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Abstract

Transcript stability is associated with many biological processes, and the factors affecting

mRNA stability have been extensively studied. However, little is known about the features

related to human long noncoding RNA (lncRNA) stability. By inhibiting transcription and col-

lecting samples in 10 time points, genome-wide RNA-seq studies was performed in human

lung adenocarcinoma cells (A549) and RNA half-life datasets were constructed. The follow-

ing observations were obtained. First, the half-life distributions of both lncRNAs and mes-

sanger RNAs (mRNAs) with one exon (lnc-human1 and m-human1) were significantly

different from those of both lncRNAs and mRNAs with more than one exon (lnc-human2

and m-human2). Furthermore, some factors such as full-length transcript secondary struc-

tures played a contrary role in lnc-human1 and m-human2. Second, through the half-life

comparisons of nucleus- and cytoplasm-specific and common lncRNAs and mRNAs,

lncRNAs (mRNAs) in the nucleus were found to be less stable than those in the cytoplasm,

which was derived from transcripts themselves rather than cellular location. Third, kmers-

based protein−RNA or RNA−RNA interactions promoted lncRNA stability from lnc-human1

and decreased mRNA stability from m-human2 with high probability. Finally, through apply-

ing deep learning−based regression, a non-linear relationship was found to exist between

the half-lives of lncRNAs (mRNAs) and related factors. The present study established

lncRNA and mRNA half-life regulation networks in the A549 cell line and shed new light on

the degradation behaviors of both lncRNAs and mRNAs.

Author summary

Transcript stability is important for many biological processes. However, little is known

about the features related to human lncRNA stability. Through quantitative analysis

between the half-lives of lncRNAs (mRNAs) and various factors, we found a nonlinear

relationship between the half-lives of lncRNAs (mRNAs) and the related factors and their

combinations. Our research provided a comprehensive understanding of lncRNA stabil-

ity. Further efforts are needed to develop an accurate quantitative prediction model for

the half-lives of lncRNA (mRNA).
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Introduction

Many studies have shown that transcript stability has a close relationship with their biological

function [1–6], and plays a vital role in determining the transcript level and sensing environ-

mental changes [7–15]. For example, with the Iron (Fe) deficiency, the Saccharomyces cerevi-
siae protein Cth2 specifically downregulated many messenger RNAs (mRNAs) through

binding AU-rich elements, which encoded proteins associated with many Fe-dependent pro-

cesses [11]. Additionally, a close link exists between mRNA half-life regulation and breast can-

cer [16]. To understand the biological processes deeply, elucidating the factors involved in

transcript stability is necessary.

Up to the present, many factors associated with mRNA stability have been studied, which

included transcript length [4,6,8,17,18], GC contents [2,4,18–20], RNA secondary structures

[6,8,20], microRNA (miRNA)-mRNA interactions [2], cellular locations [19,21], protein-RNA

interactions [22], and optimal codon contents in mRNAs [1,3,7,20,23–28]. For example, there

existed a significant negative correlation between half-lives of mRNAs and their lengths in

human and Escherichia coli [17]. In Arabidopsis thaliana [2], Narsai et al. showed that miRNA

targets often have short half-lives, and mRNAs with more than one exon often have longer

half-lives. Additionally, some studies showed that there was a close relationship between

codon usages and half-lives of mRNA in yeasts and human. However, all aforementioned stud-

ies mainly focused on mRNA stability analysis. Only a few studies are associated with noncod-

ing RNAs (ncRNAs) stability [3,19,21].

NcRNAs are a class of transcripts with little or no potential encoding proteins, which can

be classified into short RNAs such as miRNAs and piRNAs [29,30], and long noncoding RNAs

(lncRNAs) with their lengths more than 200 nt [31]. These ncRNAs play an important regula-

tory role in many biological processes. For example, miRNA can downregulate their target

mRNAs through miRNA-mRNA interactions [32]. Additionally, lncRNAs are involved in

many biological processes such as transcription, translation, RNA modification, and epigenetic

modification of chromatin structures [33,34]. Furthermore, a close relationship exists between

ncRNAs functions and their stability [3]. Therefore, a systematic investigation of ncRNA sta-

bility is of importance.

In their study, Tani et al. [3] determined the half-lives of 11,052 mRNAs and 1418 ncRNAs

in HeLa cells, with an average 6.90 h and 7.0 h, respectively. Through classifying ncRNAs into

stable and unstable groups with half-lives 4 h as the threshold, they found that ncRNAs with

housekeeping functions were enriched in the stable group, which included tRNAs, snoRNAs,

and small Cajal body-specific RNAs. In their study, Clark et al. [19] obtained the half-lives of

11,773 mRNAs and 823 lncRNAs in mouse, with an average (median) 7.7 h (5.1 h) and 4.8 h

(3.5 h), respectively. They also systematically investigated lncRNA stability in terms of geno-

mic positions, cellular location, GC contents, or exon number, and found that lncRNAs

enriched in the nucleus were less stable than those in the cytoplasm, and lncRNAs with more

than one exon often have longer half-lives. In their study, Ayupe et al. [21] applied custom

microarray to determine the half-lives of 791 intronic, 695 antisense lncRNAs, and 4204

mRNAs in Hela cells, with the medians 3.9 h, 2.1 h, and 3.2 h, respectively. They also found

that lncRNAs enriched in the nucleus were unstable than the remaining lncRNAs. Even so,

there are some issues unhandled for lncRNA stability analysis. For example, is there any rela-

tionship between half-lives of lncRNAs and their RNA secondary structures or miRNA-

lncRNA interactions or protein-lncRNA interactions? and is there any difference in stability-

regulating mechanisms for both lncRNAs and mRNAs? Furthermore, according to the data-

base NONCODEv5 [31], there are 172,216 human lncRNAs and 131,697 mouse lncRNAs,
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respectively. From the perspective of statistics, a large number of lncRNAs with half-lives is

necessary to investigate the relationship between half-lives of lncRNAs and related factors. To

this end, we first applied RNA-seq to determine the degradation profiles of transcripts and cal-

culated the half-lives of transcripts genome-widely. Then we comprehensively studied the rela-

tionship between lncRNA stability and potential factors in A549 cell lines.

Results and discussion

Calculation of half-life expression profile

We obtained the half-lives for 34,268 lncRNAs and 33,029 mRNAs, respectively by sampling

strategy (see Methods and Fig 1). Considering the biological uncertainty and no annotations

for novel transcripts, we only took into account the transcripts with annotations and their

half-lives less than 50 h and finally obtained the half-life datasets including 33,285 lncRNAs

(lnc-human) and 24,710 mRNAs (m-human) for further analysis (S3 and S4 Tables). Their

cumulative distributions are provided in Fig 2, from which we found that about 80% half-lives

of lncRNAs were less than 5 h. However, only about 60% mRNAs were present with half-lives

less than 5 h. The average half-llife of lncRNAs and mRNAs was 3.96 h and 6.35 h, and the

median was 2.76 h and 4.18 h, respectively. The Kolmogorov-Smirnov test demonstrated a sig-

nificant difference between the two populations with a P value of 0. Therefore, the lncRNAs

are less stable than mRNAs, which agrees with lncRNA stability analysis in mice [19] and

humans [35]. Furthermore, the coefficient of variation of both lncRNA and mRNA was 1.13

and 1.04, respectively, indicating that half-lives of lncRNAs had a wide variation. Additionally,

we applied the GO annotation tool (http://geneontology.org/) to annotate the biological pro-

cesses of mRNAs with their half-lives less than 5 h. The annotation results showed that the

enriched GO terms were mainly associated with the regulation of biosynthetic process

(FDR = 7.85E-12), regulation of cellular biosynthetic process (FDR = 1.31E-11), regulation of

cellular metabolic process (FDR = 1.32E-11), and so on. However, The GO annotation for

mRNAs with their half-lives more than 5 h indicated that the enriched GO terms were primar-

ily related to the metabolic process (FDR = 1.01E-44), organic substance metabolic process

(FDR = 1.65E-39), primary metabolic process (FDR = 1.62E-38), and so on. These results were

similar to the previous conclusions [2–4,10,19,36], demonstrating that our half-life datasets are

Fig 1. Flowchat for the whole experiments and data analysis.

https://doi.org/10.1371/journal.pcbi.1008918.g001
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comparable to the previous ones. Furthermore, from the annotation of mRNAs with their

half-lives less than 5 h, we deduced that most lncRNAs play regulatory roles.

