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Tumorigenesis is a complicated process caused by successive genetic and epigenetic
alterations. The past decades demonstrated that the immune system affects
tumorigenesis, tumor progression, and metastasis. Although increasing
immunotherapies are revealed, only a tiny proportion of them are effective. Long non-
coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200
nucleotides and are essential in the molecular network of oncology and immunology.
Increasing researches have focused on the connection between lncRNAs and cancer
immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we
outline the latest studies on the functions of lncRNAs in the tumor immune
microenvironment. Via participating in various biological processes such as neutrophil
recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions,
lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition
(EMT), and angiogenesis. In addition, we reviewed the current understanding of the
relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent
promising approaches in serving as prognostic biomarkers or potential therapeutic targets
in cancer, providing ideas for future research and clinical application on cancer diagnosis
and therapies.

Keywords: long non-coding RNAs, tumor immune microenvironment, cancer immunotherapy, biomarker,
targeted therapy
1 INTRODUCTION

The immune system and cancer progression are tightly connected. When immune cells recognize
exogenous threats or endogenous mutations, they respond to changes in the microenvironment,
from a static sentinel role to an active responder. For example, the cancer antigens are presented to
T-cells via antigen-presenting cells (APCs). T-cells are activated after recognizing cancer cells and
allow effector T-cells, other endogenous immune cells, and antibodies to eliminate cancer cells (1–
3). However, the limited antigen recognition, pro-tumor phenotype differentiation, immune
suppression, and impaired immune cell functions are all contributors to cancer development (4–
6). Therefore, it is indispensable to improve the understanding of tumor immunology.
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LncRNAs have revealed the diverse regulatory roles in
immune responses and cancer progression. Different from
mRNAs, the biogenesis of lncRNAs is associated with their
specific subcellular localizations and functions. Depending on
their localization and their specific interactions with DNA, RNA,
and proteins, lncRNAs can modulate chromatin function,
regulate the stability and translation of cytoplasmic mRNAs
and interfere with signaling pathways. LncRNAs participated
in immune activities such as antigen presentation, immune cells
activation, and immune responses (7–10).

Cancer immunotherapy has aroused increasing interest. Unlike
conventional systemic therapies that are directly cytotoxic to tumor
cells, cancer immunotherapy depends on the immune system to set
antitumor effects. Therefore, various factors that may affect host
tumor immunity should be considered for proper design (11).
LncRNAs are encouraged to be incorporated into cancer
immunotherapy investigations, given their critical involvement in
shaping immune responses. Targeting lncRNAs represents an
attractive approach for potential biomarkers and therapeutical
strategies, owning to its condition-specific expression pattern (12).
A better understanding of lncRNAs-mediated approaches will
provide new insights into the diagnosis and therapeutic strategies.

In this review, we summarized functions and regulating
mechanisms of lncRNAs in in tumor immune microenvironment
from various perspectives. In addition, we reviewed the current
understanding of the relevant strategies for targeting lncRNAs. This
review highlighted the essential roles of these lncRNAs-mediated
approaches, which have great potential in immunotherapies to
facilitate future cancer diagnosis and treatment.
2 BIOGENESIS AND FUNCTIONS
OF LncRNA

Non-coding RNA refers to a functional RNA molecule that can
hardly be translated intoprotein.A largenumber of researcheshave
shown that non-coding RNA plays an increasingly important role
in the regulation of epigenetics. Common non-coding RNAs with
regulatory effects include small interfering RNA, miRNA, piRNA,
and lncRNA. LncRNA is a kind of non-coding RNA with a length
greater than 200 nucleotides. The origin of lncRNA is still not clear,
and the possible origins have been demonstrated: (a) Mutations of
protein-coding genes; (b) Chromosomal rearrangement: lncRNA
can be produced by recombination of separated gene sequences; (c)
Duplications: The adjacent structural units in the lncRNAsequence
are repeated, increasing the length of the transcript; (d) Transposon
insertion: Inserting transposable elements containing transcription
initiation sites into the genome to produce functional lncRNA
sequences (13–16). According to the relative position of lncRNA
coding sequence and protein-coding gene, it can be divided into
several categories: sense lncRNA, antisense lncRNA, bidirectional
lncRNA, intronic lncRNA and intergenic lncRNA (9, 17, 18).

Although lncRNA was initially thought to be a by-product of
RNA polymerase II transcription, a kind of “noise” without
biological function. Although lncRNA generally has no
protein-coding ability actually, some of them can encode some
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short peptides. In recent years, lncRNA has become a research
hotspot. LncRNA has a similar structure to mRNA. After
splicing, it has a poly-A tail and promoter structure. There are
dynamic expressions and different splicing methods during the
differentiation process to form different lncRNA. Moreover, the
conservation of lncRNA is low. The expression of lncRNA has
tissue specificity and spatiotemporal characteristics. LncRNA
expression varies from different tissues, different growth stages,
and different locations (19–24). The features of lncRNAs have
been studied and shown that lncRNAs play a vital role in many
life activities such as dosage compensation effect, epigenetic
regulation, cell cycle regulation, and cell differentiation (17, 25).

LncRNAs participate in regulating various processes in the
nucleus and cytoplasm, having a powerful regulatory effect in
gene expression, and exerting cellular effects through various
mechanisms. LncRNAs elicit functional outcomes through
modular domains to interact with DNA, RNA, various regulatory
proteins, and signaling (Figure 1A) (26, 27): (a) Transcription level.
Local lncRNAs regulate the expression of adjacent protein-coding
genes through transcription programs. The lncRNA transcript can
regulate the act of transcription or splicing of the lncRNA can
generate a chromatin state or steric impediment that influences the
expression of nearby genes (10, 28). (b) Epigenetic modification
level. Epigenetic modification includes histone and DNA
methylation, histone acetylation and ubiquitin-like. Both cis-
acting and trans-acting nuclear lncRNAs establish interactions
with DNA to alter the chromatin environment or binding DNA
in a sequence-specific manner (10). (c) Post-transcriptional level.
LncRNAs can regulate post-transcriptional mRNA functions by
complementary base pairing with target mRNA. The formation of
RNA duplexes between complementary lncRNA and mRNA may
conceal essential mRNA required for binding reaction factors,
potentially affecting post-transcriptional gene expression,
including mRNA precursor processing, transport, translation,
and degradation (29). MicroRNA (miRNA) can directly bind to
mRNAs by specific identification in a base-pairing manner, and
thus inducing mRNA degradation at the post-transcriptional level
by forming RNA-induced silencing complex (RISC) with related
proteins such as Argonaute 2 (AGO2). LncRNAs act as competing
endogenous RNAs (ceRNAs) to harbor the miRNA response
elements (MREs) with complementary miRNA binding sites,
sponging miRNA or keeping miRNAs away from mRNAs (30);
(d) LncRNA–protein. LncRNAs interact with proteins, serving as
molecular scaffolds, guides, or decoys tomodulate protein function
and interactions (31–34).

Based on these characteristics, lncRNAs can be used as a
critical regulator in many aspects of biological activities, such as
regulating cell proliferation, differentiation, and apoptosis. The
regulatory roles of lncRNAs on immune cells and tumor cells
have become a new direction for studying cancer immunology.
3 TUMOR IMMUNE MICROENVIRONMENT

The tumor immune microenvironment (TIME) has received
significant attention in recent years. TIME comprises tumor
February 2022 | Volume 13 | Article 851004
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cells, immune cells, tumor-related fibroblasts, surround micro-
vessels, various cytokines, and extracellular matrix (ECM)
(Figure 1B) (6). TIME is a complex integrated system. If tumor
cells are considered as seeds, then the microenvironment would
act as soil. Tumor cells and their microenvironment interact and
evolve together, affecting the generation and progression of
tumors (35).

The tumor microenvironment presents the characteristics of
hypoxia. Due to insufficient oxygen supply, tumor cells mainly
undergo anaerobic glycolysis, leading to lactic acid accumulation
(36).Meanwhile, ion-exchangeproteins on the tumor cellmembrane
also continuously transport H+ outside the cells. These cellular
responses cause the pH of the tumor microenvironment to
decrease. In the hypoxic and acidic microenvironment, tumor
tissues and peripheral tissue cells will undergo apoptosis, releasing
cell debris and chemokines, leading to infiltration of inflammatory
cells and secretion of inflammatory factors. In addition, the tumor
itself can also trigger an immune response, causing inflammatory
cells to accumulate in this area, triggering the inflammatory response
(37, 38).

