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Abstract

Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart,
and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit
antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential
differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an
emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the
antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP).

Introduction
In recent decades there has been a tremendous increase
in the therapeutic options available for the inhibition of
the renin-angiotensin system (RAS). Historically, angio-
tensin-converting enzyme inhibitors (ACE-I) were the
first class of RAS inhibitors identified. The first ACE-I,
captopril, was discovered by a scientist at Squibb, a US
pharmaceutical company, in 1975 [1]. Captopril was
based on the peptide sequence of bradykinin-potentiat-
ing factor, which inhibited the conversion of angiotensin
I to angiotensin II when perfused into pulmonary circu-
lation [2].
Approximately 15 years ago, a second class of RAS inhi-

bitors was introduced into the market, the angiotensin II
receptor blockers (ARBs) [3]. Very recently, a novel class
of RAS inhibitor, including aliskiren [4], which directly
inhibits renin has been put into clinical use. Most of the
literature support the beneficial effects of this novel class
of RAS inhibitors as antihypertensive drugs [5,6]. Interest-
ingly, the use of these drugs is not limited to antihyperten-
sive disorders. The clinical use of RAS inhibitors has
emerged as beneficial for the prevention of diabetes [7,8],

fibrotic kidney disease [9], heart disease [10], aging [11]
and Alzheimer’s disease [12].
There is no doubt that RAS inhibitors are beneficial

drugs; however, the differences between each of these
classes of inhibitors are not yet clear. After a brief intro-
duction to the RAS, we analyze the potential differences
between ACE-I and ARBs as antifibrotic drugs. Empha-
sis is placed on the ACE inhibitors and the antifibrotic
peptide AcSDKP.

RAS
Renin, an aspartyl protease, was discovered by Robert
Tigerstedt at the Karolinska Institute in 1898 [13]. The
majority of renin in the body is found in the juxtaglo-
merular cells of the kidney. Additionally, renin has been
found in many other tissues but without clear mechanis-
tic evidence of its function in these locations [14]. Renin
cleaves angiotensinogen, which results in the production
of the decapeptide angiotensin I. The octapeptide angio-
tensin II, a potent vasoconstrictor, is formed by ACE-
mediated cleavage of angiotensin I.
There are two main receptors for angiotensin II (AT1

and AT2), which are differentially expressed on the cell
surface (Figure 1) [15]. Those receptors share the con-
figuration of a seven-transmembrane receptor but exhi-
bit only around 20% protein sequence homology [16].
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These two receptors play distinct physiological roles
[16]. AT1 receptors are coupled to G proteins and med-
iate diverse signaling pathways, such as activation of
phospholipases, inhibition of adenylate cyclase, and sti-
mulation of tyrosine phosphorylation [15]. However, the
interaction of AT2 receptors and G proteins is contro-
versial [17]. These two receptors are differentially regu-
lated during the development [18]. When analyzed in
lamb, AT2 receptors are expressed abundantly in the
fetal kidney, especially in the undifferentiated mesench-
yme [18]. These AT2 receptors are at decreased expres-
sion levels after birth [18]. AT1 receptors are initially
expressed in the nephrogenic cortex and developing glo-
meruli, proximal tubule and vessels; they become more
abundant through the development processes [18].
The expression of AT1 receptors is stimulated by sev-

eral conditions, such as high cholesterol levels and
osmolarity changes, but decreased by high concentration
of angiotensin II [15]. Such angiotensin II-dependent
downregulation is not found for AT2 receptors; instead,
AT2 receptors are induced by tissue injury [17]. Indeed,
AT2 receptors are re-expressed by renal injury and the
nephron remodeling processes [17].
Vasoconstriction, profibrotic action, growth stimula-

tion, aldosterone release and proinflammatory functions
are classical angiotensin II-driven physiological functions

that are mediated by AT1 receptors [19]. AT2 receptor-
mediated signaling may antagonize AT1-mediated signal
transductions [20-22]. However, accumulating evidence
indicates that AT2 receptor-mediated signaling also
mediates the detrimental action of angiotensin II,
including hypertrophy [23,24], and the stimulation of
proinflammatory pathway nuclear factor �B [25,26]. In
this regard, blockade of the AT2 receptor by a specific
inhibitor was associated with the inhibition of inflamma-
tion and renoprotection in subtotally nephrectomized
rats [27].
In addition to classical members, some new bioactive

molecules, such as angiotensin IV and angiotensin-(1-7),
have been introduced in RAS systems.
Angiotensin II is metabolized by aminopeptidase A