The relationship between half-lives of lncRNAs and their expression levels

Some published studies demonstrated the relationship between the half-lives of transcripts and

their expression levels [1,10,21,23,37,38]. For example, the study on E. coli showed that there

was no relationship between mRNA stability and their expression levels [1]. However, the

Ayupe et al. study showed a positive correlation between half-lives of lncRNAs and their

expression levels [21]. Additionally, the Spearman correlation from the Clark dataset [19],

which included half-lives of 823 ncRNA and 11,773 mRNA and related expression profiles,

showed a significant positive correlation for mRNAs and no relationship with ncRNAs. The

Spearman correlation was calculated using the datasets from the present study, and the results

indicated a significant positive correlation with a P value 2.30E-319 for lncRNAs, and 0.0 for

mRNAs. Therefore, from the perspective of statistics, the transcripts with a higher expression

level mean that they are generated quickly and imply that they decay slowly and have longer

half-lives.

Exon number-based lncRNA stability analysis

The relationship between the half-lives of transcripts and the number of exons present in them

was studied in A. thaliana and mice [2,19]. In A. thaliana, mRNA transcripts with more than

one exon were significantly more stable than those with only one exon. However, such a rela-

tionship for lncRNAs has not been explored. In mice, both lncRNAs and mRNAs with more

than one exon were more stable than those with only one exon. To check whether this relation-

ship existed in human, we first extracted the number of exons in each lncRNA from the NON-

CODE database (S5 Table) [31]. Among 33,285 lncRNAs with half-lives, 12,465 lncRNAs had

1 exon (lnc-human1), and 20,820 lncRNAs had more than 1 exon (lnc-human2). Subse-

quently, we calculated the Spearman correlation between half-lives of lncRNAs and the num-

ber of exons present in them. The results indicated a significant negative correlation

(P = 3.49E-21), indicating that lncRNAs with fewer exons tended to be more stable. In fact, the

average half-life for lnc-human1 and lnc-human2 was 4.16 h and 3.85 h, respectively. The Kol-

mogorov-Smirnov test showed a significant difference between the two populations with a P
value of 0 (Fig 3). The exon number-based lncRNA stability results in humans are different

from those in mice [2,19].

We also checked the relationship in mRNAs. Among 24,710 mRNAs with half-lives, 474

mRNAs had 1 exon (m-human1) and 24,236 mRNAs had more than 1 exon (m-human2, S6

Fig 2. Half-life cumulative distributions for both lncRNAs and mRNAs (h).

https://doi.org/10.1371/journal.pcbi.1008918.g002
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Table). A weak positive correlation was observed between half-lives of mRNAs and the num-

ber of exons present in them (P = 7.72E-3), indicating that more exons in mRNAs would

enhance their stability. In fact, the average half-life for m-human1 and m-human2 was 4.81

and 6.38 h, respectively. Therefore, our results in humans were consistent with the results

from A. thaliana and mice [2,19]. The Kolmogorov-Smirnov test indicated a significant differ-

ence between the two populations (P = 4.92E-7, Fig 3). Fig 3 shows a significant difference

between the population lnc-human1 and m-human1 (P = 1.16E-9), lnc-human1 and m-

human2 (P = 0), lnc-human2 and m-human1 (P = 4.86E-14), and lnc-human2 and m-

human2 (P = 0). Therefore, for stability analysis, it is necessary to divide the lncRNA and

mRNA into different populations using the information of exon number.

LncRNA classification-based lncRNA stability analysis

According to the genomic positions of lncRNA genes, lncRNAs can be classified into the fol-

lowing types: sense, intergenic, intronic, antisense, and divergent [31] (see Methods). Here we

considered only the first four classes because of their clear definition [39]. A total of 5518

sense, 17,095 intergenic, 4602 intronic, and 5319 antisense lncRNAs (S7 Table) were present,

with their average half-live of 4.49 h, 3.88 h, 3.75 h and 3.75 h, respectively. The one-way analy-

sis of variance (ANOVA) analysis indicated a significant difference among four classes (P =
1.59E-22). Additionally, the Kolmogorov-Smirnov test indicated a significant difference

between class sense and class intergenic (P = 1.11E-16), or class intronic (P = 3.33E-16), or

class antisense (P = 1.90E-10) (Fig 4). Further analysis demonstrated that the average half-life

for the four classes (sense, antisense, intergenic, and intronic) from lnc-human1 was 5.64 h,

3.94 h, 4.08 h, and 3.89 h, which were larger than 4.32 h, 3.69 h, 3.75 h, and 3.50 h from lnc-

human2, respectively. Therefore, For each class, the average half-life from lnc-human1 is

always larger than that from lnc-human2, and class sense is the most stable class among the

our classes in either lnc-human1 or lnc-human2.

Relationship between half-lives of lncRNAs and their lengths or GC

contents or secondary structures

Although the relationship between the half-lives of transcripts and their lengths, GC contents,

or secondary structures have been extensively studied [1,2,4,6,8,10,17–20,23,26], there is no

clear relationship at present. For example, some studies showed no correlation between half-

Fig 3. Half-life cumulative distributions for lnc-human1, lnc-human2, m-human1, and m-human2 (h).

https://doi.org/10.1371/journal.pcbi.1008918.g003
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life and mRNA length [1,10,23,26]. However, a study demonstrated the negative correlation

between half-lives of mRNAs and their lengths in human and E. coli [17]. Additionally, the

present studies on the relationship between the half-lives of transcripts and their secondary

structures mainly focused on mRNAs. For example, it has been shown that mRNA secondary

structures are not predictive of their half-lives in E. coli and Bacillus subtilis [1,40]. In yeast, a

positive relationship was demonstrated between the secondary structure free energy of mRNA

5’ UTRs, CDSs, or 3’ UTRs and their half-lives [20]. However, a study reported a negative rela-

tionship between mRNA 3’ UTR secondary structures and their half-lives [6]. Up to the pres-

ent, no systematic investigation has been reported in humans. To this end, we considered the

RNA secondary structures-based analysis of transcripts stability. Here we only considered the

transcripts with their lengths less than 10,000 nt. There are 32080 lncRNAs and 24211 mRNAs

with their secondary structures predicted (S8–S10 Tables). Furthermore, since we do not

know which regions of transcript 5’ (3’) ends are the best regions for studying the relationship,

we first extracted a series of sequence fragments from transcripts 5’ (3’) ends. For lncRNAs, we

extracted fragments of lengths 50, 60, . . ., and 300 from 5’ or 3’ end, respectively. For mRNAs,

we extracted the fragments flanking the initial codon and termination codon with the lengths

100, 120, . . ., and 600, respectively. Therefore, we extracted 26 fragments for each transcript 5’

end or 3’ end. Then we applied the RNAFOLD program to predict second structures of all

sequences [41] (S11–S14 Tables). Finally, we applied Spearman correlation analysis to study

the relationship on the population lnc-human, lnc-human1, lnc-human2, m-human, m-

human1, and m-human2, separately. The detailed results are provided in Fig 5, from which we

obtained the following observations.

