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Introduction
Human immunodeficiency virus (HIV) disease 
progression following infection varies greatly 
between individuals. While certain patients 
remain asymptomatic for long periods of time 
without treatment, known as long-term non- 
progressors (LTNPs),1,2 the majority of patients 
follow a similar pattern of disease progression, 
with an increased viral load followed by viral sup-
pression and the acquired immunodeficiency syn-
drome (AIDS) stage, during which the viral load 
is increased again. The duration of disease pro-
gression is dependent on a numbers of factors, in 
which HIV virus evolution and immune response 
are considered to be among the most important 

elements.3,4 Generally, children infected with 
HIV encounter faster rates of disease progression 
compared with that of their adult counterparts.5,6 
Faster disease progression could be due to imma-
ture development of the immune system of chil-
dren, and the substantial rate of evolution of the 
HIV virus in pediatric populations.3,5

Analyses of the HIV genome has revealed evidence of 
genomic instability, ranging from single-nucleotide 
polymorphisms (SNPs) to sequence deletions in 
HIV-1 genes encoding structural, regulatory, and 
accessory proteins such as gag (structural) and nef 
(accessory) in HIV-infected children.7,8 Diverse 
polymorphisms in the gag gene have been shown 
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to be associated with disease progression,9 whereas 
studies analyzing the HIV genome in long-term 
non-progressors LTNPs or “elite controllers” have 
reported no significant defects of the amino acid 
sequence of gag,10 suggesting a role of genetic vari-
ability of gag in disease progression.

Gag protein, after being translated, is able to find 
and bind specifically to viral genomic RNA and 
bring this compound to the host cell membrane, 
facilitating viral budding from the membrane 
forming a new virion.11,12 Many studies have 
emphasized the irreplaceable role of gag protein in 
the process of viral assembly, binding, and matura-
tion of new virions.13,14 Structurally, the gag poly-
protein is stratified into four different big domains, 
including the N terminus matrix (MA), capsid 
(CA), nucleocapsid (NC), and the C terminus P6 
domains, which are further divided into smaller 
domains with different functions in the HIV cycle 
process. The MA domain, which contains basic 
myristoylation, PIP (PCNA-interacting protein) 2 
recognition motif, trimer interface 1, trimer inter-
face 2, and nuclear localization 2 domains, is 
required for plasma membrane targeting, binding, 
and viral assembly.15 The CA domain, which is 
responsible for development of a structural core, 
consists of NTD-NTD interface 2, NTD-NTD 
interface 3, cyclophilin A binding, MHR (major 
homology region), and dimerization domains. In 
addition, two important domains called nucle-
ocapsid and zinc motif 2 belonging to the NC 
domain containing Zinc motif 1, have been shown 
to participate in recognition and interaction dur-
ing viral replication. The last domain, P6, includes 
Vpr binding 1, ALIX interaction, and Vpr bind-
ing 2 domains and has been shown to be involved 
in processing viral particles.16,17 When these 
domains are mutated, viral replication, and, sub-
sequently, disease progression might be signifi-
cantly affected.18,19 With the current study, we 
investigated the molecular pattern of these func-
tional domains in HIV-infected children.

Research methods and design

Setting
The study has a retrospective design. The study 
subjects were selected from outpatients diagnosed 
and treated at National Children’s Hospital, 
Hanoi, Vietnam. The treatment was first-line 
ART containing one non-nucleoside reverse tran-
scriptase inhibitor (Nevirapine) and two 

nucleoside reverse transcriptase inhibitors 
(Stavudine or Zidovudine and Lamivudine).

Study population and sampling strategy
Patients were taken from a previous study20; 86 
patients were included, with full informed con-
sent signed by the parents or responsible person. 
Ethical permission for the current research has 
also been approved by the ethical committee of 
Hanoi University of Public Health with the regis-
tration number 261/2015/YTCC-HD3.

In the study, 24 blood samples of patients were 
collected, and RNA was extracted and sequencing. 
The blood samples were used to determine CD4 T 
cell counts, CD4 T cell percentage, and HIV viral 
load. We later followed up patients but only man-
aged to obtain seven samples after 24 months of 
following up for further analysis. The ID number 
of each patient, and status regarding treatment 
response, are included in supplemental data.

Laboratory methods
Peripheral CD4 T-cell counts were analyzed by 
Flow Cytometry (Sysmex Partec, Münster, 
Germany) and biannual quantification of viral 
load using the Cobas Taqman HIV-1 test (detec-
tion limit, 40 copies/ml).