(APA) into antgiotensin III and finally angiotensin IV
(Figure 1) [28]. Angiotensin IV binds to the specific
receptor AT4 (Figure 1), which is reported to be an
insulin-regulated membrane aminopeptidase [29,30]. It
is reported that angiotensin IV can induce plasminogen
activator inhibitor (PAI)-1 expression in the proximal
tubule and vascular endothelial cells [29,31]. PAI-1 acti-
vation has been associated with the reduction of extra-
cellular matrix turnover [32]; angiotensin IV-mediated
signaling may be associated with the tissue fibrosis [31].
The angiotensin IV-generating enzyme APA is induced

Figure 1 Overview of angiotensin-converting enzyme (ACE)/ACE2 action and synthesis of bioactive angiotensin peptides. ACE
metabolizes angiotensin I into angiotensin II. Angiotensin II is cleaved by aminopeptidase A (APA) into angiotensin III and subsequently
angiotensin IV. Angiotensin I is also cleaved by ACE2 into angiotensin-(1-9). Angiotensin-(1-7) is synthesized from angiotensin-(1-9) by ACE or
alternatively from angiotensin II by ACE2. These angiotensin peptides bind to specific receptors and exhibit biological functions.
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in conditions of renal injury and high angiotensin II
levels [28]; subsequently, more angiotensin II is utilized
in the production of angiotensin IV. Angiotensin IV is
also associated with the release of nitric oxide and focal
adhesion kinase phosphorylations [33,34]. Interestingly,
the angiotensin IV/AT4 receptor signaling pathway has
been shown to be involved in glucose homeostasis
[35,36] and cognitive functions [37], suggesting diverse
physiological roles of this pathway.
Another RAS-derived bioactive molecule is angioten-

sin-(1-7), which has been shown to inhibit the effects of
angiotensin II (Figure 1) [38]. For example, angiotensin-
(1-7) plays a role as an antihypertensive molecule
through the stimulation of the release of vasodilator
prostaglandins and nitric oxides [38]. In addition to such
antihypertensive effects, angiotensin-(1-7) inhibits the
angiotensin II-induced proliferation and growth stimula-
tion signal in vascular smooth muscle cells [39-41]. Most
likely, these effects of angiotensin-(1-7) as a negative reg-
ulator of angiotensin II are mediated, at least in part, by
the downregulation of the angiotensin II receptor AT1
(Figure 1) [42]. Also, it is reported that angiotensin-(1-7)
is the endogenous ligand for the MAS receptor (Figure 1)
[43]. Studies utilizing MAS receptor deficient mice have
indicated that the interaction between angiotensin-(1-7)
and the MAS receptor plays vital roles in heart function
[43], sympathetic tone regulation [44], aortic relaxation
[45], and endothelial function [46].
The synthesis of angiotensin-(1-7) is mediated by a

unique RAS pathway involving ACE2 (Figure 1) [47,48].
ACE2 is expressed predominantly in vascular endothelial
cells of the heart and kidney [47,49]. Both ACE and
ACE2 metabolize angiotensin I. However, the resulting
peptides are different (Figure 1). As shown above, ACE
converts angiotensin I to the octapeptide angiotensin II,
whereas ACE2 cleaves one amino acid from angiotensin
I; subsequently, nonapeptide angiotensin 1-9 is synthe-
sized (Figure 1) [47]. Although angiotensin 1-9 itself
exhibits no known biologic activity, angiotensin 1-9 is
cleaved by ACE, and bioactive angiotensin-(1-7) is
synthesized (Figure 1) [50]. ACE2 can also directly cleave
angiotensin II to form angiotensin-(1-7) (Figure 1); there-
fore, this angiotensin II degradation product exhibits
properties that are opposite those of angiotensin II [48].

