0 0 0 0 mpf25an 1 2 1 1 2 1 sek06an 2 2 1 2 2 1
dmc03an 2 3 2 2 0 0 jxc21an 2 0 0 2 0 0 mps09an 2 0 1 2 0 1 shd04an 3 3 3 3 3 3
dmp04an 2 2 2 2 2 2 jxd30an 1 1 1 0 1 1 mrb11an 1 3 2 1 3 2 sis1nal 0 0 0 0 0 0
drc15an 2 2 2 2 0 0 jxf11an 3 3 3 3 3 3 mrc20an 2 3 2 2 3 2 sjd28an 1 1 1 1 1 1
dsc25an 3 3 3 3 0 0 kab03an 1 0 0 1 0 0 mwd28an 2 3 2 2 3 2 slc1nal 2 0 0 1 0 0
dsw14an 2 — 1 2 — 1 kac07an 1 0 0 1 0 0 mxb1nal 0 0 0 0 0 0 slc23an 2 0 1 1 0 1
dvd19an 3 3 3 3 3 3 kan1nal 0 0 0 0 0 0 mxc10an 2 2 2 2 2 2 slg05an 1 0 0 1 0 0
dwk04an 2 2 2 2 2 2 kcg23an 2 2 1 2 2 1 mxn24an 1 0 0 1 0 0 sma08an 3 3 3 3 3 3
dws1nal 0 0 0 0 0 0 kcg25an 1 0 0 1 0 0 mxz1nal 1 0 0 0 0 0 sws04an 3 2 2 3 2 2
eab27an 3 3 3 3 3 3 kdb23an 2 2 2 2 2 2 nfg08an 2 2 1 1 2 1 sxv1nal 1 0 0 1 0 0
eas11an 1 2 1 1 2 1 kjb19an 2 3 3 2 3 3 njs06an 2 2 1 2 2 1 tab21an 3 3 3 3 3 3
eas15an 3 3 3 3 3 3 klc06an 2 3 3 2 0 0 njs1nal 1 0 0 1 0 0 tdh12an 2 2 1 2 2 1
edc1nal 1 0 0 1 0 0 klc09an 2 3 2 2 3 2 nkr03an 1 0 0 1 0 0 tlp13an 2 2 2 2 2 2
eec04an 3 3 3 3 2 2 kld26an 2 2 1 2 2 1 nlc08an 2 2 1 2 2 1 tls09an 2 2 2 2 2 2
eed07an 3 3 3 3 3 3 kmc22an 2 1 1 2 1 0 nmb28an 2 3 2 1 3 2 tpp24an 1 0 0 1 0 0
ejc1nal 0 0 0 0 0 0 kms29an 2 3 3 2 3 3 nmc22an 2 2 1 1 1 1 tps16an 1 — 1 1 — 1
ejh24an 3 3 3 3 0 1 kmw05an 3 3 3 3 1 1 nml15an 0 1 1 0 1 1 txn1nal 1 — 0 1 — 0
emp27an 2 2 2 2 2 2 kps25an 0 2 1 0 2 1 nmv07an 3 3 3 3 0 0 vaw07an 3 3 3 3 3 3
ess05an 1 0 0 1 0 0 ktj26an 3 3 3 3 3 3 oab28an 1 3 3 2 3 3 vmc1nal 1 0 0 1 0 0
eww05an 2 2 2 2 2 2 kxb17an 3 3 3 3 3 3 ovk1nal 0 0 0 0 0 0 wcb24an 1 0 0 1 0 0
fmb1nal 0 0 0 0 0 0 kxh30an 3 3 3 3 3 3 pat10an 2 3 3 1 3 3 wdk1nal 0 0 0 0 0 0
fmr17an 3 3 3 3 3 3 lac02an 2 1 1 2 0 1 pbd1nal 1 0 0 1 0 0 wfc07an 2 3 2 2 3 2
fxc12an 1 2 2 1 2 2 lad13an 1 2 1 1 2 1 pca1nal 1 0 0 0 0 0 wjb06an 2 0 0 2 0 0
gdr15an 3 3 3 3 0 0 lad1nal 0 0 0 0 0 0 pdo11an 2 3 3 2 3 3 wjp20an 3 3 3 3 3 3
gmm09an 3 3 3 3 3 3 lai04an 1 3 2 1 3 2 pgb16an 1 1 1 1 1 1 wpb30an 2 1 1 2 1 1
gms05an 2 3 3 2 3 3 lap05an 1 3 3 1 3 3 plw14an 2 2 2 2 2 2 wxe04an 3 3 3 3 3 3
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Despite the promising results, an accurate comparison
with the studies found in the state of the art is difficult since,
as stated in [65], different works tend to use different types
of corpus and methodologies, and results are unfortunately
dependant of the corpus used for training and validation.
Furthermore, those cases on which different studies utilize
the same database, labeling is usually different. In this sense,
the definition of a standardized databasewith a consistent and
known labeling would lead to comparable results. For this
reason, with the aim of providing the scientific community
with a benchmark labeling and to promote a more solid
comparative estimate of future techniques and studies, the
labeling of the 𝐺 and 𝑅 features used on this work has
been included in Table 6. Despite its known limitations [65],
the fact that MEEI database is commercially available for
researchers is also an advantage in this sense.