Viral RNA was extracted from plasma samples 
(280 µl) by QIAamp Viral RNA Mini Kit (Qiagen, 
Hilden, Germany) and was used to synthesize 
cDNA using First-Strand Synthesis System for 
reverse-transcriptase (RT)–PCR (Invitrogen, 
Carlsbad, CA, USA) using random primers. A 
PCR was implemented to retrieve gag regions. The 
PCR mixtures and cycling conditions were 
described previously.21 For the gag region, primers 
used to amplify HXB2 positions 796-2381 were 
F2NST (5′-GCGGAGGCTAGAAGGAGAGAG 
ATGG -3′) and SP3AS (5′-CCTCCAATTCC 
CCCTATCATTTTTGG-3′).22 First-round PCRs 
were conducted in 50 µl reaction containing 25 µl 
of master mix consisting of 10 × PCR Gold buffer 
(Applied Biosystems Inc., Foster City, CA, USA), 
a 40 µM concentration of each deoxynucleoside 
triphosphate (dNTP), 1.5 mM MgCl2, 0.75 U of 
AmpliTaq Gold DNA polymerase (Applied 
Biosystems Inc.); 2 µl of 0.4 µM concentration of 
each primer; and 5–10 µl of DNA template. The 
cycling conditions for the first round were 1 cycle 
at 95°C for 10 min; 30 cycles of 95°C for 10 s, the 
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annealing temperature at 68°C for 30 s, and exten-
sion at 72°C for 1min; and a final extension at 
72°C for 5 min. The second-round PCRs con-
tained similar final concentrations in the PCR mix-
tures, but with 1 µl of the pooled first-round 
products with similar cycling conditions.

The final PCR products obtained were purified 
and directly sequenced using Big Dye terminator 
reaction kits and a capillary sequencer (Applied 
Biosystems 3100). The sequences obtained were 
aligned with reference sequence HXB2, with rel-
evant subtypes and circulating recombinant forms 
(CRF01-AE), using Bioedit software and blast in 
NCBI and Mega 5.0 software. The gag gene 
sequence was further analyzed using the MAFFT 
version 7 program (https://mafft.cbrc.jp/alignment/
server/). A total of 17 important functional 
domains were aligned with the HXB2 strain in the 
Los Alamos HIV database, including basic myri-
stylation, PIP2 recognition motif, trimer interface 
1, trimer interface 2, nuclear localization 2, NTD-
NTD interface 1, NTD-NTD interface 2, NTD-
NTD interface 3, cyclophilin A binding, MHR, 
dimerization, interaction domain, zinc motif 1, 

nucleocapsid basic domain, zinc motif 2, Vpr 
binding 1, and ALIX interaction.8

Data analysis
Data were collected and managed by excel and 
analyzed by Stata 12.0.20 (Stata Corp LLC, 
College Station, TX, USA) for descriptive statis-
tics and statistical inference. The descriptive sta-
tistic was used to summarize the variables of 
different groups, whereas the statistical inference 
was used to compare different variables between 
TF and TS groups. Since the data were not nor-
mally distributed, the descriptive statistics were 
median with interquartile range (IQR) and N 
(number) and % (percentage); whereas Mann–
Whitney test and multiple comparison were used 
to compare different variables between treatment 
success (TS) and treatment failure (TF) groups.

Results

Characteristics of HIV-infected subjects
As can be seen from Table 1, the total partici-
pants were 25, in which 16 participants were male 

Table 1. The general and clinical characteristics of HIV infected children in current study.

Characteristics TS TF p value (Mann–Whitney)