Fig 4. Half-life cumulative distributions for class sense, intergenic, intronic and antisense lncRNAs (h).

https://doi.org/10.1371/journal.pcbi.1008918.g004

Fig 5. Spearman correlation between the half-lives of transcripts and their lengths, GC contents, or secondary

structures (RNA2D) were displayed for lnc-human1, lnc-human2, lnc-human, m-human1, m-human2, and m-

human, respectively. For lncRNA, the full, 5UTR, and 3UTR stand for full lengths, 5’ UTR and 3’ UTR local

fragments. For mRNAs, the cDNA, CDS, 5UTR and 3UTR stands for cDNAs, CDSs, 5’ UTR fragments, and 3’ UTR

fragments, in which the 5UTR and 3UTR represent the regions with the most significant P value. The signs “×” and

“na” stand for no statistical significance at P = 0.01 and missing value, respectively, and the sizes of round dots stand

for the correlation coefficients.

https://doi.org/10.1371/journal.pcbi.1008918.g005
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First, a significant positive correlation existed between the half-lives of lncRNAs and their

lengths in lnc-human1 (P = 1.90E-19) and no relationship existed in lnc-human2 (P = 1.89E-

1). Therefore, the weak positive correlation in the lnc-human (P = 1.02E-4) was mainly con-

tributed from lnc-human1. Additionally, we also checked which lncRNA classes had the afore-

mentioned correlation. A total of 714 sense, 6905 intergenic, 1295 antisense, and 2974 intronic

lncRNAs were obtained from lnc-human1, with the average half-life 5.64 h, 4.08 h, 3.94 h, and

3.89 h, respectively. The results indicated a significant positive correlation between half-lives

of lncRNAs and their lengths for class intergenic (P = 2.64E-11) or class intronic (P = 3.26E-

12), and no significant relationship for class sense (P = 1.21E-1) or class antisense (P = 6.86E-

3). For mRNAs, a significant negative correlation existed between half-lives of mRNAs and

their lengths of cDNAs (P = 1.69E-26), CDSs (P = 1.22E-25), 5’ end UTRs (P = 2.14E-72), and

3’ end UTRs (P = 2.86E-4) in m-human2. In m-human1, a weak positive correlation existed

between half-lives of mRNAs and their lengths of cDNAs (P = 7.84E-3) and 3’ end UTRs (P =
6.72E-5). Additionally, we also observed that mRNA 3’ end UTR lengths played a contrary

role in m-human1 and m-human2. The overall significant negative correlations between half-

lives of mRNAs and their lengths of cDNAs (P = 2.26E-23), CDSs (P = 6.67E-25), 5’ end UTRs

(P = 2.59E-69), and 3’ end UTRs (P = 2.94E-3) were mainly contributed from m-population2.

Finally, we also checked the relationship in the mouse dataset, which was downloaded directly

from their webpage [19]. A total of 434 lncRNAs (lnc-mouse1) and 440 mRNAs (m-mouse1)

had 1 exon, and 389 lncRNAs (lnc-mouse2) and 11,333 mRNAs (m-mouse2) had more than 1

exon. The results demonstrated no significant correlation between half-lives of lncRNAs and

their cDNA lengths in lnc-mouse1 (P = 6.89E-1), lnc-mouse2 (P = 8.62E-1), or the whole pop-

ulation (P = 5.95E-1). Thus, the results from lnc-human1 and lnc-mouse1 were different.

However, the reason for no relationship in lnc-mouse1 might be attributed to the fewer num-

ber of lncRNAs. To this end, we randomly extracted 434 lncRNAs from lnc-human1, which

were the same number of lncRNAs in lnc-mouse1, and calculated the correlation between

half-lives of lncRNAs and their lengths for 1000 times. The results indicated that there are

about 500 times with their P values more than 0.1 Therefore, although a significant positive

correlation existed between the half-lives of the lncRNAs and their lengths in lnc-human1 (P =
1.90E-19), such a relationship could not be assured on the sample with only 434 lncRNAs.

However, with the increase in the number of lncRNAs sampled from lnc-human1, the number

of times providing P> 0.1 gradually decreased (Fig 6). Fig 6 shows the number of times with

their P> 0.1 were about 2 or 0, respectively, when 3000 or 4000 lncRNAs were randomly

Fig 6. Relationship between the number of lncRNAs sampled from lnc-human1 and the number of times with

their P> 0.1 in 1000 simulations, in which P was calculated from the Spearman correlation analysis between the

half-lives of lncRNAs and their lengths.

https://doi.org/10.1371/journal.pcbi.1008918.g006
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extracted from lnc-human1 for 1000 times. Therefore, a large number of samples was neces-

sary to deduce the reliable relationship between half-lives of lncRNAs and their lengths. For

mRNAs, a significant negative correlation existed between half-lives of mRNAs and their

cDNA lengths in m-mouse1 (P = 7.12E-3), or m-mouse2 (P = 2.30E-52), or the whole popula-

tion (P = 1.07E-36), which was basically the same as that in human.

Second, no significant correlation existed between half-lives of lncRNAs and their GC con-

tents for both lnc-human1 (P = 9.55E-1) and lnc-human2 (P = 6.21E-1). For mRNAs a signifi-

cant negative correlation existed between half-lives of mRNAs and their GC contents from

cDNAs (P = 1.99E-7), CDSs (P = 3.86E-11), and 3’ end UTRs (P = 7.07E-7), and a strong posi-

tive correlation for 5’ end UTRs (P = 1.71E-131) in m-human2. However, no significant rela-

tionship was found in m-human1. Therefore, the overall relationships between the half-lives of

mRNAs and their GC contents were mainly derived from m-human2. Furthermore, the GC

contents of both 5’ end UTRs and 3’ end UTRs played a contrary role in regulating mRNA sta-

bility. The higher GC contents of 5’ end UTRs or lower GC contents of 3’ end UTR promote

mRNA stability. Finally, according to the mouse dataset, no significant correlation existed in

lnc-mouse1 (P = 3.75E-1) and lnc-mouse2 (P = 9.85E-2), which was consistent with the results

from humans. For mRNAs, a negative correlation existed between half-lives of mRNAs and

their GC contents for m-mouse1 (P = 2.09E-5), and a positive correlation existed for m-

mouse2 (P = 2.62E-42) [19]. Therefore, the role of mRNA GC contents in regulating stability

in humans is different from that in mice.

Third, a significant negative correlation existed between half-lives of lncRNAs and their

full-length secondary structure free energy in lnc-human1 (P = 8.24E-19), indicating that the

lncRNAs with more stable secondary structures had longer half-lives. However, no relation-

ship was found in lnc-human2. Therefore, the negative correlation between lncRNA secondary

structures and their half-lives in lnc-human (P = 2.40E-6) was mainly derived from lnc-

human1. For mRNAs, a significant positive correlation existed between half-lives of mRNAs

and their secondary structure free energy of cDNAs (P = 3.74E-32), CDSs (P = 3.21E-28), and

3’ end (P = 5.94E-13), and a strong negative relationship with 5’ end secondary structure free

energy (P = 1.92E-80) in m-human2. The corresponding regions are − 70 ~ 70 nt for 5’ end

(flanking initial codon) and 300 ~ −300 nt for 3’ end (flanking termination codon), respec-

tively. Therefore, stable mRNA 5’ end secondary structure or unstable mRNA 3’ end secondary

structure promoted mRNA stability. However, such a relationship was not found in m-

human1. Furthermore, full-length transcript secondary structures played a contrary role in

lnc-human1 and m-human2.

The aforementioned results suggested that classifying the whole lncRNA (mRNA) into two

populations using the information of exon numbers was necessary. Otherwise, the unique fea-

tures in lnc-human1 and m-human2 could not be found.

Cellular location-based lncRNA stability analysis

A few studies showed that lncRNAs were less stable in the nucleus than in the cytoplasm

through enrichment analysis [19,21]. To investigate the relationship between the half-lives of

transcripts and their cellular location (nucleus or cytoplasm) directly, we applied RNA-seq to

determine the expression levels of transcripts separately in the nucleus and the cytoplasm at

four time points, 0, 6, 12 and 24 h, after inhibiting transcription using actinomycin D, and

obtained the expression profiles of 37,888 lncRNAs and 152,370 mRNAs (S15 and S16 Tables).