RAS activation and tissue fibrosis
Activation of RAS and production of angiotensin II is
associated with tissue fibrosis [51,52]. Angiotensin II sti-
mulates extracellular matrix accumulation and collagen
deposition through the induction of mitogen activated
protein kinases (MAPKs), such as extracellular signal-
regulated kinase (ERK) [53], p38 [54] and c-Jun N-term-
inal kinases (JNKs) [55], in vivo and in vitro. Additionally,
angiotensin II stimulates the expression of the profibrotic

cytokine transforming growth factor (TGF)b in rat cadiac
fibroblasts [56] and connective tissue growth factor in rat
tubular epithelial cells [57]. Some reports have also indi-
cated that angiotensin II may directly activate Smad pro-
teins, which are part of the intracellular TGFb signaling
pathway [58-60]. Furthermore, angiotensin II stimulates
rat cardiac fibroblast proliferation [61]. In addition to the
angiotensin II/AT1 receptor-mediated major profibrotic
signaling pathways in RAS, the angiotensin IV/AT4
receptor pathway could contribute to tissue fibrosis via
the induction of PAI-1 [31], as described above.
Therefore, appropriate inhibition of profibrotic angio-

tensins such as angiotensin II or angiotensin IV, produc-
tion pathways, or, alternatively, activation of an
antiprofibrotic angiotensin pathway such as ACE2 or
angiotensin-(1-7) could be a potential route for antifibro-
tic therapy. In this regard, currently available RAS inhibi-
tors, such as ACE-I and ARB, are somewhat reasonable
as antifibrotic drugs. However, there are differences in
the antifibrotic molecular mechanisms of these drugs.

ACE inhibitors
ACE inhibitors are members of the first class of RAS
inhibitors. The first ACE inhibitor to be used in the
clinic, captopril, showed dramatic beneficial effects in
type I diabetic patients with nephropathy [62]. Following
this study, several clinical trials demonstrated that ACE
inhibition could significantly prevent the progression of
renal disease [63-65].
The ACE-I class of drugs exhibit their antihyperten-

sive effects by inhibiting the conversion of angiotensin II
from angiotensin I. ACE-I inhibition has been shown to
decrease fibrosis in experimental models of heart [66]
and kidney [67-69] disease. Because angiotensin II is a
profibrogenic molecule, it would be logical to conclude
that the beneficial effects of ACE-I are mediated
through the inhibition of angiotensin II production;
however, the beneficial effects of ACE-I cannot be
explained by the suppression of angiotensin II produc-
tion alone because maximal doses of ACE-I may not be
sufficient to inhibit all the biosynthesis of angiotensin II
[16]. Indeed, systemic administration of ACE-I has little
effect on the formation of angiotensin II in the kidney,
even though such ACE-I can almost completely inhibit
systemic angiotensin II formation from angiotensin I
[70]. Therefore, it is likely that the decrease in the pro-
duction of angiotensin II is not the only mechanism
underlying the antifibrotic effects of ACE-I.

ACE inhibition and elevation of the antifibrotic peptide N-
acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
AcSDKP is a tetrapeptide originally isolated from fetal
calf bone marrow [71], and has recently emerged as an
antifibrosis molecule.
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Details of the endogenous synthesis of AcSDKP are
not yet clear; however, available information strongly
suggests that thymosin b4 (Tb4) is the most likely can-
didate precursor of AcSDKP [72,73] (Figure 2). Lenfan
et al. showed that incubation of [3H] Tb4 with bone
marrow cells or bone marrow lysate resulted in the for-
mation of [3H]AcSDKP [72]. Furthermore, Tb4 knock-
down utilizing the small interfering (si)RNA for Tb4 led
to significant reduction of AcSDKP in HeLa cells [73].
AcSDKP is the N-terminal sequence of Tb4 (Figure 2).
AcSDKP was believed to be synthesized by a single clea-
vage employing Asp-N endopeptidase [72]. However,
Asp-N was only found in bacteria; therefore, Cavasin et
al. tried to find another enzyme responsible for the
synthesis of AcSDKP from Tb4 [74]. Subsequently, they
found that prolyl oligopeptidase (POP) is responsible for
the formation of AcSDKP and that POP inhibitors
blocked the formation of AcSDKP from Tb4 [74] (Fig-
ure 2).
Tb4 is a ubiquitously distributed 43-amino-acid pep-