 Median IQR Median IQR

Age 4.7 3.1 6.8 5.8 3.9 7.8 0.52

CD4 T cell counts 594 270 976 523 162 884 0.84

CD4 T cell percentage 23.2 15.8 26.7 17.7 8 27.4 0.96

HIV viral load 400 400 400 5021000 42000 10,000,000 <0.01

Characteristics TS TF

 n % n %

Sex Male 14 64 1 14.3

 Female 9 36 5 85.7

Opportunistic infection 20 87 6 100

Clinical stage of HIV infection 1 4 16  

 2 11 44 5 83.3

 3 4 16 1 16.7

 4 1 4  

HIV, human immunodeficiency virus; IQR, Interquartile range; N, number; TF, treatment failure; TS, treatment success.
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and 9 were female. The median age of HIV-
infected children was 4.7 in the TS group (IQR 
3.1–6.8), and 5.8 in the TF group (3.7–7.8). The 
median CD4 T cell count was not significantly 
different between TS and TF groups [594 (270–
976) versus 523 (162–884), respectively]. 
Nevertheless, the median HIV viral load was sig-
nificantly lower in the TS, compared with the TF 
group 400 (400–400) versus 5021,000 (42,000–
10,000,000), respectively (p < 0.01). There were 
higher numbers of boys than girls in the TS group, 
whereas the TF group had opposite gender pro-
portions; 80% of the patients in the TS group suf-
fered from opportunistic infections, and all 
patients in the TF group had opportunistic infec-
tions, the majority of which were at clinical stage 
2 and 3 (Table 1). There were six patients with a 
viral load of >1000 copies/ml and thus belonging 
to the TF group (the ID of patients include 1053, 
1065, 1072, 1082, 1087, and 1145). The remain-
ing patients belonged to the TS group (data not 
shown).

Genetic analysis of the gag gene in HIV-infected 
subjects
Phylogenetic analysis of the gag gene showed that 
all HIV from patients belonged to genotype 
CRF01_AE (data not shown). The result showed 
that all the patients in the TF group belonged to 
cluster 1 of the phylogenetic tree. Specifically, 
patients 1053, 1082, and 1145 belonged to clus-
ter 1.1, whereas patients 1072, 1065, and 1087 
belonged to cluster 1.2 (Figure 1). Three patients 
belonging to cluster 1.1 had high HIV viral load 
and low CD4 T cell counts, while patients belong-
ing to cluster 1.2 had high CD4 T cell counts 
despite high HIV viral load.

Stratifying into different functional domains of 
gag protein, we found that TF patients encoun-
tered a higher frequency of mutations compared 
with TS patients (supplemental Figure). While 
the majority of functional domains did not differ 
significantly between TS and TF patients, the 
median rate of mutations in the PIP2 recognition 
motif in the TF group was significantly higher 
compared with the TS group [50 (25–50) versus 
12.5 (6.25–12.5), p < 0.01]. Similarly, nucle-
ocapsid basic domain and zinc motif 2 also car-
ried higher levels of mutations in TF compared 
with TS patients [0 (0–0) versus 0 (0–21.43), 

p = 0.03 and 0 (0–7.14) versus 7.14 (7.14–25), 
p = 0.04, respectively] (Table 2). When using 
multiple comparison, only PIP2 recognition motif 
and Nucleocapsid basic domain showed the sig-
nificant different between two groups (p < 0.01 
and p = 0.03, respectively).

Figure 2 represents the sequencing of seven 
patients with different time points. Regardless of 
the treatment response, all the sequences showed 
high levels of homogeneity compared with refer-
ence sequences. The trimer interface 2, and the 
NTD-NTD interface 3 domain sequences col-
lected at different time points were highly homog-
enous, with only one amino acid substitution in 
both sequences, compared with the reference 
sequence. The results were similar for nuclear 
localization 2 domain, except for patients 1032, 

Figure 1. Phylogenetic tree based on gag gene in 
HIV-1 infected participants in the study.
HIV-1, human immunodeficiency virus-1.
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Figure 2. Mutations in the gag gene in HIV-1 infected participant in the study. The gag sequence of the same 
patients was analyzed at two different time points (L1 and L2, in which L1 was taken prior to treatment 
initiation while L2 was taken after 24 h of the treatment initiation). The two sequences at different time points 
were aligned with each other and aligned with the referenced sequence.
HIV-1, human immunodeficiency virus-1.
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in which one amino acid was different between 
sequences taken at two different time points 
(Figure 2).

The cyclophilin A binding domain of patient 
1058 showed one amino acid difference in both 
sequences compared with the reference gene, 
while patient 1082 was found to have one amino 
acid substitution within sequences taken at differ-
ent time points. The zinc motif one domain 
showed one amino acid substitution in patients 
1015; six amino acid substitutions in patients 
1077, and one amino acid substitution in patient 
1087, compared with sequences of the same 
patient taken at earlier time points. Both patients 

1015 and 1087 had one amino acid insertion and 
one amino acid substitution in both sequences in 
comparison with the reference gene (Figure 2).

Discussion
In this study, we analyzed sequences of the gag 
gene in HIV-infected children in relation to treat-
ment response. Consistent with most of findings 
concerning the HIV genome in South East Asia, 
our results confirmed presence of the subtype 
CRF01_AE in all patients in the present study.23 
Extensive studies have been conducted to investi-
gate the association between HIV subtype and 
disease progression; however, the results have 

Table 2. The percentage of difference between different gag functional domain sequence of HIV-infected participant in the current 
study compared with the referenced sequence.