Tumor cells and tumor microenvironment complement each
other. The tumor immune microenvironment is closely related to
the efficacy of immunotherapy. Tumors can affect their
microenvironment by releasing signaling molecules, promoting
tumor angiogenesis and immune tolerance. Immune cells and
other components in the microenvironment can affect the growth
and development of cancer cells (35). For example, the infiltrated
immune cells participate in the immunosuppressive tumor
microenvironment formation to facilitate immune escape and
Frontiers in Immunology | www.frontiersin.org 3
malignant development. Among them, regulatory T cells (Tregs)
play a significant role. Macrophages have different subtypes in the
tumor microenvironment. Studies have shown that M1-type
macrophages mainly inhibit tumors, promoting inflammation
and immune activity. In contrast, M2-type macrophages play a
role in tissue repair, immune escape, and promote tumor
progression (39, 40). In addition to immune cells, many non-
immune components constitute the tumor microenvironment,
such as fibroblasts, vascular endothelial cells, and other stromal
cells. Cancer-associated fibroblasts (CAFs) can release stromal cell-
derived factors and pro-angiogenesis factors to promote tumor cell
growth and metastasis. Vascular endothelial cells mainly mediate
tumor angiogenesis (41, 42). By learning tumor immune
microenvironment, clinical diagnosis and treatment can be better
guided, and precision medicine can be realized.
4 TUMOR IMMUNE ESCAPE

The host’s immune system has the function of immune
surveillance to recognize and specifically eliminate these “non-
self” cells through the immune mechanism to resist
tumorigenesis and tumor development (43). However, in some
cases, malignant cells can evade the body’s immune surveillance,
escape the recognition and attack of the body’s immune system
through various mechanisms (43, 44). The in-depth study of
tumor immune escape mechanisms provides new ideas for the
exploration of tumor immunotherapy (5, 44). Mechanisms
resulting in immune escape include the selection of tumor
A B

FIGURE 1 | Mechanisms of lncRNA function and tumor immune microenvironment. (A) LncRNA regulate their targets via various mechanisms, including both the
transcriptional and post transcriptional levels. (1) MicroRNA sponge; (2) interaction with protein; (3) interaction with mRNA; (4) peptide formation; (5) lncRNA in MVBs;
(6) Chromatin modification; (7) DNA interaction. (B) Components of the tumor immune microenvironment. The tumor immune microenvironment is a complex
ecosystem, consist of cancer cells, immune cells, and vascular network, etc. Induced by the cytokines, chemokines, and growth factors, tumor-infiltrating immune
cells of both the myeloid and lymphoid lineages are recruited and activated. Created with BioRender.com.
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variants resistant to immune effectors and the tumor immune-
suppressive environment (45).

Immune escape can be achieved through intrinsic tumor
properties or the tumor microenvironment, that include (1)
Low expression of tumor-associated antigens. Tumor-specific
CD8+ T cells are activated by recognizing tumor antigens,
depending on the specific recognition and binding of TCR to
MHC-I-peptide complexes. Decreased expression of tumor-
associated antigens affects the recognition of MHC molecule
antigen peptide complexes by TCR (46, 47). (2) Low expression
of MHC molecules. The lack of presentation of MHC-I
molecules is often one of the main reasons for tumor immune
escape (48). (3) Tumor cells lack costimulatory molecules. Even
though tumor cells can directly present tumor antigens to T cells
through the MHC molecules, they cannot activate T cells due to
the lack of costimulatory signals, resulting in T cell immune
response and even tolerance induction (49). (4) Tumor apoptosis
is suppressed. The Fas/FasL system is of great significance in
immune escape. Fas belongs to the TNF receptor family, and its
ligand FasL can mediate cell apoptosis. On the one hand, the
tumor cells themselves only express a little or no Fas to be
protected from attack by themselves or immune cells. On the
other hand, the tumor cells actively express FasL to kill the
infiltrating Fas-positive effector cells (50, 51).

Tumor-related immunosuppressive factors in the tumor
microenvironment are the contributors to immune escape.
Immune checkpoint molecules are inhibitory regulatory
molecules expressed on immune cells, suppressing the effective
anti-tumor immune response. Under physiological conditions,
immune checkpoint molecules regulate the immune system,
dampening the immune response after mitigating an infection or
other threats (52). However, these immune checkpoint interactions
may also be engaged in the development of cancer (53, 54). The
immune checkpoint molecules related to tumors mainly include
PD1, CTLA4, Tim3, LAG3, etc. Currently, PD1 and CTLA4 are
mainly studied. Programmed death molecule 1 and its ligand (PD-
1/PD-L1) are a pair of negative immunostimulatory molecules
(55). Under normal circumstances, after PD-L1 is combined with
PD-1 on the surface of lymphocytes, it can inhibit lymphocyte
function and induce apoptosis of activated lymphocytes, thereby
exerting autoimmune tolerance. However, PD-L1 is also expressed
on the surface of many tumor cells. PD-L1 expressed by tumor
cells can bind to PD-1 on the surface of corresponding
lymphocytes, inhibit the function of lymphocytes and the release
of cytokines, lead to lymphocyte apoptosis and immune escape of
tumor cells (56). In recent years, immunotherapy has been
considered a promising treatment strategy, which utilizes the
host’s immune system to combat malignant cells by inhibiting
the immune checkpoint pathway. Therefore, blocking the PD-1/
PD-L1 pathway can enhance the activity of lymphocytes to achieve
the effect of tumor immunotherapy (57). Cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4), also known as CD152, is a
leukocyte differentiation antigen, a transmembrane receptor on T
cells, and it shares B7 with CD28Molecular ligands. The binding of
CTLA-4 and B7 molecules induces T cell anergy, which
participates in the negative regulation of immune response.
Frontiers in Immunology | www.frontiersin.org 4
Immune checkpoint inhibitors are some monoclonal antibodies
developed for corresponding immune checkpoints. Their primary
function is to block the interaction between tumor cells expressing
immune checkpoints and immune cells, thereby blocking the effect
of tumor cells on immune cells (58, 59).

In the tumor microenvironment, there are many tumor-related
immunosuppressive cells, including regulatory T cells (Treg),
tumor-associated macrophages (TAM), and myeloid-derived
suppressive cells (MDSC), etc. The chemokines in the tumor
microenvironment recruit the Tregs in the thymus, bone marrow,
lymph nodes, and the periphery to the tumor through the Treg
receptor CCR4, thereby suppressing immunity. Tumor-associated
macrophages (TAM) in tumor tissues actively inhibit the immune
response and plays a role in tumor development. They also facilitate
the expression of epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), TGF-B, hepatocyte growth factor (HGF),
and matrix metalloproteinases (MMPs), directly promoting tumor
progression.Myeloid-derived suppressor cells (MDSC) can express
a variety of pro-angiogenic factors, directly promote tumor
angiogenesis. Also, MDSC can inhibit T cell-mediated adaptive
anti-tumor immunity through the high expression of ARG1, iNOS,
and ROS (60, 61).
5 LncRNAs REGULATE TUMOR IMMUNE
MICROENVIRONMENT

5.1 LncRNAs and Innate Immune Cells
in TIME
The innate immune system is the first defense line, relying on a
surveillance system of neutrophils, macrophages, natural killers,
and dendritic cells, which recognize and act on pathogens non-
specifically. In addition, they also activate the adaptive immune
system through antigen presentation (62). Recently, lncRNAs
have been documented to be associated with innate immune cell
development, differentiation, and immune responses (Figure 2).
LncRNAs have emerged to act functionally through modular
domains, regulating gene expression and modulating pathogen
response pathways via interactions with chromatin, RNA, and
proteins (18). Taken together, considering the critical roles of
lncRNAs, it makes sense to explore the lncRNAs-mediated
regulation in the TIME.