Then we employed two strategies, enrichment analysis and half-life calculation, to study the

influence of cellular location on transcripts stability.
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For the first strategy, we defined a transcript enriched in the nucleus if its expression meets

the following conditions: ①N-count> 0, C_count> 0, and N_fpkm/C_fpkm� 2; or ②
C_count = 0 and N_count� 3, in which N_fpkm and N_count stand for the expression level

and the number of fragments, respectively, from the transcript in the nucleus, and C_fpkm and

C_count stand for the expression level and the number of fragments, respectively, from the tran-

script in the cytoplasm. Similarly, we defined a transcript enriched in the cytoplasm if its expres-

sion meets the following conditions: ① C_count> 0, N-count> 0, and C_fpkm/N_fpkm� 2;

or ②N_count = 0, and C_count� 3. Therefore, the whole transcriptome is classified into three

populations with population1 for the transcripts enriched in the nucleus, population2 for the

transcripts enriched in the cytoplasm, and population3 for the remaining transcripts. Through

the analysis of the intersection set with the half-life datasets from lnc-human and m-human, we

obtained the half-life information for the transcripts in different populations (population1, popu-

lation2, and population3) in different time points (Table 1) as follows.

First, for both lncRNAs and mRNAs at each time point, we obtained the following inequal-

ity: the average half-life in population1 < the average half-life in population3 < the average

half-life in population2, indicating that lncRNA or mRNA stability in the nucleus is less than

that of lncRNAs or mRNAs in the cytoplasm on average. Furthermore, the Kolmogorov-Smir-

nov test showed a significant difference between population1 and population2. One-way

ANOVA also demonstrated that the half-lives had a significant difference among the three pop-

ulations. Second, lncRNAs were mainly enriched in the nucleus during the degradation process.

Table 1 shows that the ratio of the number of lncRNAs enriched in the nucleus to the number

of lncRNAs enriched in the cytoplasm was always greater than 5. However, the ratio for

mRNAs is around 1. Third, the number of lncRNAs or mRNAs in the cytoplasm gradually

decreased with time from 0 to 6, 12, and 24 h, which indicated that some transcripts were

degraded. In the nucleus, the number of lncRNAs had the same trend. But the number of

mRNAs did not have this trend, showing that some new transcripts might have been generated.

The second strategy was to calculate the half-lives of transcripts directly using the afore-

mentioned expression datasets and the function pk.calc.half.life in the PKNCA package. We

finally obtained the half-lives of nucleus-specific 5758 lncRNAs and 13,093 mRNAs (S17–S18

Tables), cytoplasm-specific 1515 lncRNAs and 9833 mRNAs (S19–S20 Tables), and nucleus

Table 1. Detailed information for both lncRNAs and mRNAs with half-lives enriched in the nucleus and the cytoplasm.

Type Time (h) Num (T) Num (N) Num (M) Num (C) Ratio (N/C) t1/2 (N) t1/2 (M) t1/2 (C) Pws.test PAOV

lncRNA 0 17,361 11,728 3422 2211 5.30 3.92 4.06 4.73 0.00 5.09E-14

6 17,480 10,165 5355 1960 5.19 3.75 4.29 4.85 0.00 1.05E-27

12 17,236 10,157 5257 1822 5.57 3.81 4.17 5.12 0.00 1.00E-30

24 16,247 8,835 5749 1663 5.31 3.83 4.29 4.97 0.00 5.07E-23

mRNA 0 19,469 6,472 5385 7612 0.85 6.10 6.80 7.31 0.00 3.97E-24

6 19,717 5,808 7827 6082 0.95 5.36 6.83 7.91 0.00 1.69E-90

12 19,608 6,416 7359 5833 1.10 5.15 7.11 8.10 0.00 1.40E-129

24 19,231 6,782 7168 5281 1.28 5.07 7.36 8.34 0.00 4.07E-161

Time (h) column stands for four time points, namely 0, 6, 12, and 24 h, for enrichment analysis with the transcript inhibited at 0 h. For each time point. Num (T) stands

for the total number of transcripts with half-lives, which is equal to the sum of Num (N) for the number of transcripts enriched in the nucleus, Num (M) for the number

of transcripts in the middle state (not enriched in both the nucleus and the cytoplasm), and Num (C) for the number of transcripts enriched in the cytoplasm. Ratio (N/

C) stans for the ratio of Num (N)/Num (C). t1/2 (N), t1/2 (M), and t1/2 (C) stand for the average half-lives of transcripts enriched in the nucleus, middle state, and

cytoplasm, respectively. Pws.test is the P value calculated from the Kolmogorov-Smirnov test between the transcripts enriched in the nucleus and the transcripts enriched

in the cytoplasm. PAOV is the P value from the one-way ANOVA among the transcripts in the nucleus, middle state, and cytoplasm, respectively.

https://doi.org/10.1371/journal.pcbi.1008918.t001

PLOS COMPUTATIONAL BIOLOGY lncRNA stability research

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008918 April 16, 2021 9 / 25

https://doi.org/10.1371/journal.pcbi.1008918.t001
https://doi.org/10.1371/journal.pcbi.1008918


and cytoplasm-common 491 lncRNAs and 2496 mRNAs with their adjusted R2� 0.7

[1,21,23], respectively (S21–S24 Tables). Fig 7 shows the cumulative distribution of both

lncRNAs and mRNAs, and the observations are as follows.

First, a significant difference was found between the nucleus- and cytoplasm-specific

lncRNAs (mRNAs), with the P value as 0 (0) from the Kolmogorov-Smirnov test (Fig 7A). The

average half-life for lncRNAs (mRNAs) in the nucleus and the cytoplasm was 10.52 h (13.32 h)

and 14.20 h (15.17 h), respectively. Second, however, no significant difference was found

between the nucleus and cytoplasm-common lncRNAs (lncRNA: P = 2.69E-2; mRNA:

P = 5.80E-1; Kolmogorov-Smirnov test, Fig 7B). The average half-life for lncRNAs (mRNAs)

in the nucleus and the cytoplasm was 13.51 h (15.91 h) and 14.12 h (15.71 h), respectively.

Therefore, the significant difference between the half-lives of nucleus- and cytoplasm-specific

lncRNAs (mRNAs) might be attributed to the transcripts themselves or other factors rather

than the cellular location (nucleus or cytoplasm). The GO annotation for the common 2496

mRNAs demonstrated that these mRNAs were mainly associated with the macromolecule

metabolic process (FDR = 1.55E-54), cellular metabolic process (FDR = 4.84E-47), nitrogen

compound metabolic process (FDR = 8.06E-46), and so on. Therefore, the functions of the

common lncRNAs might be related to metabolic processes.

To detect the reason why there was a significant difference in half-life distribution between

the populations of nucleic- and cytoplasm-specific lncRNAs (mRNAs), we calculated the dif-

ference in kmer distribution in the two populations using the Kolmogorov-Smirnov test, in

which kmer length was assigned 1, 2, 3, 4, 5 and 6, respectively (see the following section

“Kmer compositions-based lncRNA stability analysis”). We also considered the GC contents.

The results indicated that among the 5461 features, 875 (3550) features had their FDR<1.0E-5

for lncRNAs (mRNAs). Furthermore, GC-type kmers, such as CG, CGG, and CCG, usually

had less content in nucleic-specific lncRNAs (mRNAs) than in cytoplasm-specific lncRNAs

(mRNAs). For example, the GC content for nucleic-specific lncRNAs (mRNAs) and cyto-

plasm-specific lncRNAs (mRNAs) was 4.46E-1 (4.64E-1) and 4.96E-1 (5.23E-1), respectively.