tide (4.9 kDa), originally identified as an intracellular
peptide, which can sequester G-actin and regulate its
polymerization [75,76]. In addition to the role as actin
polymerizations, Tb4 exhibits various biologically signifi-
cant activities [75,76]. Interestingly, Bock-Marquette et
al. reported that the administration of exogenous intra-
cardiac and intraperitoneal Tb4 significantly restored
cardiac functions associated with neovascularization in
an experimental myocardial infarction model of mice
[77] and epicardial progenitor mobilization [78], sug-
gesting that Tb4 exhibit extracellular organ-protective
roles associated with antifibrosis and enhanced
angiogenesis.
AcSDKP is a natural inhibitor of hematopoietic stem

cell proliferation that prevents entry into S phase from
G1 in the cell cycle [79]. Interestingly, AcSDKP is

hydrolyzed in the presence of ACE (Figure 2). There-
fore, plasma levels of AcSDKP are minimal in normal
conditions, whereas ACE-I administration leads to a
fivefold increase in its concentration [80]. AcSDKP has
been shown to suppress the proliferation of human
mesangial cells [81] and renal fibroblasts [82], in addi-
tion to inhibiting collagen deposition in mouse cardiac
fibroblasts [83]. The administration of AcSDKP amelio-
rated renal fibrosis and glomerular sclerosis in hyperten-
sive rat models and diabetic and non-diabetic kidney
disease models without altering blood pressure [84,85].
These observations suggest that the renoprotective
effects of ACE-I are mediated, at least in part, by the
accumulation of AcSDKP (Figure 2).
Our group and others have shown that AcSDKP pre-

vents Smad2 phosphorylation (Figure 3) and that this
molecular mechanism may mediate its antifibrotic effect
[86,87]. This observation identifies AcSDKP as the first
circulating, endogenous inhibitor of Smad2
phosphorylation.
The Smads are transcription factors specific to the

TGFb family, and they play essential roles in signal
transduction from the cell membrane [88,89]. Smads are
classified into three types: (1) receptor-regulated Smads,
or R-Smads (Smad2 and 3); (2) common Smad, or co-
Smad (Smad4); and (3) inhibitory Smads, or I-Smads
(Smad6 and 7). Upon TGFb binding, the type II recep-
tor interacts with the type I receptor, which induces

Figure 2 Amino-acid sequence of thymosin b4 and
endogenous formation of N-acetyl-seryl-aspartyl-lysyl-proline
(AcSDKP). G actin binding peptide thymosin b4 is cleaved by an
endopeptidase, likely prolyl oligopeptidase (POP), and subsequently
its N-terminal tetrapeptide AcSDKP is synthesized. AcSDKP is
hydrolyzed and degraded by angiotensin-converting enzyme (ACE).
Therefore, when ACE inhibitors are used, the concentration of
AcSDKP increases.

Figure 3 The action of N-acetyl-seryl-aspartyl-lysyl-proline
(AcSDKP) on transforming growth factor (TGF)b signal
transduction. TGFb binds to TGF receptors on the cell membrane.
TGFb and TGFb-receptor interaction induces phosphorylation of
receptor-regulated (R)-Smads. Phosphorylated R-Smads bind with
the common (co)-Smad in the cytoplasm of cells. Such Smads
heterodimerize in the nucleus and bind to the genomic promoter
region of DNA, called the Smad binding element (SBE). AcSDKP may
induce Smad7 translocation from the nucleus of cells to the
cytoplasm and inhibit phosphorylation of R-Smads by receptors. Or
alternatively, AcSDKP may increase Smad7 levels in the cytoplasm
by as-yet unknown mechanisms.
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phosphorylation of serine residues in the type I receptor
(Figure 3) [90]. Subsequently, the phosphorylated type I
receptor recruits R-Smads to be phosphorylated, and
phosphorylated R-Smads interact with co-Smad in the
cytoplasm of cells (Figure 3). This R-Smad and co-Smad
heterodimer is imported into the nucleus (Figure 3)
with the help of importin-b [91,92]. The Smad heterodi-
mer binds to Smad-binding elements in the promoter
regions of DNA (Figure 3). Under normal conditions, I-
Smad is localized to the nucleus (Figure 3) [87]. E3 ubi-
quitin ligase Smurfs mediate the translocation of
nuclear-localized I-Smads to the cytoplasm following
TGFb stimulation. Cytoplasmic I-Smad competitively
inhibits R-Smad phosphorylation by the type I receptor
(Figure 3) [93]. Ubiquitination of receptors by I-Smad-
associated Smurfs are also part of the negative feedback
loop between TGFb and the I-Smads [94-96].
How does AcSDKP inhibit TGFb-induced phosphory-