5.1.1 LncRNAs and Neutrophils
Neutrophils derived from myeloid progenitor cells participate in
natural immunityand regulate adaptive immunity (63, 64).Affected
by the tumor microenvironment, neutrophils have different
polarization states. Different polarization states have different
effects on tumors, which can promote or inhibit tumor growth.
Anti-tumor N1 type and tumor-promoting N2 type are the two
main polarization types of neutrophils. The polarization of N1
neutrophils is usually induced by IFNs, IL-1b, IL-8, TNF-a. While
N2neutrophils are inducedbyTGF-b, IL-8, IL-6, and IL-17 (65, 66).
The anti-tumor mechanisms of neutrophils include: (a) N1
neutrophils directly kill tumor cells by releasing reactive oxygen
species (ROS) and reactive nitrogen (RNS); (b) As antigen-
February 2022 | Volume 13 | Article 851004
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presenting cells, neutrophils can directly stimulate T cell activation,
and simultaneously release a variety of chemokines such as TNF-a,
and cathepsinG toactivateDCs,macrophages,NKcells, andTcells.
Neutrophils have a synergistic effect with CD8+ T cells in the anti-
tumor process, while Tregs limit the infiltration of neutrophils; (c)
After the adaptive immune response is initiated, N1neutrophils kill
tumor cells throughantibody-dependent cell-mediated cytotoxicity
ADCC (67, 68). The pro-tumor mechanisms include: (a) N2
neutrophils secrete cytokines such as VEGF and TNF to promote
tumor angiogenesis; (b) Neutrophils secrete matrix metalloprotein
9 (MMP-9) todegrade type IVcollagenof the basementmembrane,
promoting the infiltration of tumor cells. In addition, MMPs also
participate in the reconstruction of tumor extracellular matrix and
promote tumor progression; (c) Granule colony stimulating factor
(G-CSF) and TGFb can induce neutrophils to express arginase 1
(ARG1), ROS and nitric oxide (NO), to inhibit T cell activation;
(d) Recruit anti-inflammatory M2 macrophages (67, 69, 70).

It has been demonstrated that lncRNAs participated in
neutrophil recruitment, lifespan, and function. Knockdown of
LINC01116 affected the secretion of IL-1b, thereby promoting
Frontiers in Immunology | www.frontiersin.org 5
the recruitment of tumor-associated neutrophils (TAN). The
accumulation of TAN produced a large number of cytokines to
promote tumor proliferation (71). Moreover, neutrophils are
short-lived immune cells with a half-life of 7-10 hours in human
circulation. Regulation of neutrophil lifespan is critical in the
tumor immune microenvironment. LncRNAs have also been
revealed to regulate the neutrophils’ lifespan (65). LncRNA
Morrbid was evidenced to regulate the survival status of
neutrophils. Morrbid regulated the transcription of the
neighboring pro-apoptotic gene Bcl2l11 by promoting the
enrichment of the PRC2 complex at the Bcl2l11 promoter to
maintain a poised state. Thus, regulating Morrbid allowed rapid
control of apoptosis in response to extracellular pro-survival
signals, representing a potential therapeutic target (72). Besides,
regulatory role was also achieved via PD1/PD-L1 pathway.
LncRNA HOXA transcript at the distal tip (HOTTIP)
enhanced IL-6 expression to potentiate immune escape of
ovarian cancer cells by upregulating the expression of PD-L1
in neutrophils. HOTTIP was noted to promote the expression of
IL-6 by binding to c-jun, which resulted in a promoted PD-L1
FIGURE 2 | LncRNA and innate immune cells in TIME. LncRNA is central player in cancer biology and they play a pivotal role in mediating the network communication
between tumor cells and their microenvironment. Innate immune effectors including neutrophils, macrophages, NK cells, DCs, and MDSCs. LncRNA can interact with tumor-
infiltrating innate immune cells to modulate their recruitment, development and function in tumor microenvironment. Created with BioRender.com.
February 2022 | Volume 13 | Article 851004
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expression in neutrophils and immune escape. Meanwhile, T cell
proliferation and efficiency of tumor immunotherapy were
inhibited (73). The infiltration of neutrophils in patients with
gastric cancer was significantly increased, showing an
activated CD54+ phenotype and expressing high levels of
immunosuppressive molecule PD-L1. A significant correlation
was found between the levels of PD-L1 and CD54 on tumor-
infiltrating neutrophils. Tumor-derived GM-CSF activates
neutrophils and induces PD-L1 expression in neutrophils
through the Janus kinase (JAK) and signal transducer and
activator of the transcription 3 (STAT3) signaling pathway.
The binding of PD-1 to its ligand PD-L1 is essential for the
physiological regulation of the immune system. Activated PD-L1
+ neutrophils effectively inhibit normal T cell immunity in vitro
and promote tumor growth and progression (74, 75).

5.1.2 LncRNAs and Macrophages
Macrophages residing in tissues can differentiate from
circulating monocytes or from the fetal liver and yolk sac
during embryonic development. Macrophages are the critical
effector cells of innate immunity, having powerful phagocytosis.
In addition, they can also release cytokines and chemokines to
recruit antigen-presenting cells or T cells to initiate an adaptive
immune response (76–79). Depending on microenvironmental
stimuli, macrophages are able to have different phenotypes. M1
phenotype and M2 phenotype are two principal polarizations.
M1-type macrophages can kill tumor cells and resist pathogen
invasion, and M2-type macrophages mainly promote tumor
growth, invasion, and metastasis. Macrophages in tumor
tissues mostly have the M2 phenotype and function. Therefore,
the specific M2 morphological macrophages that exert
immunosuppressive and tumor-promoting effects are narrowly
defined as tumor-associated macrophages (TAM) (80, 81). LPS
and IFN-g signals are M1 stimulation to induce the activation of
NF-kB (p65 and p50), AP-1, IRF3, and STAT1 through the
TLR4, IFN-a, IFN-b, and IFN-g receptor pathways, triggering
M1 polarization (82–84). IL-4 and IL-13 are M2 stimulation to
activate STAT6 through IL-4Ra signal; IL-10 activates STAT3
through IL-10R signals to trigger M2 polarization (84). M1
macrophages have pro-inflammatory properties and inhibit
tumor growth: (a) Direct killing effect; (b) Antibody-dependent
cell-mediated cytotoxicity (ADCC): Macrophages expressing
IgGFc receptors can kill the target cells by binding to the Fc
segment of IgG antibodies on the surface of tumor cells;
(c) Induce specific immune response: Macrophages present
antigens to promote Th1 immune response (85, 86). M2
macrophages have anti-inflammatory properties and promote
tumor growth: (a) Promote tumor cell proliferation; (b) Promote
angiogenesis; (c) Participate in tumor cell infiltration, and metastasis;
(d) Suppress immune function; (e) Chemotherapy resistance
(87–89). Understanding the regulatory role and function of
lncRNAs in macrophages activities and cancer immunity will help
to explore potential diagnosis and treatment methods.

Recently, there have been increasing studies about lncRNAs in
macrophage differentiation, recruitment, polarization, and functions.
Activin A receptor type 1B (ACVR1B) plays an essential role in the
Frontiers in Immunology | www.frontiersin.org 6
monocyte and macrophage differentiation process. Lnc-MC was
reported to participate in macrophage differentiation via regulating
ACVR1B expression. Mechanistically, lnc-MC as a competing
endogenous RNA can interact with microRNA 199a-5p. Then the
repression of ACVR1B expression was alleviated. Consequently, the
transforming growth factor b (TGF-b) signal pathway was activated,
andmonocyte/macrophage differentiation was facilitated (90, 91). In
addition, there were reports about lncRNAs in macrophage
recruitment. Calcium (Ca2+) flux and Ca2+-dependent signaling
play key roles in tumor growthandprogression.A study revealed that
lncRNA calcium-dependent kinase activation (lncRNA CamK-A)
was highly expressed in cancer and participated in macrophage
recruitment and microenvironment regulation by activating Ca2+-
triggered signal transduction. In terms of mechanism, CamK-A
activated Ca2+/calmodulin-dependent kinase PNCK, which in turn
phosphorylated IkBa and activated calcium-dependent nuclear
factor kB (NF-kB). The expression of CamK-A was coordinated
with the activation of the CaMK-NF-kB axis. This pathway led to the
recruitment of macrophages and angiogenesis. Moreover, CamK-A
can affect cancer development. Clinically, the high expression of
CamK-Awas associatedwithpoor prognosis, indicating that it canbe
used as a potential biomarker and therapeutic target (92).