These kmers with a significant difference in nucleus- and cytoplasm-specific lncRNAs

(mRNAs) may be the parts of potential target regions for protein-RNA or RNA-RNA interac-

tions, making these lncRNAs (mRNAs) less stable in the nucleus than in the cytoplasm.

miRNA target prediction-based lncRNA stability analysis

MiRNAs play an important role in regulating gene expression. Through the interaction

between miRNAs and their target mRNAs, miRNA targets are often degraded [42]. However,

Fig 7. The Half-life cumulative distributions and the related Kolmogorov-Smirnor test for nucleus- and cytoplasm-

specific lncRNAs and mRNAs (A), and nucleus and cytoplasm-common lncRNAs and mRNAs (B), in which the lnc-

nuc., lnc-cyt., m-nuc., and m-cyt. stands for lncRNAs in the nucleus, lncRNAs in the cytoplasm, mRNAs in the

nucleus, and mRNAs in the cytoplasm, respectively.

https://doi.org/10.1371/journal.pcbi.1008918.g007
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no clear relationship has been found yet between lncRNA stability and miRNA-lncRNA inter-

actions. To systematically detect the association, we first applied the program miRanda to pre-

dict miRNA-lncRNA interactions [43], in which the full lncRNA sequences were taken as the

potential targets. We obtained 6,197,809 miRNA-lncRNA interactions including 2656 miR-

NAs and 33,252 lncRNAs (S25 Table). Then, we calculated the number of miRNA-binding

sites in each lncRNA. Finally, we applied a Spearman correlation analysis to check the associa-

tion. The results indicated a significant positive correlation in lnc-human1 (P = 9.31E-13), and

no correlation in lnc-human2 (P = 2.37E-2) or lnc-human (P = 6.44E-2). Furthermore,

through considering the distribution of binding sites of each miRNA in lnc-human1, we

found 32/37 miRNAs significantly promoting lncRNA stability using the Kolmogorov-Smir-

nov test (FDR <0.01, S26 Table), in which the denominator 37 stands for the total number of

miRNAs with their FDR <0.01. The top five miRNAs were hsa-miR-508-5p (FDR = 8.87E-6),

has-miR-6747-3p (FDR = 1.28E-5), has-miR-3652 (FDR = 2.43E-5), hsa-miR-4433a-3p

(FDR = 4.45E-5), and has-miR-504-3p (FDR = 4.58E-5), respectively. All these miRNAs pro-

mote lncRNA stability.

As a comparison, we also investigated the role of miRNAs in regulating mRNA stability. A

total of 7,465,073 miRNA-mRNA interactions [43] were found, including 2654 miRNAs and

24,710 mRNAs (S27 Table). The results indicated a significant negative correlation between

the half-lives of mRNAs and the number of potential miRNAs binding sites on the whole

mRNA population m-human (P = 2.86E-53). This finding demonstrated that miRNA-mRNA

interactions reduce mRNA stability. However, the significant negative relationship only

existed in m-human2 (P = 2.09E-56) rather than in m-human1 (P = 1.37E-1). We also checked

which mRNA regions (5’ end UTRs, CDSs, and 3’ end UTRs) took part in regulation in m-

human2. The results showed a significant negative correlation for 5’ end UTR (P = 3.87E-24),

CDS (P = 2.94E-50), and 3’ end UTR (P = 7.58E-12) at the same time. Further, the Kolmogo-

rov-Smirnov test (FDR<0.01) indicated that 337 miRNAs related to 5’ end UTRs, 254 miR-

NAs related to CDSs, and only 21 miRNAs related to 3’ end UTRs (S28–S30 Tables). The total

number of miRNAs associated with mRNA stability is 365. Therefore, only about 13.75%

(365/2654) miRNAs closely associated with mRNA stability. All interactions associated with

these miRNAs reduce mRNA stability. Furthermore, 5’ UTR and CDSs of mRNAs are the

main regions for miRNAs to regulate mRNA stability. Finally, the recent reports [44,45]

revealed that both miR-7-5p and miR-141-3p were involved in regulating transferrin receptor-

1 mRNA stability. However, according to the report from CORRAL et al. [46], neither miR-7-

5p nor miR-141-3p is a major mediator of TfR1 mRNA degradation. We checked the relation-

ship between these two miRNAs and half-lives of mRNAs in our datasets and found that the

FDR value for these two miRNAs was 1.00. Therefore, from the perspective of statistics, these

two miRNAs have little chance to be the regulator of TfR1 mRNA stability.

From the aforementioned results, we concluded that miRNAs play a contrary role in regu-

lating the stability of both lncRNAs from lnc-human1 and mRNAs from m-human2. For lnc-

human1, miRNA-lncRNA interactions extend the half-lives of lncRNAs with a big chance (32/

37). However, for m-human2, the interactions between miRNAs and mRNAs promote mRNA

degradation.

Protein-lncRNA interaction-based stability analysis

Protein-RNA interactions play an important role in many biological processes such as RNA

splicing, miRNA transport, and RNA stability [47]. To study the relationship between RNA-

binding protein and RNA stability, we first downloaded the dataset of protein recognition

RNA motifs from the database ATtRACT [48]. A total of 2297 unique motifs are associated
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with human. The number of RNA-binding proteins is 179. Then, we calculated the occurrence

numbers of each 2297 motifs across 33,285 lncRNAs with half-lives. For each lncRNA, the

occurrence numbers of all motifs were added and considered as the ability of lncRNA binding

to proteins. We found a positive correlation between half-lives of lncRNAs and their protein-

binding ability on lnc-human1 (P = 5.74E-19) and lnc-human (P = 1.79E-4), and no relation-

ship on lnc-human2 (P = 1.44E-1). Further, the Kolmogorov-Smirnov test showed 319/331

motifs and 97/100 proteins promoting lncRNA stability in lnc-human1 (FDR<0.01, S31 and

S32 Tables), in which the denominator 331 and 100 stand for the total number of motifs and

proteins with their FDR<0.01. The top five motifs are UAGGA (FDR = 5.22E-10), CAGUGA

(FDR = 6.72E-10), AGUAG (FDR = 7.72E-10), AUAAUU (FDR = 1.31E-9), and AGAGG

(FDR = 1.64E-9). Additionally, the top five RNA-binding proteins were SF1 (FDR = 2.53E-

10), RBMS3 (FDR = 2.44E-9), SRSF7 (FDR = 3.44E-9), ACO1 (FDR = 1.54E-8), and TRA2A

(3.22E-8). Therefore, protein-lncRNA interactions mainly promoted lncRNA stability from

lnc-human1 with a big chance (motif: 319/331; protein: 97/100).

For mRNAs, there existed a significant negative correlation between half-lives of mRNAs

and their protein-binding ability on m-human2 (P = 3.41E-26) and m-human (P = 4.11E-23),

and a weak positive correlation for m-human1 (P = 8.20E-3). Therefore, protein-mRNA inter-

actions mainly influence mRNA stability from m-human2. Further analysis showed that the

half-lives had a significant negative correlation with the number of motifs in 5’ end UTRs (P =
2.86E-72), CDSs (P = 2.08E-27), and 3’ end UTRs (P = 6.70E-4). The results from the Kolmo-

gorov-Smirnov test (FDR< 0.01) indicated that 457/467 motifs and 131/138 proteins related

to 5’ end UTRs, 132/132 motifs and 15/16 proteins to CDSs, and 19/19 motifs and 2/2 proteins

to 3’ UTRs, which reduce mRNA stability (S33–S38 Tables). Therefore, mRNAs 5’ end UTRs

and CDSs are the main regions for RNA-binding protein to regulate mRNA stability.

In sum, the aforementioned analysis show that RNA-binding proteins play a contrary role

in regulating lncRNA and mRNA stability. For lncRNAs, RNA-binding proteins mainly pro-

mote lncRNA stability from lnc-human1. However, RNA-binding proteins mainly reduce

mRNA stability from m-human2.