Functional domains TS TF p value  
(Mann-Whitney)

Multiple 
comparison

 Median IQR Median IQR

Basic domain 12.50 6.25 12.50 12.50 6.25 12.50 0.66 0.95

PIP2 recognition motif 12.50 6.25 12.50 50.00 25.00 50.00 <0.01 <0.01

Trimer interface 1 16.67 16.67 16.67 16.67 16.67 16.67 0.94 0.97

Trimer interface 2 16.67 16.67 16.67 16.67 16.67 16.67 0.45 0.43

Nuclear localization 2 66.67 66.67 66.67 66.67 66.67 66.67 0.6 1.0

NTD-NTD interface 1 0 0 0 0 0 0 NA NA

NTD-NTD interface 2 0 0 0 0 0 0 NA NA

NTD-NTD interface 3 20.00 20.00 20.00 20.00 20.00 20.00 0.3 0.08

Cyclophilin A binding 10.00 10.00 10.00 10.00 10.00 20.00 0.63 0.83

MHR 0 0 0 0 0 4.76 0.37 0.56

Dimerization 9.09 9.09 9.09 9.09 0 9.09 0.12 0.20

Interaction domain 14.29 14.29 28.57 21.43 14.29 28.57 0.42 0.21

Zinc motif 1 7.14 7.14 7.14 21.43 7.14 42.86 0.08 0.45

Nucleocapsid basic domain 0 0 0 0 0 21.43 0.03 0.03

Zinc motif 2 0 0 7.14 7.14 7.14 25.00 0.04 0.13

ALIX interaction 85.71 71.43 85.71 85.71 57.14 85.71 0.83 0.97

Vpr binding 1 20.00 20.00 20.00 20.00 20.00 20.00 0.58 NA

The data is presented as the difference between different Gag functional domains in comparison to the reference sequence.
HIV, human immunodeficiency virus; IQR, Interquartile range; MHR, major homology region; NA, Not applicable; TF, treatment failure;  
TS, treatment success.
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been inconsistent.24 Saina et  al. indicated that 
patients could be either rapid or slow progressors 
regardless of subtype distribution.25

In the present study, we found that, even though 
all patients were found to carry the subtype 
CRF01_AE, phylogenic cluster analysis reveal 
that participants belong to different clusters of the 
phylogenic tree. In addition, Louwagie has sug-
gested that the subtype A has the most diversity of 
gag gene among other subtypes26; thus, we might 
speculate that the subtype CRF01_AE might 
encounter high levels of diversity. Since all chil-
dren in the study were infected with HIV verti-
cally, the HIV genotype reflected directly the 
genotype of their mother, suggesting the variety 
of complex recombinant forms of HIV in Vietnam. 
Interestingly, TF patients with high CD4 T cell 
counts and high viral load belonged to one clus-
ter, whereas TF patients with low CD4 T cell 
counts and high HIV viral load belonged to 
another cluster. High viral load might be the 
result of the increase of viral replication, infectiv-
ity, viral fitness or/and immune-escape mutations. 
The results might implicate that HIV virus in 
these patients underwent similar mutations in the 
gag gene, leading to increased viral replication. 
Two patients (1053 and 1087) on the same clus-
ter were shown to have developed reverse tran-
scriptase inhibitor (RTI)-resistance mutations, 
which are the most dominant lamivudine-resist-
ant mutations found among HIV infected chil-
dren in Vietnam.20 The M184V/I mutation has 
been found to be associated with increased viral 
load in several studies,27,28 and immunological 
recovery despite virological failure has previously 
been reported in patients with an M184V escape 
mutation that confers lamivudine resistance.29 
The mutation M184V/I has been shown to affect 
other mutations in different genes,30 and it might 
be speculated that M184V/I might be associated 
with certain mutations in the gag gene facilitating 
increased viral load. Similarly, other mutations in 
the gag gene might result in lower viral load. The 
causal relationship between gag mutations and 
CD4 T cell counts has not been fully established. 
Therefore, the low CD4 T cell counts in the TF 
group belonging to a lower cluster of the tree 
might not reflect a direct consequence of pro-
found viral replication as the result of gag muta-
tions. Nevertheless, these patients might already 
suffer from low CD4 T cell counts prior to eleva-
tion of viral load as the result of gag mutations. 