Considering M1-type macrophages inhibit tumor growth, the
roles of lncRNAs in M1 polarization have been appreciated. FOX
protein is a transcription factor with a highly conserved
sequence, which can facilitate macrophages to release
inflammatory factors, cause M1 polarization, and achieve the
anti-tumor effect. In one study, lncRNA ANCR was reported to
target FoxO1 and inhibit the expression of FoxO1 by promoting
ubiquitination and degradation of FoxO1. The overexpression of
lncRNA ANCR can inhibit the polarization of M1 type, thereby
further promoting the invasion and migration of cancer cells
(93). Furthermore, in another study, lncRNA fetal-lethal non-
coding developmental regulatory RNA (FENDRR) was
associated with M1 macrophages. Overexpression of FENDRR
facilitated M1 macrophage polarization, while knockdown of
FENDRR down-regulated M1 type (94).

TAM has an M2-like effect and can promote tumor
development and angiogenesis. Studies have revealed the
connection between lncRNAs and M2 polarization. Previous
studies have reported that lncRNAs can act as ceRNA to
protect the target mRNAs expression, keep miRNAs away
from mRNAs, or via extracellular vesicles (EVs) pathways to
regulate M2-like polarization (18, 95). For example, cytoplasmic
polyadenylation element binding protein 4 (CPEB4) has been
identified as related to M2-Like polarization. LncRNA RP11-
361F15.2 acted as ceRNA to sponge miR-30c-5p, thereby binding
and activating CPEB4, increasing osteosarcoma progression and
metastasis (96). Also, in another study, LINC00662 competitively
bound to miR-15a, miR-16, and miR-107 to upregulated
WNT3A expression thus activated Wnt/beta-catenin signaling
in macrophages and further promoted M2 polarization and
tumor progression (97). Exosomes are small membrane-bound
vesicular particles participating in intercellular communication
and regulation (98). LncRNAs can be packaged into the vesicles.
Studies have found that the exosome derived from macrophages
February 2022 | Volume 13 | Article 851004
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can influence the development of disease by carrying lncRNAs.
LncRNA RPPH1 overexpression was associated with promoting
colorectal cancer (CRC) metastasis. CRC cell-derived exosomes
can transport RPPH1 to macrophages, thereby mediating M2
polarization (99). Furthermore, M2 macrophages is also involved
in the angiogenesis, aggressiveness, and metastasis of cancer. For
example, the upregulation of prostate cancer-related transcript 6
(PCAT6) accelerated angiogenesis in triple-negative breast
cancer (TNBC). PCAT6 upregulated the expression of
VEGFR2 through the ceRNA model and then promoted
angiogenesis through the VEGFR/AKT/mTOR signaling
pathway . In addi t ion , PCAT6 combined with the
deubiquitinating enzyme USP14 to induce deubiquitination of
VEGFR2, which also promoted angiogenesis (100). The long
non-coding RNA H19 induced by macrophages activated the
miR-193b/MAPK1 pathway, thereby promoting the
aggressiveness of hepatocellular carcinoma (101). Besides the
above, M2 macrophages can secrete epidermal growth factor
(EGF) to suppress lncRNA inhibiting metastasis (LIMT)
expression through the EGFR-ERK axis, thus promoting
ovarian cancer metastasis (102).

M1-M2 conversion is another hot spot of concern. LncRNA X
inactivation specific transcript (XIST) was reported associated with
M1-M2 polarization. The absence of XIST increased the secretion
of exosomes miRNA-503, which can induce M1-M2 polarization
of microglia, thereby upregulating immunosuppressive cytokines,
inhibiting T cell proliferation, then accelerating primary tumor
growth and metastasis (103). In another study, the knockdown of
XIST induced the conversion of M1 to M2 by inhibiting the
expression of enhancer binding protein (C/EBP) a and Kruppel-
like factor 6 (KLF6), thereby promoting the proliferation and
migration of tumor cells (104).

All these studies have shown a close connection between
lncRNAs and the differentiation, recruitment, and polarization
of macrophages. At the same time, their interaction may affect
the occurrence, development, invasion, metastasis, and
vascularization of tumors. A deep understanding of these
relationships is significant for exploring the biomarkers,
diagnosis, and treatment of cancer.

5.1.3 LncRNAs and Natural Killer Cells
NK cells are the body’s first line of defense against cancer cells
and virus infections. They can directly kill tumor cells non-
specifically. This natural killing activity does not require antigen
sensitization nor antibody participation, and there is no MHC
restriction. In addition to having a powerful killing function, it
also has immune regulation function, interacting with other
immune cells in the body and regulating their immune state
and immune function. Clinical studies have found that NK cell
adoptive immunotherapy has good application prospects for
malignant tumors (105–108). At present, it is believed that NK
cells mainly exert their killing effect through the following ways.
Firstly, NK cells directly release cytotoxic particles such as
perforin and granzyme through exocytosis and activate the
caspase pathway to induce target cell apoptosis (109). Cells
express a series of stimulating and inhibiting receptors, and
subsequent reactions occur after being combined with specific
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ligands (such as PD1-PDL1, NKG2-HLA, CD28H-B7H7, and
DNAM1-CD155). The expression levels of tumor ligands and
NK cell receptors determine whether NK cells will kill tumor
cells (110). Also, the cytokine-mediated killing effect is essential.
NK cells can synthesize and secrete various cytokines, such as
IFNg, TNFa, IL1, IL5, IL8, IL10, and GCSF (109). For example,
secreted interferon-g (IFNg) can increase the expression of
human leukocyte antigen (HLA) class I in tumor cells, thereby
enhancing the presentation of tumor antigens to T cells and
exerting the killing effect of T cells (105). The NK cells
infiltration in the TME is related to a good prognosis, showing
the potential in malignancies treatment (111). However, an
accumulation of tumor-derived inhibitory molecules such as
adenosine and lactate may limit NK cell functionality in the
immunosuppressive TME (112).

Nowadays, increasing studies have focused on the role of
lncRNAs in NK cells development, differentiation stages, and the
relevance in regulating cancer immunity (113). Lnc-CD56 was
reported to regulate CD56 and affect NK cells’ maturity
positively. Lnc-CD56 can interact with the transcription factors
such as TBX21, IRF2, IKZF2, ELF4, and EOMES of the NK cells.
Then the CD56 expression and NK cell development were
promoted. While knockdown lnc-CD56 down-regulated CD56
transcription and reduced mature CD56+ NK cells (114–116).

In addition, the cytotoxic activity of NK cells can also be
regulated by long non-coding RNA. Death receptors (DRs) DR5
is an essential inhibitor of immune tolerance and able to enhance
the cytotoxicity of NK cells. Increasing expression of DR5 can be
achieved by overexpression of RUNX3 (117). Furthermore, the
up-regulation of RUNX3 can be achieved by LINC00657 down-
regulating miR-20a-5p. Therefore, LINC00657 can enhance the
cytotoxicity of NK cells to cervical cancer cells through miR-20a-
5p/RUNX3/DR5 axis to inhibit tumor proliferation and
metastasis (118). Moreover, lncRNAs can regulate cytokines
secretion, which also contributes to the killing effect of NK
cells (119). IFN-g secretion was associated with the increased
cytotoxicity of NK cells. In a study, overexpression of lncGAS5
can increase IFN-g secretion through the miR-544/RUNX3 axis.
LncRNA GAS5 up-regulated the expression of RUNX3 by
negatively regulating miR-544, thereby promoting the secretion
of IFN-g and enhancing the killing effect of NK (120). Similar in
another study, GAS5 promoted the secretion of IFN-g and
TNF-a by regulating miR-18a, thereby enhancing the killing
effect of NK cells on gastric cancer (GC) (121). NK cells are
essential in enhancing immune function and inhibiting immune
escape. Taking full advantage of the immune function of NK cells
to kill tumors is a hot research area. Considering the critical
impact of lncRNAs on the function of NK cells, strategies based
on lncRNAs may guide anti-tumor therapies.