Kmer composition-based lncRNA stability analysis

The previous section demonstrated that protein recognition RNA motifs play an important

role in regulating the stability of both lncRNAs from lnc-human1 and mRNA from m-

human2. A more general case, that is kmers composition-based transcripts stability analysis,

was considered in the present study. According to the database ATtRACT [48], RNA motif

lengths varied from 4 to 12 nt with 7 nt as the median. However, with the kmer length becom-

ing large, the number of all possible kmers became huge. For example, a total of 16,384 possi-

ble kmers existed for kmer = 7 (47 = 16,384), and the compositions for most kmers became

zero. Therefore, we only considered the cases of kmer = 3, 4, 5, and 6. Finally, we calculated

kmer compositions in two ways: (1) normal kmer compositions were calculated, in which any

two neighbor kmers overlapped with the length of kmer-1 (K1); (2) kmers compositions were

calculated in the same way as the codon content in mRNA sequences, in which any two neigh-

bor kmers did not overlap (K2).

For K1, 1/1 (kmer = 3), 16/16 (kmer = 4), 41/41 (kmer = 5), and 158/158 (kmer = 6) kmers

positively correlated with the half-lives of lncRNAs in lnc-human1 (FDR <0.01, S39–S42

Tables), in which the denominators stand for the total number of kmers with their FDR<0.01.

The existence of these kmers promote lncRNA stability. The results are similar to the roles of

protein recognition RNA motifs or miRNAs in lnc-human1. Therefore, these kmers might be

the parts of potential motifs for protein-lncRNA interaction or miRNA-lncRNA interaction

PLOS COMPUTATIONAL BIOLOGY lncRNA stability research

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008918 April 16, 2021 12 / 25

https://doi.org/10.1371/journal.pcbi.1008918


regions. In lnc-human2, however, only 3/3 (kmer = 4) and 3/3 (kmer = 5) kmers negatively

correlated with the half-lives of lncRNAs (FDR< 0.01), which indicate that these six kmers

reduce lncRNA stability (S43 and S44 Tables). As a comparison, we also considered the Spear-

man correlation in m-human1 and m-human2, respectively. For mRNA CDS-based kmers, no

kmers were found with their FDR <0.01 in m-human1. However, 14/35 (kmer = 3), 51/115

(kmer = 4), 158/209 (kmer = 5), and 513/526 (kmer = 6) kmers negatively correlated with the

half-lives of mRNAs in m-human2 (FDR<0.01, S45–S48 Tables). For mRNA cDNA-based

kmers, the results demonstrated that 2/3 (kmer = 3), 3/3 (kmer = 4), 2/2 (kmer = 5), and 4/4

(kmer = 6) kmers positively correlated with the half-lives of mRNAs in m-human1 (FDR

<0.01). For m-human2, 19/42 (kmer = 3), 65/135 (kmer = 4), 162/259 (kmer = 5), and 554/

580 (kmer = 6) kmers negatively correlated with the half-lives of mRNAs (FDR<0.01, S49–

S52 Tables). Therefore, most kmers reduce mRNA stability.

For K2, we obtained similar results as those in K1. For example, 2/2 (kmer = 3), 22/22

(kmer = 4), 62/62 (kmer = 5), and 12/12 (kmer = 6) kmers positively correlated with the half-

lives of lncRNAs in lnc-human1 (FDR <0.01, S53–56 Tables), and no kmers with their FDR

<0.01 in lnc-human2. For m-human1 (CDS-based), only 1/1 (kmer = 5) kmer promote

mRNA stability (FDR<0.01). For m-human2 (CDS-based), 16/37 (kmer = 3), 40/55

(kmer = 4), 139/140 (kmer = 5), and 149/151 (kmer = 6) kmers negatively correlated with half-

lives of mRNAs (S57–S60 Tables). Additionally, among the 37 codons (FDR <0.01, kmer = 3),

21 codons (optimal codons) positively and 16 codons (non-optimal codons) negatively corre-

lated with the half-lives of mRNAs. The detailed results are displayed in Fig 8. Further analysis

showed a significant positive correlation between the half-lives of mRNAs and the contents of

optimal codons (P = 1.40E-54), and a negative correlation for non-optimal codons (P = 1.32E-

162). In sum, the results from kmer-based analysis were basically the same as those from pro-

tein-RNA or miRNA-RNA interaction analysis.

Comprehensive analysis of lncRNA stability

Previous sections demonstrated that the half-lives of both lncRNAs from lnc-human1 and

mRNAs from m-human2 are associated with transcripts lengths, GC contents, transcripts sec-

ondary structures, miRNA−RNA interactions, and protein−RNA interactions. In fact, associa-

tions also exist among different factors. For example, in lnc-human1, the correlation

coefficients between lncRNA lengths and their secondary structure free energy reached −9.73E

−1. To display the relationship among these factors and half-lives clearly, we constructed half-

Fig 8. Spearman correlation coefficients between the half-lives of mRNAs and their codon contents are displayed,

in which the red bars stand for the positive correlation of the 21 codons with their FDR values less than 1.00E-2

and the green bars stand for the negative correlation of the 16 codons with their FDR values less than 1.00E-2.

https://doi.org/10.1371/journal.pcbi.1008918.g008
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life regulation networks for both lncRNAs in lnc-human1 and mRNAs in m-human2 using

Spearman correlation analysis (Fig 9), in which the edge would be generated if the FDR value

from the related two nodes is less than 0.01. The half-life of lncRNAs was found to be regulated

by less number of factors compared with mRNA half-life regulation. Additionally, although

the positive or negative correlation among five factors in lnc-population1 was consistent with

the counterpart in m-human2, all these five factors play a contrary role in regulating half-lives.

Therefore, the degradation mechanisms for both lncRNAs in lnc-human1 and mRNAs in m-

human2 should be different.

Finally, we intended to investigate the quantitative relationship between the half-lives of

lncRNAs (mRNAs) and the related factors and their combinations using regression analysis. To

this end, we first extracted as many related features as possible. For lncRNAs, the total number

of features is 10,418, which included 5460 kmer compositions (kmer = 1:6), 2297 protein-bind-

ing RNA motif compositions and 1 total composition, 2656 miRNA-binding site compositions

and 1 total composition, and 3 basic properties for the full-length sequence (RNA secondary

structure, length, and GC content). A total of 10,425 features are present for mRNAs, which

included the similar features mentioned earlier and the features from 5’ end UTR, CDS, and 3’

end UTR. Then we calculated the correlations between the half-lives of lncRNAs (mRNAs) and

each feature, and chose the features with P values (FDR for mRNAs) less than 0.1, 0.05, and 0.01

for developing prediction models. The numbers of selected features for lncRNAs (mRNAs) are

1001 (1495), 2075 (1695), and 2918 (1807). The results indicated that the adjusted R2 values for

lnc-human (m-human) were 2.30E-2 (8.63E-2), 1.91E-2 (8.48E-2), and 1.35E-2 (8.26E-2) using

the features with their P values (FDR for mRNAs) less than 0.1, 0.05, and 0.01, respectively.

Therefore, the linear regression models could not reflect the quantitative relationship between

the half-lives of lncRNAs (mRNAs) and the related factors and their combinations. We decided

to apply deep learning-based regression to explore the nonlinear relationship. The packages

keras and tensorflow were used to develop a regression model.