Other clusters containing patients with high CD4 
T cell counts despite high levels of viral load 
might be an interesting group to study. However, 
we have not found consistent mutations in this 
group, suggesting complexity of mutations and 
interaction between these mutations for the estab-
lishment of viral replication in different settings 
with CD4 T cell counts.

Saina et  al. found no significant between-group 
differences in the amino acid variations, inser-
tions, or deletions of gag sequences, and proposed 
that gag sequence variations are not as important 
as HLA in influencing disease progression.25 
Inconsistent with this finding, we did observe a 
significant difference in rate of mutations in the 
gag gene of the TF group in comparison with 
those of the TS group, particularly with regard to 
the PIP2 recognition motif and nucleocapsid 
basic domains. The PIP2 recognition motif is 
involved in the assemblance of HIV at the plasma 
membrane of infected cells, and several studies 
emphasize the importance of the PIP2 recogni-
tion motif for the production of infectious viri-
ons,31 and, without the PIP2 recognition motif, 
membrane binding would not occur.32,33 
Unfortunately, we could not find the established 
association between mutation of the PIP2 recog-
nition motif and increased viral replication. 
Nevertheless, given the role of this domain, it is 
reasonable that high levels of mutations might be 
associated with increased HIV replication or 
infectivity in patients. Monde et  al. pointed out 
that the PIP2 domain is crucial for Gag binding 
to the plasma membrane and the release of virus 
from the cell line. The adapted mutant virus 
(74LR) displayed accelerated replication kinetics 
compared with wild-type virus, which is probably 
due to increased virus infectivity.34 We did not 
observe the 74LR mutation in our patient, sug-
gesting that another mechanism might be involved 
in our cohort.

The nucleocapsid domain, on the other hand, is 
required for RNA binding activity and thus affects 
virus assembly.35,36 Several studies have pointed 
out the crucial role of the nucleocapsid domain 
for RNA packaging and recombination, and show 
that mutations at the nucleocapsid domain lead 
to inefficient package of viral RNA. However, in 
our data, mutations at this domain were observed 
in patients with high viral load, suggesting that 
these mutations might be associated with viral 
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packaging and thus viral assembly. Regarding the 
mutations observed in the zinc finger motif 
domain, and consistent with our finding, Mark-
Danieli et al. also identified a relationship between 
zinc finger mutants and increased RNA-binding 
specificities, and showed that the N17K mutant 
led to a 7- to 9-fold increase in RNA packaging.37 
Compared with the N17K mutant virus, E21K 
and N27K mutant viruses were not significantly 
superior to the WT virus in transduction effi-
ciency. The domain has proven necessary for dif-
ferent steps of the HIV life cycle, and deletions of 
the domain might result in defective viral forma-
tion. The different mutations in the domain were 
found to yield different outcomes regarding viral 
development.37,38 We found that HIV mutations 
in these domains might be associated with 
increased HIV replication, and, thus, might 
enhance infectivity. Through evolution, certain 
mutants became associated with increased infec-
tivity and others became associated with decreased 
viral stability. Understanding the interaction 
between these mutations is a complex issue in 
need of further research.

Overall, our results also confirmed that TF 
patients had higher levels of mutation in the gag 
gene in comparison to TS patients, which is con-
sistent with the finding that patients with disease 
progression tend to have diverse polymorphisms 
in the gag gene,9 while LTNPs or “elite control-
lers” showed limited mutations in the gag gene.10 
In addition, TF patients in the study also showed 
high levels of viral load, suggesting that gag 
mutations and viral load might have a certain 
association. The association between these two 
factors should be studied further in order to 
answer the question of how and why increased 
gag mutations might lead to increased pace of 
disease progression.

Our study has several limitations. First, we 
accessed mutations of gag sequences at only one 
time point and the number of patients was lim-
ited. Secondly, we were able to access only seven 
patients at different time points. However, given 
the diversity in the gag gene, our cases contribute 
to the understanding of mutations within the gag 
gene in relation to treatment response. Thirdly, in 
our setting, we could assess only the most promi-
nent clone of HIV virus as this might represent the 
minority effect of HIV to disease progression, thus 
careful interpretation of the data should be taken 
into consideration. And finally, our results present 

observation only, therefore it is difficult to draw 
any evidence-based conclusions from the results.

Conclusion
In conclusion, Gag mutations in certain domains 
might be associated with increased viral load; 
therefore studying the molecular genotype of the 
gag gene might be beneficial in monitoring treat-
ment response in HIV-infected children.
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