lation of R-Smad? This effect is likely associated with
the activation of I-Smads (Figure 3). Incubation of
human mesangial cells in the presence of AcSDKP leads
to cytoplasmic mobilization of Smad7, one of the I-
Smads, in the absence of TGFb stimulation (Figure 3)
[87]. Our group and others have reported increased
Smad7 levels in vivo following AcSDKP administration,
supporting this Smad7-mediated anti-TGFb effect by
AcSDKP (Figure 3) [97,98]. Additional information
related to the mechanism underlying the AcSDKP-
mediated translocation and increase in Smad7 concen-
tration is not clear. Interestingly, AcSDKP also inhibits
cell cycle progression stimulated by serum-derived or
platelet-derived growth factor-B in human mesangial
cells by inhibiting the degradation of p53, p27kip1 and
p21cip1 [81]. Similar to Smad7 [96], these molecules are
exclusively degraded by the ubiquitin-proteasome path-
way [99]; therefore, it is possible that AcSDKP may inhi-
bit the Smad7 degradation pathway.
ACE has N-terminal and C-terminal catalytic domains

responsible for interactions with and cleavage of target
substrates (Figure 4) [100]. Evidence suggests that these
two catalytic domains may be different (Figure 4). Brady-
kinin is hydrolyzed at approximately the same rate by
both of these catalytic sites. Although angiotensin I can
be cleaved by either catalytic domain, the C-terminal
domain has a threefold higher affinity for angiotensin I
(Figure 4) [100,101]. Interestingly, AcSDKP is hydrolyzed
exclusively by the N-terminal catalytic domain (Figure 4)
[102]. Importantly, each ACE-I exhibits a distinct affinity
for each of the catalytic domains; for example, captopril
displays a higher affinity for the N-terminal catalytic
domain (Figure 4). It is likely that the hydrophobic moi-
eties of ACE-I play an essential role in this domain selec-
tivity [103]. It was recently reported by Li et al. that mice
deficient for the N-terminal catalytic domain of ACE

exhibited an antifibrotic effect due to an accumulation of
AcSDKP, revealing the importance of the N-terminal
domain for the antifibrotic actions of ACE-I (Figure 4)
[104]. In addition to the full-length somatic form of ACE,
there is a transcriptional variant with an N-terminal dele-
tion, known as the germinal form [100]. The testes,
which express germinal-type ACE, are associated with
higher levels of AcSDKP relative to other tissues
[105,106]. AcSDKP and its precursor peptide, Tb4, were
able to rescue fibrotic heart disease in a preclinical model
[78]. These results demonstrated the importance of the
antifibrotic effect of AcSDKP in the inhibition of ACE.
Therefore, the N-terminal catalytic domain-specific inhi-
bitor of ACE, RXP407 (Figure 4), has great potential as
an antifibrotic therapy [107-110].