In our model, except the input and output layers, six hidden layers are present with the

number of neurons as 500, 250, 100, 50, 30 and 10, respectively. The activation function “relu”

was used. During the training stage, we set up epochs = 100, batch_size = 1000, and valida-

tion_split = 0.2. The results from lnc-human demonstrated that the Spearman correlation

coefficients between the real half-lives and predicted half-lives are 8.07E-1 (P = 0.00), 8.00E-1

(P = 0.00), and 7.58E-1 (P = 0.00) using the features with their P values less than 0.1, 0.05, and

Fig 9. Half-life regulation networks for lnc-human1 and m-human2; red lines stand for positive correlation and

black lines for negative correlation. The thick, medium, and thin lines represent the strong (P< 1.0E−33), medium

(p2[1.0E−33, 1.0E−26]), and weak (p2(1.0E−26, 1.0E−5)) correlation, respectively. The meaning of the words Half-

life, Length (_length), GC (_GC), and RNA2D (_RNA2D) in the lncRNA (mRNA) regulation network are lncRNA

(mRNA) half-lives, length, GC contents, and RNA secondary structures. PRRM and miRNAsites are the total number

of protein recognition motifs and miRNA-binding sites, respectively, in lncRNAs or mRNAs.

https://doi.org/10.1371/journal.pcbi.1008918.g009
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0.01, respectively. For m-human, the Spearman correlation coefficient is 7.37E-1 (P = 0.00),

7.31E-1 (P = 0.00), and 7.27E-1 (P = 0.00) using the features with their FDR values less than

0.1, 0.05, and 0.01, respectively. Therefore, there indeed exist a nonlinear relationship between

the the half-lives of lncRNAs (mRNAs) and the related factors and their combinations. How-

ever, for lnc-human, the correlation coefficient from fivefold cross-validation isonly 9.10E-2

(P = 1.19E-36), 8.26E-2 (P = 1.14E-49), and 6.62E-2 (P = 1.67E-32) using the features with

their P values less than 0.1, 0.05, and 0.01, respectively. For m-human, the correlation coeffi-

cient from fivefold cross-validation is only 2.07E-1 (P = 1.13E-219), 2.05E-1 (P = 1.87E-215),

and 2.03E-1 (P = 6.32E-212) using the features with their FDR values less than 0.1, 0.05, and

0.01, respectively. Additionally, similar results were obtained for lnc-human1 and m-human2.

We also tried other network parameters such as different numbers of layers and different

batch_sizes. The results from fivefold cross-validation are basically the same. Therefore, fur-

ther effort is needed to adjust the network structure or incorporate other new features to

obtain a better prediction model.

Conclusions

In this study, RNA-seq and random sampling strategy were applied to calculate the half-lives

of transcripts, the half-life datasets in human A549 cell lines were obtained, which included

33,285 lncRNAs, 24,710 mRNAs, nucleus-specific 5758 lncRNAs and 13,093 mRNAs, cyto-

plasm-specific 1515 lncRNAs and 9833 mRNAs, and nucleus and cytoplasm-common 491

lncRNAs and 2496 mRNAs. Then we systematically investigated the relationship between the

half-lives of lncRNAs (mRNAs) and related factors such as transcript lengths, GC contents,

RNA secondary structures, miRNA-RNA interactions, protein-RNA interactions, cellular

location and kmer compositions, and obtained the following observations.

First, it is necessary to divide the lncRNAs (mRNAs) into lnc-human1 (m-human1) with

only one exon and lnc-human2 (m-human2) with more than one exon in stability analysis.

For example, in lnc-human1, a positive correlation existed between half-lives of lncRNAs and

their lengths (P = 1.90E-19), or miRNA-binding ability (P = 9.16E-13), or protein-binding

ability (P = 5.74E-19), and a negative correlation existed with RNA secondary structure free

energy (P = 8.24E-19). However, no similar relationship was found in lnc-human2. Therefore,

the degradation behavior of lnc-human1 and lnc-human2 is different. A similar situation

exists in m-human1 and m-human2. Here we also want to point out that the number of

mRNAs in m-human1 is only 474. A large number of mRNAs in m-human1 is necessary to

check the reliability of the conclusions.

Second, according to the kmer composition-based analysis for the first mode K1, we found

that the kmer compositions mainly influence the stabilities of both lncRNAs from lnc-human1

and mRNAs from m-human2. For lnc-human1, all kmers with their FDR<0.01 positively corre-

lated with the half-lives of lncRNAs, which includes 1, 16, 41, and 158 kmers for kmer = 3, 4, 5,

and 6, respectively. For lnc-human2, only six kmers negatively correlated with the half-lives of

lncRNAs. For m-human2, with the increase in kmer length, the ratios of the number of motifs

negatively correlated with the stability and the number of motifs positively correlated with the

stability become larger. For example, the CDS-based ratio for kmer = 3, 4, 5, and 6 is 0.67 (14/

21), 0.80 (51/64), 3.10 (158/51), and 39.46 (513/13), respectively. The cDNA-based ratio for

kmer = 3, 4, 5, and 6 is 0.83 (19/23), 0.89 (62/70), 1.57 (154/98), and 21.84 (546/25), respectively.

For m-human1, however, only 2/3, 3/3, 2/2, and 4/4 kmers positively correlated with the half-

lives for kmer = 3, 4, 5, and 6, respectively. In view that the kmer compositions mentioned earlier

are calculated without any constraints, we deduced that the kmer (motif)-based interactions

between lncRNA (mRNA) and protein or RNA would have the same conclusions. In fact, for
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miRNA-RNA interaction-based RNA stability analysis, 32/37 miRNAs positively correlated with

lncRNA stability from lnc-human1, 449/449 miRNAs negatively correlated with mRNA stability

from m-human2, and no miRNAs correlated with lncRNA stability from lnc-human2 and

mRNAs from m-human1. To further support the aforementioned results, we also considered the

relationship between methylation and lncRNA (mRNA) stability.

According to the report [49], methyltransferase modified mRNA sequences by identifying

RNA motif RRACH (R = G or A; H = A, C, or U), which is a motif-based modification. Meth-

ylation is assumed to increase lncRNA stability from lnc-human1 and decrease mRNA stability

from m-human2. This is validated by calculating the occurrence numbers of the motif in each

lncRNA (mRNA) sequence, and Spearman correlation between the half-lives of lncRNAs

(mRNAs) and their motif contents. The results demonstrated a significant positive correlation

for lnc-human1 (P = 3.47E-14), and no correlation for lnc-human2 (P = 1.42E-2) or whole

population lnc-human (P = 5.59E-2). For mRNAs, a significant negative correlation was found

for m-human2 (P = 1.15E-38) or whole population m-human (P = 1.70E-34), and no correla-

tion for m-human1 (P = 1.12E-2).

Third, we found that cellular location (nucleus and cytoplasm) did not significantly influence

the stability of both lncRNAs and mRNAs. According to the expression profiles in the nucleus

and the cytoplasm at 0, 6, 12, and 24 h, two strategies, enrichment analysis and direct half-life

calculation, were applied to study the influence of cellular location (nucleus and cytoplasm) on

lncRNA (mRNA) stability. The results from enrichment analysis showed that the average half-

life of the lncRNA (mRNA) population in the nucleus is indeed less than that of the lncRNA

(mRNA) population in the cytoplasm, which is consistent with the Clark conclusions on

lncRNA half-life study in mice [19]. In their study, Clark et al. obtained the conclusions using

the half-life dataset of 105 lncRNAs enriched in the nucleus and 22 lncRNAs enriched in the

cytoplasm. This result was also validated by the report [21]. However, according to the half-lives

of the common 491 lncRNAs and 2496 mRNAs in the nucleus and the cytoplasm, which were

from the direct half-life calculation in our study, no significant difference was found. Therefore,

cellular location do not have a significant influence on these lncRNAs and mRNAs. We deduced

that the lower average half-life of the lncRNA (mRNA) population in the nucleus is caused by

the transcripts themselves or other unknown factors rather than cellular location. The initial

analysis showed that GC-type kmers such as CG, CGG, and CCG usually had less content in

nucleic-specific lncRNAs (mRNAs) than those in cytoplasm-specific lncRNAs (mRNAs). These

kmers might be the parts of potential target regions for protein-RNA or RNA-RNA interac-

tions, which rendered the lncRNAs (mRNAs) less stable in the nucleus than in the cytoplasm.