On the other hand, other approaches such as [11, 23] have
already demonstrated thatMS is a good source of information
to detect pathological voices or to perform an automatic
pathology classification. The main difference with respect to
Markaki’s approach is that in this studyMS is used to evaluate
the speech according to a 4-level scale in twodifferent features
of the speech: Grade and Roughness. On the other hand, the
parameters used in the present study are less abstract and
have an easier physical interpretation, opening the possibility
of using them in a clinical setting.

In spite of the good figures, MS has a weakness which
could make it a nonviable parameterization in some appli-
cations: computational cost. Depending on the configuration
and frequency margins, to calculate a MS matrix can take
around 400 timesmore than to calculateMFCCs on the same
signal frame.

Regarding the future work, all MS parameters must be
studied and adjusted separately to find the adequate fre-
quency margins of operation to optimize results. In addition,
the use of the proposed MS Morphological Parameters in
combination with some other features such as complexity
and noise measurements or cepstral-based coefficients to
characterize GRBAS traits would be advisable. Moreover, the
study of regression methods like Support Vector Regression
[66] and other feature selection techniques such as Least
Absolute Shrinkage and Selection Operator (LASSO) [67]
is of interest. In respect of the classification stage, the
stratification of the speakers according to her/his sex, age,
or emotional state could increase performance as suggested
in [68]. For this purpose, a priori categorization of speaker’s
characteristics using hierarchical methods might be used to
simplify the statistical models behind to automatically assess
the quality of speech.

Summarizing, results suggest that the proposedMSMor-
phological Parameters are an objective basis to help clinicians
to assess Grade and Roughness according the GRBAS scale,
reducing uncertainty and making the assessment easier to
replicate. It would be advisable to study the synthesis of a
new parameter combining the proposed MS Morphological
Parameters, being suitable for therapists and physicians. In
view of the experiments carried out in this work, there
are evidences that suggest that the use of these parameters
provides better results than the classic MFCCs, traditionally

used to characterize voice signals. On the other hand, itsmain
drawback is the initial difficulty of applying the proposedMS-
based parameters to the study of running speech.

Appendix

On Table 6 perceptual assessment of GRBAS Grade and
Roughness traits for 224 recordings of MEEI corpus [55] can
be found. G1 and R1 are assessments of Therapist 1. The rest
of evaluations are performed by Therapist 2 in two different
sessions. Numbers in bold represent the agreement subsets
while all evaluations are the original subsets.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors of this paper have developed their work under
the grant of the project TEC2012-38630-C04-01 from the
Ministry of Economy and Competitiveness of Spain and
Ayudas para la realizacion del doctorado (RR01/2011) from
Universidad Politecnica de Madrid, Spain.

References

[1] C. Sapienza and B. Hoffman-Ruddy, Voice Disorders, Plural
Publishing, 2009.

[2] D. K. Wilson, Voice Problems of Children, Williams & Wilkins,
Baltimore, Md, USA, 1987.

[3] G. B. Kempster, B. R. Gerratt, K. V. Abbott, J. Barkmeier-
Kraemer, and R. E. Hillman, “Consensus auditory-perceptual
evaluation of voice: development of a standardized clinical
protocol,” American Journal of Speech-Language Pathology, vol.
18, no. 2, pp. 124–132, 2009.

[4] M. Hirano, Clinical Examination of Voice, Springer, 1981.
[5] M. S. De Bodt, F. L. Wuyts, P. H. van de Heyning, and C.

Croux, “Test-retest study of the GRBAS scale: influence of
experience and professional background on perceptual rating
of voice quality,” Journal of Voice, vol. 11, no. 1, pp. 74–80, 1997.

[6] I. V. Bele, “Reliability in perceptual analysis of voice quality,”
Journal of Voice, vol. 19, no. 4, pp. 555–573, 2005.

[7] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig,
“Accurate telemonitoring of Parkinson’s disease progression by
noninvasive speech tests,” IEEE Transactions on Biomedical
Engineering, vol. 57, no. 4, pp. 884–893, 2010.

[8] A. Tsanas, M. A. Little, C. Fox, and L. O. Ramig, “Objective
automatic assessment of rehabilitative speech treatment in
parkinson’s disease,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 22, no. 1, pp. 181–190, 2014.

[9] C. Fredouille, G. Pouchoulin, A. Ghio, J. Revis, J.-F. Bonastre,
and A. Giovanni, “Back-and-forth methodology for objective
voice quality assessment: from/to expert knowledge to/from
automatic classification of dysphonia,” EURASIP Journal on
Advances in Signal Processing, vol. 2009, Article ID 982102, 13
pages, 2009.
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