Angiotensin type I receptor blocker vs ACE inhibition
There may be potential problems with the long-term
clinical use of ACE-I to inhibit the RAS. The prolonged
use of ACE-I leads to the compensatory upregulation of
angiotensin I [111]. Under these conditions, known as
aldosterone escape, chymase may act as the converting
enzyme to generate angiotensin II [111]. Therefore, a
strategy that prevents angiotensin II from binding to the
angiotensin type I receptor is necessary. To address this
problem, ARBs, such as losartan, were developed as a
novel class of RAS inhibitors [3]. Large clinical trials,
such as the RENAAL study, have revealed that losartan
exhibits renoprotective effects and inhibits overall mor-
tality in type 2 diabetic nephropathy patients with overt
proteinuria [112]. Other studies have also reported simi-
lar renoprotective effects associated with an increase in
overall mortality. The clinical use of ARB is much easier
than that of ACE-I given the side effects typically asso-
ciated with the latter, such as dry cough, which leads to
poor compliance in patients prescribed the drug.
Because ARBs inhibit only the AT1 signaling pathway,
they were thought of as an ideal strategy to treat hyper-
tensive patients with kidney diseases.
As pharmacological function and effector target are

different, ACE-I and ARB exhibit different influences in
RAS-dependent and RAS-independent pathways, such as
the AcSDKP accumulation by ACE-I described above.
ACE inhibition by ACE-I leads to a suppression of

angiotensin II formation, resulting in less angiotensin II
binding to the AT1 receptor as well as the AT2 receptor
[16]. However, when an ARB is utilized, AT1 receptor
signaling is inhibited; angiotensin II accumulates, and
subsequently, such increased angiotensin II binds and
activates AT2 receptors [22]. As shown above, stimula-
tion of the AT2 receptor may be detrimental for organ
protection (and may also antagonize the AT1 receptor-
mediated profibrotic signal in some experimental condi-
tions) [22].
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Even though ACE-I may not directly suppress ACE2,
ACE-I might inhibit the formation of antihypertensive/
antifibrotic angiotensin-(1-7) in an indirect fashion,
because conversion of angiotensin 1-9 to angiotensin-(1-
7) is mediated by ACE [50]. For angiotensin-(1-7), ARB
may increase its formation via accumulated angiotensin
II directly cleaved by ACE2 [50].
Another difference between ACE-I and ARB is the

concentration of plasma bradykinin [113]. Bradykinin
breakdown is mediated by ACE; therefore, ACE-I treat-
ment increases bradykinin concentration [113]. Using
bradykinin B2 receptor knockout mice, Schanstra et al.
reported that the bradykinin B2 receptor signaling path-
way exhibited antifibrotic roles associated with the
induction of plasminogen activators/matrix metallopro-
teinase-2, enzymes associated with extracellular matrix
degradation in the unilateral ureteral obstruction (UUO)

model of renal fibrosis [114]. Moreover, Akita diabetic
mice lacking the bradykinin B2 receptor developed overt
nephropathy when compared to control mice [115].
However, the role of ACE inhibition and bradykinin B2
signaling pathway activation is still controversial because
it was also shown that ACE-I treatment in the UUO
model using either bradykinin B2 receptor knockout
mice or control mice demonstrated that ACE-I exhib-
ited a significant reduction in renal fibrosis in all groups
[116], suggesting that the presence of bradykinin B2
receptor signaling may not be necessary for the tissue
protection mediated by ACE-I in this model [116].
Nevertheless, cell biology analysis in human mesangial
cells revealed that bradykinin and the bradykinin B2
receptor pathway might contribute to the therapeutic
effect of the ACE-I inhibitor perindoprilat during
mesangial scarring [117].