Fourth, besides the close relationship between mRNA stability and codons usage, the second-

ary structures of cDNA, CDS, 5’ end UTR, and 3’ end UTR were also found to have a close rela-

tionship with their half-lives. Specially, stable 5’ UTR or unstable 3’ UTR secondary structure

promote mRNA stability. Therefore, a comprehensive analysis for mRNA stability is necessary.

Finally, through quantitative analysis between the half-lives of lncRNAs (mRNAs) and vari-

ous factors, we found a nonlinear relationship between the half-lives of lncRNAs (mRNAs) and

the related factors and their combinations. Further efforts are needed to develop an accurate

quantitative prediction model for the half-lives of lncRNAs (mRNAs). In future, we will also

pay attention to stability analysis of lncRNAs from lnc-human2 and mRNAs from m-human1.

Methods

Cell culture, transcription inhibition, and RNA purification

Human lung adenocarcinoma cells (A549, ATCC’ CCL-185) were incubated at 37˚C and 5%

CO2 in a humidified atmosphere with DMEM medium (Sigma, 8119235) containing 10% fetal
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bovine serum (PAN, ST30-3302) and antibiotics (100 U/mL of penicillin and 0.1 mg/mL of

streptomycin). We added DMEM medium with 30 μg/mL actinomycin D (Sigma, A1410) to

inhibit RNA transcription when cells reached 60%-70% confluency. Then we harvested cells in

0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, and 8 h after inhibiting transcription. The total RNA was exacted and

purified with an RNeasy Plus Mini kit (QIAGEN, 74134) as per manufacturer’s instructions. All

experiments were repeated three times. Finally, we got 30 samples for RNA-seq (see S1 Text).

Purification of cytoplasm and nucleus RNA

Cell lysis reagent was used to separate the cytoplasm and the nucleus according to the literature

[50], and cells were harvested in 0, 6, 12, and 24 h after inhibiting transcription using actino-

mycin D. Subsequently, the cell membrane was lysed by lysate buffer and the nucleus and cyto-

plasm were separated by differential centrifugation. Finally, the nucleus RNA was extracted

using Trizol (Sigma, 93289) and cytoplasm RNA using TRI Reagent (Sigma, T3934) (see S1

Text and S1 Fig).

RNA-seq and data processing

For RNA sequencing, stranded cDNA libraries of 30 samples were generated using Illumina

Stranded Total RNA Prep (illumina, 20040525) and sequenced on the Illumina HiSeq4000 by

IgeneCode Biotech (Beijing, China). After obtaining the raw sequencing datasets, the low-

quality reads were removed, which included reads with the adaptors, reads with the ratio of

bases N� 5%, and reads with the ratio of low-quality bases (quality score� 10)� 20%. Subse-

quently, the software SOAP2 was used to remove the reads from rRNAs (-m 0 -x 1000 -s 40 -l

32 -v 5 -r 2 -p 3) [51]. After filtering, about 80 million reads were obtained for each sample.

Finally, the software HISAT (–phred33 –sensitive–no-discordant–no-mixed -I 1 -X 1000 –

rna-strandness RF) [52] was used to map the remaining clean reads onto the reference

genomes, StringTie(-f 0.3 -j 3 -c 5 -g 100 -s 10000 -p 8) to reconstruct transcripts [53], and

Ballgown (-B) to calculate transcript expression levels [54]. Through mapping results, we

obtained the expression profiles of both lncRNAs from NONCODE [31] and mRNA from the

refseq databases [55], then we obtained the expression profiles of both lncRNAs and mRNAs

in FPKM. Considering that the experiments were performed in triplicate, each transcript had

three time series of expression data, which were marked as A = A1A2 . . . A10, B = B1B2 . . . B10,
and C = C1C2 . . . C10, respectively. The subscripts of the A, B, and C represented the time

points 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 6.0, and 8.0 h, sequentially. For each time point, pair-

wise Pearson correlation coefficients were also calculated among three replicates, and the min-

imum coefficients were 0.73 (P = 0.0) for mRNA and 0.85 (P = 0.0) for lncRNA. Therefore, the

experiments in the present study had good reproducibility. Finally, the expression profiles

from three replicates were used for half-life calculation. The new transcripts were not consid-

ered because of no systematic annotations for them.

Calculation of half-lives of transcripts

According to the expression profiles of both lncRNAs and mRNAs in three time series A, B,

and C (Fig 1 and see S1 and S2 Tables for detailed information), their half-lives were calculated

using the following sampling strategy [1,21,23]: ① For a particular transcript T, a new time

series data R = R1R2 . . . R10 was generated using T’s expression profile A = A1A2 . . . A10,
B = B1B2 . . . B10, and C = C1C2 . . . C10, in which Ri was randomly taken as one of the three val-

ues Ai, Bi, and Ci (i = 1, 2, . . ., 10); ② The T’s half-life was calculated using the R = R1R2 . . . R10
by the function pk.calc.half.life in R package PKNCA; ③ Through repeating the steps ① and

② 1000 times, 1000 half-lives were obtained for the transcript T. ④ The average of half-lives
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with their adjusted R2� 0.7 in step ③ was taken as the T’s half-life. ⑤ Through repeating

steps ① ~ ④ for each transcript, the half-life dataset was obtained for all transcripts. ⑥
Through repeating the steps ① ~ ⑤ 10 times, 10 half-life datasets were obtained. ⑦ The com-

mon transcripts in 10 simulations in step ⑥ were the final datasets, and the average half-life

and associated 95% confidence interval for each transcript were calculated.

To demonstrate the robustness of the aforementioned sampling strategy, one-way ANOVA

was applied to detect the differences in the half-lives of transcripts among 10 simulations. The

results indicated no significant differences with P values as 1.00 for both lncRNAs and mRNAs.

Biocomputation

Here all statistical calculations were completed in R language. For example, the function pk.

calc.half.life in R package PKNCA was used to calculate the half-lives of transcripts with the

following parameters: manually.selected.points = FALSE, conc.na = "drop", conc.blq = "drop",

allow.tmax.in.half.life = TRUE, and check = TRUE, and the the half-lives of transcripts were

selected with their adj.r.squared�0.7 for further analysis. Additionally, Spearman correlation

coefficient was used to describe the relationship between the two features, and the Kolmogo-

rov-Smirnov test was used to detect the difference between the two populations. The related

functions were cor.test and ks.test, respectively. Bonferroni correction was also used to calcu-

late FDR values. The function lm was used to fit linear models. The package visNetwork was

applied to display a half-life regulation network. The packages keras and tensorflow were used

to develop a deep learning-based regression model.

Bioinformatics analysis

The program RNAFOLD was used for predicting the RNA secondary structure (-d2—noLP—

noClosingGU) [41], miRanda for predicting miRNA targets for both lncRNAs and mRNAs

(-sc 140 -en -5 -scale 4 -strict -go -4 -ge -9 –quiet)[43], and PANTHER for GO annotation

(http://geneontology.org/).

LncRNA classification

LncRNA is classified into five categories using its position on the reference genome (Fig 10).

Sense lncRNAs can be considered as transcript variants of protein-coding mRNAs, as they

overlap with a known annotated gene on the same genomic strand. Antisense lncRNAs are

RNA molecules transcribed from the antisense strand and overlap in part with well-defined

spliced sense or intronless sense RNAs. Intergenic lncRNAs are long non-coding RNAs that

locate between annotated protein-coding genes, and are at least 1 kb away from the nearest

protein-coding genes. Intronic lncRNAs are RNA molecules that overlap with the intron of

annotated coding genes in either sense or antisense orientation. Bidirectional lncRNAs are ori-

ented head to head with a protein-coding gene within 1 kb. This study considered only the

first four categories provided by the NONCODE database[56].

Fig 10. Five categories of lncRNAs.

https://doi.org/10.1371/journal.pcbi.1008918.g010
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