5.1.4 LncRNAs and Dendritic Cells
Dendritic cells are the body’s most potent antigen-presenting
cells, derived from Hematopoietic Stem Cells (HSC). Dendritic
cells are responsible for recognizing danger-associated molecular
patterns (DAMPs) or pathogen-associated molecular patterns
(PAMPs). They can efficiently ingest, process, and present
antigens. DCs are the central link of initiating and regulating
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immune response (122, 123). The main task of dendritic cells is
to carry tumor antigens and present them to T cells to activate
the anti-tumor function (124). In addition, dendritic cells can
also stimulate the proliferation and maturation of B
lymphocytes, stimulate the activation of Th cells and NK cells,
and activate the immune functions in various ways. After
dendritic cells take up tumor antigens, they are delivered to
CTLs (cytotoxic T lymphocytes) via MHC-I or MHC-II
pathways. At the same time, a set of costimulatory signals are
provided, such as B7/CD28, IFA-3/CD2, ICAM-1/IFA-1, which
fully activate CTL and produce an anti-tumor immune response
(125–127). Moreover, DC can induce the differentiation and
maturation of NK cells. And also, NK cells can induce the
maturation of immature DCs. Activated NK cells are the first
line of defense for human immunity (128). DC cells act as the
commander-in-chief during the entire immune process. DCs
mobilize other immune cells in the body to perform tumor-
killing functions, which is conducive to tumor clearance.
LncRNAs have been reported to participate in the antigen
presentation and pathogen-response pathways, playing a role
in DCs differentiation, migration, and function.

LncRNAs have been reported to be related to the
differentiation of DCs. Knockout of lnc-DC interfered with DC
differentiation and affected the activation and function of T cells.
Lnc-DC regulated this series of responses by activating the
transcription factor STAT3. Lnc-DC directly interacted with
STAT3 to promote phosphorylation of STAT3 on Tyrosine
705, by preventing STAT3 from binding to SHP1 and
dephosphorylation of SHP1 (129). Moreover, as another
research announced, the overexpression of lnc-DCs led to the
over-maturation of dendritic cells and increased activation of
Th1 cells. What’s more, lncRNAs regulated monocyte/dendritic
cell differentiation (130). LncRNA HOTAIRM1 and miR-3960
affected the expression of myeloid differentiation-related HOXA
genes. It formed a ceRNA network, which acted as a negative
regulator of DC differentiation, enabling cells to maintain the
monocyte phenotype without transforming into DCs (131).

The glycolytic metabolism and migration ability of DCs were
also regulated by lncRNAs. The lnc-Dpf3 directly interacted with
HIF-1a and inhibited the transcription of the HIF-1a-dependent
glycolytic gene Ldha. Thereby DC glycolytic metabolism and
migration ability were suppressed (132). In another study,
LINC00665 overexpression was reported to correlate with a
low infiltration level of DCs (133).

Moreover, previous results showed that lncRNAs could regulate
DCs immune tolerance. Tolerogenic dendritic cells (tol-DCs)
played an indispensable role in immune tolerance. LncRNA
NEAT1 regulated the tolerogenic phenotype expression of DCs
via the NEAT1/miR-3076-3p axis. Mechanistically, as a ceRNA,
NEAT1 sponged miR-3076-3p to modulate the inflammasome
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3).
NLRP3 was a key player in inflammation and associated with the
activation of tol-DCs (134). These works have identified the roles of
lncRNAs in regulating antigen presentation and DCs. Broadening
themechanisms of lncRNAs action and functionsmayprovide new
targets in novel strategies.
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5.1.5 LncRNAs and Myeloid-Derived
Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are a type of
heterogeneous cell derived from bone marrow precursor cells and
immature myeloid cells (IMCs). Accumulation of MDSCs can
promote tumorigenesis and tumor progression. They mediate
tumor immune escape and promote tumor growth by inhibiting
the functionof effectorT cells. Under normal circumstances,MDSCs
are the precursors of DCs, macrophages, and granulocytes, quickly
differentiating and entering the corresponding organs and tissues to
exert normal immunity function. In tumor patients, immature
precursor cells proliferate after MDSCs are stimulated by tumor-
derived factors (TDFs). Then they inhibit the tumor-immune system
and further promote the tumor development (135, 136). The main
functional characteristic of MDSCs cells is their potent ability to
suppress various types of immune responses (61). MDSCs have
different differentiation potential and immunosuppressive abilities.
MDSCs are mainly divided into two subgroups: monocytic-MDSCs
(M-MDSCs) and granulocytic-MDSCs (G-MDSCs). M-MDSCs
express ARG1 and iNOS to inhibit T cell effects by producing high
nitric oxide. G-MDSCs mainly suppress the immune response in an
antigen-specific manner and generate ROS (137, 138). Factors
secreted by tumor cells and inflammatory cytokines produced by
tumor stroma are the main signals leading to the accumulation of
MDSCs. For example, stem cell factor (SCF), granulocyte-
macrophage colony stimulating factor (GM-CSF), granulocyte
colony stimulating factor (G-CSF), etc., stimulate the production
and proliferation of MDSCs through the JAK-STAT signaling
pathway. Transcription factors such as STAT3, STAT5, and
NOTCH are involved in this process. Moreover, IFN-g, IL-4, IL-6,
IL-1b, and CXCL1 mainly induce the inhibitory activity of MDSCs
through NF-kB, STAT1, and STAT6 (139, 140). The roles of
lncRNAs in the maturation, differentiation and function of MDSC
have been studied.

LncRNAs can regulate the development of MDSC. Ficolin B
(Fcnb) expression can be evaluated as a surrogate for the
development of polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSC) and is a predicted target gene
of lncRNA F730016J06Rik (AK036396). Knockout of lncRNA
AK036396 reduced the stability of Fcnb protein, which depended
on the ubiquitin-proteasome system. LncRNA AK036396
inhibited the maturation of PMN-MDSCs and accelerated their
immunosuppression by enhancing the stability of Fcnb
protein (141).

LncRNAs can regulate the differentiation of MDSCs.
Interleukin 4 induced gene 1 (IL4i1) played a vital role in the
differentiation of monocytes/macrophages. Lnc-C/EBPb
interacted with C/EBPb LIP and WDR5 to down-regulate
IL4il, thereby affecting the differentiation of MDSCs (140).
LncRNA RNCR3 acted as a competitive endogenous RNA to
promote the differentiation of MDSCs and suppressive function
through the RNCR3/miR-185-5p/Chop pathway (142).

In addition, lncRNAs also regulated the immunosuppressive
ability of MDSCs. Studies have shown that knockdown of
lncRNA Pvt1 reduced the levels of Arg1 and ROS in G-MDSC
and partially restored the anti-tumor T cell response. LncRNA
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Pvt1 may be a potential therapeutic target for regulating the
inhibitory function of G-MDSCs (143). LncRNA Olfr29-ps1
promoted the immunosuppressive function and differentiation
of Mo-MDSCs by sponging miR-214-3p after modification with
N6-methyladenosine (m6A). Moreover, lncRNA Olfr29-ps1 can
be upregulated by IL6, which can be a potential anti-tumor
target (144).

In short, MDSCs are critical immunosuppressive cells in the
tumor immune microenvironment. MDSCs suppress the body’s
immune cells through various channels, weaken the body’s
killing effect on tumor cells, and contribute to the occurrence
and development of tumors. Therefore, in-depth research and
corresponding clinical practice of the interactions between
lncRNAs and MDSCs still require more remarkable progress in
the prevention of tumor immune escape.

5.2 LncRNAs and Adoptive Immune Cells
in TIME
5.2.1 LncRNAs and T Cells
T lymphocytes are the main components of lymphocytes
involved in adaptive immunity (Figure 3) (145). T cells have
various subgroups and play different immunomodulatory effects.
Cytotoxic T cells (CTLs) secrete perforin and granzyme to kill
infected and mutant cells (146). T-helper (Th) cells have many
classifications and various functions. For example, Th1 cells
secrete IFN-g, IL-2, TNF-a, and LN-a, which mediate the
activation of macrophages and kill intracellular pathogens. Th1
cells play a crucial role in the anti-tumor immune response, while
Th2 cells play an anti-Th1 cells role and promote tumor cell
proliferation (147–149). Regulatory T cells (Treg) are an
immunosuppressive subgroup of CD4+ T cells, which impair
the immune monitoring against cancer and lead to tumor
progression (39). Central memory T cells (Tcm) and effector
memory T cells (Tem) are two main subtypes of memory T cells
(Tm). Tcm can proliferate and differentiate into effector T cells
when stimulated by antigens; the Tem can produce cytokines
when stimulated by antigens (150). Activated natural killer T cell
(NKT) is a T cell subgroup with T cell receptor (TCR) and NK
cell receptor on the cell surface. They can quickly respond to
antigen stimulation, produce multiple cytokines and
chemokines, and have cytotoxic activity (151). LncRNAs have
been revealed to participate in T cells’ development, activation,
differentiation, function, and cancer immunology.