Figure 4 The biology of angiotensin-converting enzyme (ACE) in tissue fibrosis. Angiotensin-converting enzyme has two catalytic sites.
Angiotensin I exhibits higher affinity for the C-terminal catalytic site of ACE. Degradation of the antifibrotic molecule N-acetyl-seryl-aspartyl-lysyl-
proline (AcSDKP) is exclusively induced at its N-terminal catalytic site. Therefore ACE induces tissue fibrosis by both the production of
angiotensin II and the decreased level of AcSDKP. The ACE inhibitor captopril displays higher affinity for the N-terminal catalytic sites of ACE
when compared to C-terminal catalytic sites. RXP407, a specific inhibitor for the ACE N-terminal catalytic site, may increase concentrations of
AcSDKP and exhibit an antifibrotic action.
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ACE-I and ARB combination therapy likely show
additive antihypertensive and organ protective effects
because these two therapies exhibit diverse RAS-depen-
dent and RAS-independent pathway activity [118-123];
however, some trials have shown that combination ther-
apy may not be renoprotective, despite the significant
reduction in proteinuria levels [124]. This discrepancy
between the trials could be dependent upon the specific
drug used and the design of the trials [118-124]. Mauer
et al. recently reported on important differences
between ACE-I and ARBs [125]. They found that ARBs
enhanced progression of microalbuminuria in early type
I diabetes patients with normotensive and normoalbu-
minuria. Such enhanced progression of microalbumi-
nuria is associated with a trend of increased mesangial
fractional volume in glomeruli in the kidney [125].
Furthermore, treatment with ACE-I showed no signifi-
cant differences between patients in the treatment or
control groups [125]. The conundrum of this study is
that the onset of diabetic retinopathy was inhibited by
either ARB or ACE-I treatment, suggesting that both
drugs efficiently inhibited angiotensin II stimulated sig-
naling pathway in both groups [125]. A follow-up study
is clearly necessary to clarify the therapeutic approach
for early diabetes patients to prevent the onset of more
advanced kidney disease.
One possible explanation for these unexpected results

is that the angiotensin II-mediated signaling pathway
may not contribute to the onset of microalbuminuria
and mesangial matrix accumulation of the kidney in
early diabetic normotensive patients with normoalbumi-
nuria. Another possibility is that the administration of
ARBs results in local ACE activation [16,126]; in other
words, despite blocking the angiotensin II receptor sig-
naling pathway, activation of an angiotensin-indepen-
dent, profibrotic pathway mediated by ACE may occur,
such as the accelerated degradation of AcSDKP (Figure
4). ACE-I, but not ARBs, inhibited murine adriamycin
nephropathy, suggesting that diverse pathways may be
involved in fibrotic diseases [68].

Anti-inflammatory, antiapoptotic and proangiogenic roles
of AcSDKP
Because AcSDKP was originally identified as a hemato-
poietic stem cell regulator [71,127,128], there have been
many studies performed utilizing bone marrow cells.
AcSDKP inhibits apoptosis (Figure 5) induced by cyto-
toxic stresses, including chemotherapy [129,130], radia-
tion [131,132], high temperature [133-135] and
photofrin II-mediated phototherapy [136]. Increased
apoptosis is associated with tissue fibrosis, and its inhi-
bition has been linked to the restoration of fibrosis in
several organs [137-140].

Inflammation is also associated with tissue fibrosis
[137-140]. In experimental animal models, AcSDKP
inhibited inflammation in the kidney, heart and liver
that was associated with the amelioration of tissue fibro-
sis (Figure 5) [97,98,141-145]. Although the precise
molecular mechanisms explaining how AcSDKP inhibits
inflammation are not yet clear, it is likely that the sup-
pression of MCP-1 contributes to these anti-inflamma-
tory effects [146]. Inhibition of MCP-1 is likely
associated with the inhibition of MAPK activation in
vivo [147]. However, the effects of AcSDKP on MAPK
are cell-type dependent, as suggested by the fact that
AcSDKP both inhibits and stimulates ERK phosphoryla-
tion in different cellular contexts, such as in rat cardiac
fibroblasts [83,148] and human mesangial cells, respec-
tively [81,87]. This finding suggests that AcSDKP is not
simply a MAPK inhibitor.
Angiogenesis is important in protection from tissue

damage and the promotion of tissue repair. Interestingly,
both AcSDKP (Figure 5) [149-151] and its precursor
peptide, Tb4 [75,152-154], enhanced angiogenesis and
exhibited antifibrotic effects associated with the normali-
zation of organ function [78]. AcSDKP has been shown
to improve skin flap survival and accelerate wound heal-
ing [151]. The relationship between tumor angiogenesis
and Tb4 with AcSDKP has been extensively studied by
Wdzieczak-Bakala’s research group. They have proposed
that high levels of Tb4 and AcSDKP are associated with
tumor progression in hematologic malignancies
[73,155-157]. Angiogenesis plays a pivotal role in cancer
development [158,159], and AcSDKP levels are markedly
elevated in both hematologic malignancies and solid
neoplasms [73,155-157]. An association between the
levels of AcSDKP and tumor angiogenesis was observed
in these studies; however, the pathophysiological signifi-
cance of this result has not been clearly shown.