Cytotoxic T cells can specifically kill tumor cells and play an
essential role in anti-tumor immunity. However, the tumor
microenvironment can induce CD8+ T cells to increase the
expression of the inhibitory receptor PD-1. After binding to
the ligand PD-L1 on the surface of tumor cells, it significantly
inhibits the ability of CD8+ CTL to eliminate tumor cells.
Numerous basic investigations and clinical experiments have
proved that anti-PD-1 or anti-PDL-1 methods can significantly
enhance the body’s efficiency in removing tumors (53, 152, 153).
For example, the expression of PD-L1 was upregulated by tumor
IFN signals so that the immune surveillance function mediated
by T cells was suppressed. Silencing long non-coding RNA IFN-
stimulated non-coding RNA 1 (INCR1) controlled IFNg by
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reducing the expression of PD-L1, JAK2, and several other
IFNg-stimulating genes. INCR1 knockdown made tumor cells
more sensitive to cytotoxic T cell-mediated killing (154). TIM-3
(T cell immunoglobulin domain and mucin domain-3) is a type
of T cell surface inhibitory molecule that can cause T cell death
during cancer infection (155). Lnc-Tim3 has shown a regulatory
role in CD8 T exhaustion. Mechanistically, lnc-Tim3 specifically
interacted with Tim3 to suppress Tim-3–Bat3 signaling and
downstream signaling pathway NFAT1 and AP-1 in CD8 T
cells, leading to CD8+ T exhaustion (156, 157). In another study,
the regulatory role of lncRNA NEAT1 in T cell function was also
reported. Via the miR-155/Tim-3 pathway, repression of NEAT1
down-regulated the CD8+T cell apoptosis and enhanced the
anti-tumor effects of T cells (158). Activation-induced cell death
(AICD) is another major type of programmed death of T
lymphocytes. After normal T lymphocytes are stimulated by
invading antigens, T lymphocytes are activated and induce a
series of immune responses. In order to prevent excessive
immune response or prevent this immune response from
developing indefinitely, AICD is used to control the lifespan of
activated T cells. AICD can be used by cancer to avoid immune
destruction. The association between lncRNA and AICD of T
lymphocytes has also been reported. CTLs and TH1 were
sensitive to AICD in breast and lung cancer. LncRNA NKILA
regulated T cell sensitivity to AICD by inhibiting NF-kB activity.
Knockdown of NKILA increased CTL infiltration and
suppressed breast cancer progression (159).

The differentiation of Th cells can be regulated by lncRNAs.
MALAT1 interacted with miR-155 as ceRNA and down-
regulated the expression of miR-155 in CD4+ T cells. The ratio
of Th1/Th 2 was adjusted through this pathway. Up-regulation
of MALAT1 produced more Th2-type cytokines while inhibiting
the release of Th1-type cytokines (160). Th17 cells are a newly
discovered CD4+T cell subgroup associated with anti-tumor
activities. The Th17 cell subgroup can theoretically make up
for the deficiency of the Th1/Th2 mediated immune response
mechanism in the human body. Treg cells that mediate immune
tolerance and Th17 cells that mediate inflammatory response are
in a state of resistance in function and differentiation (161). The
process of CD4+ T cell differentiation into Th17 cells can be
affected by lncRNA NEAT1. Knockdown of NEAT1 inhibited
Th17/CD4+ T cell differentiation by reducing the level of STAT3
protein (162).

In the tumor microenvironment, T cells can induce and
differentiate into regulatory T cells (Tregs). Different from
Th17 cells, Tregs have an immunosuppressive function. They
can inhibit the anti-tumor immunity of immune effector cells
such as CD4+ T cells, cytotoxic CD8+ T cells, NK cells, DC, and
other immune cells through various mechanisms to promote
tumorigenesis and tumor development. Tregs are a critical factor
in tumor immune escape and play a vital role in tumor immune
regulation (163). Long non-coding RNAs have been involved in
regulating the differentiation and function of Tregs. Lnc-
epidermal growth factor receptor (EGFR), specifically bound to
EGFR, blocked its interaction with c-CBL and c-CBL
ubiquitination, upregulated its downstream AP-1/NF-AT1 axis,
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and then triggered EGFR Expression to promote Treg
differentiation and HCC progression (164). In another report,
exosomes (TDEs) derived from breast tumor cells can induce
CD73+gd1 Treg cells through the SNHG16/miR-16-5p/SMAD5
regulatory axis. LncRNA SNHG16 sponged miR-16-5p,
suppressed the target gene SMAD5, and enhanced the TGF-
b1/SMAD5 pathway, thereby upregulating the expression of
CD73 in Vd1 T cells (165). LncRNA fetal-lethal non-coding
developmental regulatory RNA (FENDRR) upregulated growth
arrest and DNA-damage-inducible beta protein (GADD45B)
through sponge miR-423-5p to inhibit Treg-mediated immune
escape of HCC cells (166). Although removing Treg cells can
enhance the anti-tumor immune response, it may also trigger
autoimmunity at the same time. A vital issue of cancer
immunotherapy for Treg is to specifically deplete Treg cells
infiltrating into tumor tissues while suppressing auto-
immunity without affecting the anti-tumor effect of immune
cells. Also, the functional balance between Th17 cells and Tregs
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is critical and can be an essential part of regulating immunity and
cancer (39, 167).

The activation of NKT cells was also related to lncRNAs.
LINC00240 overexpression inhibited the cytotoxic activity of
NKT cells by the miR-124-3p/STAT3/MICA axis and enhanced
the growth, migration, and invasion of cervical cancer cells (168).
In summary, T cells play a critical part in immune responses and
cancer development. T cells have a big family, and their functions
vary from one to another. LncRNAs participate in the
development and biological process of T cells. Therefore,
exploring the intercommunications between the T cells and
lncRNAs facilitate the regulation of cancer immunity and
investigates the potential therapies of cancer.

5.2.2 LncRNAs and B Cells
In the past research, the roles of T cells in tumor immunity have
been extensively studied, while the research on B cells is relatively
rare. B lymphocytes are derived from pluripotent stem cells.
FIGURE 3 | LncRNA and adaptive immune cells in TIME. In the TIME, lncRNA can regulate adaptive immune cells to interact with tumor cells. T cells and B cells are
the main adaptive immune cells. T cells play different immunomodulatory effects depending the various subgroups. Cytotoxic T cells have the tumor killing abilities
and Treg cells play an immunosuppressive role. LncRNA has been revealed to participate in adaptive immune cells’ development, activation, differentiation, function,
and cancer immunology. Created with BioRender.com.
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Stimulated by the antigens, B cells can differentiate into plasma
cells. The plasma cells infiltrate the tumor site and produce
various cytokines and antibodies, which participate in anti-
tumor immunity via ADCC, phagocytosis, and complement
activation. In addition, B cells can also drive antigens to CD4+
and CD8+ T cells to facilitate antigen-specific immune response
(169, 170). In recent years, the role of lncRNAs in B cells
development and differentiation, as well as B cell-derived
malignant tumors such as diffuse large B-cell lymphoma
(DLBCL) and B lymphocytic leukemia, have been discussed
(171). Some lncRNAs have shown potential as therapeutic
targets (Figure 3).

LncRNAs are related to B cells development. Mitotic cell
cycle-related genes of B cells such as KIF23, PLK4, and CENPE
associated with the lncRNAs OIP5-AS, MME-AS1, and the
bidirectional lncRNA CRNDE (172–174). Diffuse large B-cell
lymphoma is a type of tumor composed of medium to large B
lymphoid cells. LncRNAs were reported to regulate the immune
evasion of the tumor. Small nucleolar RNA host gene 14
(SNHG14) acted as a ceRNA to sponge miR-5590-3p, then
increased the expression of Zinc finger E-box binding
homeobox 1 (ZEB1) and induced PD1/PD-L1 activities. The
SNHG14/miR-5590-3p/ZEB1 pathway facilitated the immune
evasion of DLBCL cells and the progression of DLBCL. This
study indicated that targeting lncRNAs may be potential
immunotherapy in DLBCL (175). There were also examples of
lncRNAs and DLBCL related to MYC. MYC proto-oncogene was
upstream of lncRNA functional intergenic repeating RNA
element (FIRRE). The lncRNA FIRRE promoted cell
proliferation and reduced cell apoptosis in DLBCL via the
Wnt/b-catenin signaling pathway, promoting DLBCL
development (176). The balance between the B-cell precursors’
proliferation and apoptosis contributed to B-cell precursor acute
lymphoblastic leukemia (BCP-ALL). Although the specific
mechanism has not been clarified, lncRNAs were reported to
affect tumor development. Long non-coding RNA colorectal
neoplasia differentially expressed (LncRNA CRNDE) increased
the expression of cyclic AMP response element-binding protein
(CREB) via sponging miR-345-5p. Then the BCP-ALL cell
proliferation was promoted, and cell apoptosis was
downregulated (177). In another study, the anti-tumor roles of
lncRNAs were revealed. LncRNA GAS5 overexpression sponged
miR222. B lymphocytic leukemia cells were arrested in the G1
phase of the cell cycle, the cell proliferation and invasion of B
lymphocytic leukemia was inhabited, and cell apoptosis was
promoted (178). These studies showed that lncRNA expression
was related to B cells and B cell-derived tumors development.
The function of lncRNAs deserve further studies and may
become potential clinical therapies.

5.3 LncRNAs and Stromal Cells in TIME
5.3.1 LncRNAs and Cancer Stem Cells
Cancer stem cells (CSCs) refer to cancer cells with the properties
of stem cells, which have the ability to self-renewal and
differentiate. As for the origin, it has not yet been elucidated.
Some normal tissue stem cells or progenitor cells may undergo
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oncogenic transformation to produce CSCs (179). The current
view believes that CSCs have the following characteristics:
(a) exist in the primary tumor; (b) can maintain self-renewal
through asymmetric cell division; (c) can continuously
proliferate and differentiate. The epithelial-mesenchymal
transition (EMT) of CSC allows cancer cells to spread and
metastasize from the primary tumor; (d) resistance to therapy
(180, 181). In addition, increasing researches have confirmed the
associations between CSCs and immune cells in the tumor
microenvironment, including TAMs, DCs, T cells, and
MDSCs. For example, CSCs secrete cytokines and chemokines,
including CCL2, CCL5, CSF1, GDF15, IL-13, TGFb, and Wnt-
induced signaling protein 1 (WISP1), to recruit and polarize
TAMs (182–184). CSCs can also reduce the anti-tumor effects of
DCs by restricting their transport, preventing their maturation,
and inducing the differentiation of tolerance subtypes (184, 185).
Moreover, CSCs can directly interact with T cells. CSC partly
reduces AKT and ERK signal transduction by releasing related
extracellular vesicles or free tenascin C (TNC) to escape from
anti-tumor T cells but induce tumor-promoting regulatory Tregs
(184, 186). In addition, the interaction between CSCs and
MDSCs in TME was also reported. CSCs can secrete soluble
factors and exosomes to promote the MDSCs infiltration,
expansion, and activation (184, 187). LncRNAs are involved in
regulating the self-renewal and epithelial-mesenchymal
transition (EMT) of CSC.

LncRNAs can modulate the CSC self-renewal function. For
example, lncRNA HAND2-AS1 has reported high expression in
liver CSCs. Mechanistically, HAND2-AS1 recruited the INO80
chromatin-remodeling complex to the promoter of BMPR1A to
induce the expression of BMP signaling. Thereby the self-
renewal of CSCs and tumorigenesis were promoted.
Knockdown of lncRNA HAND2-AS1 provided a potential
target for HCC therapy (188). In another study, the role of
lncTCF7 in promoting CSCs self-renewal has also been reported.
Different from the above mechanism, lncTCF7 recruited the
SWI/SNF complex to the promoter of TCF7 to induce Wnt
signaling expression (189). Moreover, lncRNAs participate in the
EMT of CSCs, which promotes tumor metastasis. Long non-
coding RNAHOTTIP was associated with the EMT of pancreatic
cancer stem cells (PCSCs), suggesting a potential therapeutic
target. Mechanistically, via HOTTIP/WDR5/HOXA9/Wnt axis,
HOTTIP affected stemness, including sphericity, tumorigenesis,
stem factors (LIN28, NANOG, OCT4, and SOX2), and markers
(ALDH1, CD44, and CD133) (190). In another study, lncRNA
H19 and miR-675 participated in enriching the CSC pool,
facilitating stemness properties of breast cancer cells and
tumor migration (191). HCC-associated mesenchymal stem
cells (HCC-MSC) have contributed to EMT, and lncRNAs
have participated in these processes. LncRNA-MUF was an
MSC-upregulated factor, and the overexpression lncRNA-MUF
could accelerate EMT and malignant capacity. Mechanistically,
lncRNA-MUF interacted with Annexin A2 (ANXA2) to induce
Wnt/b-catenin signaling expression and EMT process.
Moreover, lncRNA-MUF also acted as a ceRNA for miR-34a
to upregulate Snail1 and promote EMT. Depleting lncRNA-
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MUF suppressed EMT, and this lncRNA-mediated process was a
potential method for therapeutic targeting (192).

5.3.2 LncRNAs and Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs) are the core components of
TME, playing an essential role in the occurrence and
development of tumors. CAFs are mainly derived from
fibroblasts or stellate cells in the pancreas and liver tissues
(193). Stimulation including TGF-b family ligands,
lysophosphatidic acid (LPA), fibroblast growth factor (FGF),
platelet-derived growth factor (PDGF), IL-1, and IL-6 can
activate fibroblasts to become CAFs (194). The role of CAF is
mainly to promote tumors, but in some cases, also to inhibit
tumors (195, 196). CAFs can regulate blood vessel formation,
immune response, tumor progression, chemotherapy, and
radiation therapy via remodeling of ECM and secreting growth
factors. They can reshape the ECM structure through the
application of cross-linking enzymes, proteases, and forces.
This may lead to the tracking of collagen, which can accelerate
the migration of cancer cells. Another situation of changing
ECM is that CAFs can generate high pressure and interstitial
pressure to prevent treatment delivery, thereby hindering the
effect of cancer treatment and compressing blood vessels.
Besides, CAFs can also resist treatment by secreting soluble
mediators. VEGF and hepatocyte growth factor (HGF) can
regulate angiogenesis (193, 197). Moreover, by cytokine
production and surface molecules, CAF can regulate immunity,
including macrophage recruitment, T cells immune response,
and DCs anti-tumor immunity (198). LncRNAs can regulate
CAF activation, tumor progression, and chemoresistance.

LncRNAs participated in the reprogramming process of normal
fibroblasts (NFs) into CAFs. LncRNA Gm26809 was delivered by
melanoma cell B16F0-derived exosomes into NIH/3T3 cells to
reprogram fibroblast NIH/3T3 into tumor-promoting CAFs. The
proliferation and migration of melanoma cells were promoted.
Moreover, the knockdown of Gm26809 reduced pro-tumor effect
(199). In another study, lnc-CAF facilitated squamous cell
carcinoma progression by reprogramming NFs into CAFs
through lnc-CAF/IL-33 pathway. In this process, lnc-CAF
increased the expression of IL-33 and inhabited p62-dependent
autophagy-lysosome degradation of IL-33. A high level of lnc-CAF
was related to tumor development. While lnc-CAF knockdown
downregulated Ki-67 and a-SMA+ CAF expression, limited the
tumor growth (200).

The long noncoding RNAs have been regarded as nodal
drivers of metastatic progression mediated by CAFs. The role
of LINC00092 in ovarian cancer aggressiveness has been
demonstrated. LINC00092 interacted with a glycolytic enzyme
named 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2
(PFKFB2) to modulate glycolysis levels and supportive function
of CAFs, thereby facilitating ovarian cancer metastasis (201). In
addition, the exosomal LINC00659 transferred from CAFs were
revealed to bind miR-342-3p and then upregulate ANXA2
expression. The proliferation, EMT, and migration of
colorectal cancer (CRC) cells have been promoted (202).