Figure 5 N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) as an
attractive target molecule for fighting tissue fibrosis. AcSDKP
exhibits multiple functions, such as antifibrosis, anti-inflammation,
antiapoptosis and proangiogenesis, and could be a candidate target
molecule for novel antifibrotic drugs.

Kanasaki et al. Fibrogenesis & Tissue Repair 2011, 4:25
http://www.fibrogenesis.com/content/4/1/25

Page 7 of 12



Finally, AcSDKP infusion inhibited liver injury asso-
ciated with the inhibition of the TGFb and Smad path-
ways in carbon tetrachloride-induced liver fibrosis
models [141]. Additionally, this treatment was associated
with the induction of bone-morphogenetic protein 7
(BMP-7) [141], a promising antifibrotic molecule
[160,161]. The antifibrotic, antiapoptotic, anti-inflamma-
tory and proangiogenic properties of BMP-7 have been
well established [160,161]. Therefore, it is possible that
AcSDKP could function, in part, through the induction
of BMP-7 [141]. Furthermore, this same study demon-
strated that AcSDKP induced expression of the potent
anti-inflammatory transcription factor peroxisome pro-
liferator-activated receptor (PPAR)-g [141]. PPAR-g is
not only a potent anti-inflammatory transcription factor,
but it is also a critical regulator for adipogenesis, lipo-
genesis and insulin sensitivity [141].

Perspective
We have summarized the potential beneficial effects of
AcSDKP in fibrotic diseases. It is obvious that the antifi-
brotic effect of AcSDKP is associated with its anti-
inflammatory, antiapoptotic and proangiogenic proper-
ties (Figure 5). Therefore, AcSDKP appears to be an
attractive molecule for antifibrotic therapy. One of the
problems associated with the use of this molecule as an
antifibrotic therapy is its short half-life of approximately
5 min in plasma [162,163]. It would be possible to make
an AcSDKP analogue with an extended half-life; how-
ever, the hematopoietic effects of AcSDKP are dimin-
ished when single amino-acid modifications are made
[164]. Therefore, the best approach for converting
AcSDKP into a practical antifibrotic agent would be to
manufacture a small molecule that mimics AcSDKP
function for oral intake. Alternatively, inactivation of the
N-terminal catalytic function of ACE could be used as a
therapeutic approach; however, some critical informa-
tion is missing to make this approach feasible. First, the
direct target of AcSDKP and its exact function are not
clear, even though AcSDKP is known to induce the
accumulation of Smad7 and various cell cycle modula-
tors responsible for inhibiting the TGFb/Smad signaling
pathway and inducing the antiproliferative effects on
fibroblasts and mesangial cells, respectively [81,87,
97,98]. Second, it is not known whether AcSDKP acts as
a ligand for its own receptor or if there are any recep-
tors for AcSDKP [165]. Alternatively, AcSDKP may
enter cells by phagocytosis and inhibit intracellular sig-
naling pathways. Third, specific inactivation of the N-
terminal catalytic domain of ACE by an inhibitor, such
as RX407, can be used in the clinic to induce AcSDKP
without the side effects associated with conventional
ACE-I, such as dry cough [108-110]. Such information
is essential if we hope to develop novel antifibrotic

therapies based on enhancing the function of AcSDKP.
Additionally, the significance of physiological changes in
AcSDKP levels must be analyzed in human patients
with fibrotic diseases.

Conclusions
Tissue fibrosis is associated with organ damage and
dysfunction, which are the major causes of disability
and death in these patients. Specific therapies to treat
fibrosis are not yet available in the clinic. Although tis-
sue fibrosis is detrimental to organ function, it may
also be a component of homeostasis and repair path-
ways. Therefore, caution should be used to determine
whether AcSDKP is harmful in a subset of patients.
We must carefully consider the potential therapeutic
utilization of AcSDKP and its role in other diseases
[73,155-157]. Clearly, more research is needed into the
regulation of AcSDKP levels to show its effectiveness
and safety as a therapeutic agent. Nonetheless,
AcSDKP remains an attractive target as a potential
antifibrotic strategy.
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