The crosstalk between CAFs and cancer cells was associated
with chemoresistance and lncRNAs participated in some of the
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processes. CAFs delivered exosomal lncRNA H19 to act as a
ceRNA sponging miR-141 and then activated the b-catenin
pathway. MiR-141 had an inhibitory effect on the stemness of
CRC cells. Through the lncRNA H19 pathway, the stemness and
chemoresistance of CRC were facilitated (203). Also, in another
study, lncRNA CCAL was demonstrated to contribute to tumor
chemoresistance. Exosomes delivered lncRNA CCAL from CAFs
to the cancer cells. Then it bound to mRNA stabilizing protein
HuR (human antigen R) to increase b-catenin mRNA and
protein levels. The CRC cell apoptosis was suppressed, and the
oxaliplatin (Oxa) resistance was promoted (204). These findings
indicated that lncRNAs were involved the biological activities of
CAFs. Moreover, lncRNAs have the potential to be the target
for chemoresistance.

5.3.3 LncRNAs and Endothelial Cells
Vascular endothelial cells (EC) can complete the metabolic
exchange of plasma and tissue fluid, synthesize various
biologically active substances for tissue development, and act
as antigen-presenting cells to participate in immune activities
(205, 206). The newly formed blood vessels can supply nutrients
for the growing primary tumor. Meanwhile, the tumor cells
synthesize and release various substances to accelerate
angiogenesis, facilitating tumor progression (207, 208).
Vascular endothelial growth factor (VEGF) acts as a mitogen
and pro-angiogenic factor, promoting endothelial cell
proliferation, increasing vascular permeability, and promoting
endothelial cells to express PA, PAI, interstitial collagenase, and
thrombin activity. Tumor angiogenesis, development, and
metastases can be facilitated (209–211). LncRNAs can regulate
angiogenesis by directly regulating endothelial cells ’
development, differentiation, proliferation, migration,
autophagy, and apoptosis. Also, the VEGF can be regulated to
manage angiogenesis.

Long noncoding RNA SENCR contributed to the
differentiation from pluripotent cells to the endothelial. The
proliferation, angiogenic capacity, and migration ability of
human umbilical endothelial cells (HUVEC) were associated
with the expression of SENCR (212). In another study, the
regulatory role of lncRNA MALAT1 in endothelial function
and vessel growth has been demonstrated. Inhibiting lncRNA
MALAT1 facilitated endothelial cell proliferation, migration, and
angiogenesis via the PI3K/Akt signaling pathway (213). In
another study, lncRNA was revealed to protect endothelial
function via DNA damage response (DDR). LncRNA
maternally expressed gene 3 (Meg3) interacted with the RNA
binding protein polypyrimidine tract binding protein 3 (PTBP3)
and activated p53 signaling. This pathway played a vital role in
the cell apoptosis and cell proliferation triggered by the DDR.
Endothelial homeostasis can be regulated through this pathway,
which could be targeted in future therapies (214). What is more,
lncRNA TGFB2-OT1 (TGFB2 overlapping transcript 1) derived
from the 3’UTR of TGFB2 can regulate autophagy of ECs. As a
ceRNA, TGFB2-OT1 sponged MIR3960, MIR4488 and
MIR4459, to affect the miRNA targets CERS1 (ceramide
synthase 1), NAT8L (N-acetyltransferase 8-like [GCN5-related,
putative]), and LARP1 (La ribonucleoprotein domain family,
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member 1). CERS1 and NAT8L were involved in autophagy via
regulating mitochondrial function. TGFB2-OT1 upregulated the
expression of LARP1, which increased the SQSTM1
(sequestosome 1) level, NFKB RELA and CASP1 functions,
and the secretion of IL6, IL8, and IL1B in VECs (215).
Moreover, VEGFA expression can be upregulated by lncRNA
LINC00173.v1 in squamous cell carcinoma (SQC) tissues.
Suppression LINC00173.v1 downregulated the vascular
endothelial cells proliferation and the SQC tumorigenesis.
Mechanistically, LINC00173.v1 upregulated the VEGFA level
via interacting with miR-511-5p. Adopting the antisense
oligonucleotide (ASO) method to inhabit LINC00173.v1 was a
potential strategy to limit SQC progression and upregulated the
therapeutic sensitivity of SQC (216).

5.3.4 LncRNAs and Cytokines in TIME
Cytokines are small molecular proteins synthesized and secreted
by immune cells (such as monocytes, macrophages, T cells, B
cells, NK cells, etc.) and specific non-immune cells (endothelial
cells, epidermal cells, fibroblasts, etc.). Cytokines can be divided
into transforming growth factor-b family (TGF-b), interleukin
(IL), interferon (IFN), chemokine family, etc. They can mediate
the interaction between cells and have a variety of biological
functions in regulating the tumor microenvironment (217, 218).

TGF-b is a crucial immunosuppressive cytokine. TGF-b can
regulate the production and function of a variety of immune
cells. It controls the innate immune system by inhibiting NK cells
and regulating macrophages and neutrophils to form a negative
immune input. It also promotes the expansion of Treg cells,
inhibits the generation and function of antigen-presenting
dendritic cells and effector T cells, and directly regulates
adaptive immunity (219, 220). The TGF-b signaling pathway
and lncRNA network play a vital role in EMT cancer
development (221). In one study, TGF-b activated the Smad
pathway to participate in EMT. LncRNA EMT-associated
lncRNA induced by TGFb1 (ELIT-1) increased the TGFb/
Smad3 signaling and TGFb target genes expression, including
Snail (a transcription factor critical for EMT), via developing a
positive feedback loop. Eventually, lncRNA ELIT-1 facilitated
EMT and cancer progression (222). In another study, TGF-b
interacted with LncRNA-ATB to promote EMT and
hepatocellular carcinoma (HCC) metastasis. LncRNA-ATB
sponged miR-200 family to increase expression of ZEB1 and
ZEB2. In addition, lncRNA-ATB supported organ colonization
of tumor cells by autocrine induction of IL-11 and activating
STAT3 signaling. These findings suggested that lncRNA-ATB
had the potential to be the target for cancer therapy (223).
Another study recognized that TGF-b induced lncRNA
AC026904.1 and UCA1 were closely correlated to poor
prognosis. AC026904.1 was an enhancer RNA in the nucleus,
and UCA1 acted as ceRNA in the cytoplasm. These two lncRNAs
cooperated to increase the level of Slug, playing critical roles in
TGF-b-induced EMT (224). Moreover, accumulating evidence
suggested that TGF-b-induced EMT is NF-kB-dependent.
Repression of NF-kB signaling downregulated TGF-b-induced
EMT. LncRNA NKILA was upregulated by TGF-b and
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participated in the negative feedback loop of the NF-kB
pathway. Overexpression of NKILA suppressed EMT and
tumor metastasis, which may serve as a therapeutic target (225).

IL-6 is a pleiotropic cytokine expressed and distributed in a
variety of cells. It regulates inflammation and cellular immune
response and plays a role in tumor metabolism by activating
various carcinogenic pathways (217). IL-6 is overexpressed in a
variety of cancer cells, and cancer cells rely extensively on IL-6
signal transduction. IL-6 activates signal transducers and
activators of transduction-3 (STAT3) to affect tumor-
infiltrating immune cells, stimulate downstream target genes to
protect tumor cells from apoptosis, facilitate tumor cell
proliferation, upregulate tumor angiogenesis and drug
resistance (226). For example, the oncogenic roles of IL-6/
STAT3 signaling and lncRNAs have been demonstrated.
Patients were exhibiting unsatisfying responses to sorafenib
therapy in renal cell carcinoma (RCC) patients. LncRNA-SRLR
(sorafenib resistance-associated lncRNA in RCC) was found
upregulated in sorafenib-resistant RCCs. Mechanistically,
lncRNA-SRLR interacted with NF-kB and enhanced IL-6
transcription, activating STAT3 and promoting sorafenib
tolerance (227). However, there were anti-tumor lncRNAs
negatively regulating IL-6/STAT3 signaling. Long noncoding
RNA on chromosome 8p12 (termed TSLNC8) was frequently
deleted in HCC. TSLNC8 was able to competitively bind with
transketolase and STAT3, regulate the STAT3-Tyr705 and
STAT3-Ser727 phosphorylation expression, repressing the IL-
6-STAT3 signaling pathway and suppressing HCC progression
and metastasis (228). Lnc-DILC also inhibited IL-6/STAT3
signaling. Mechanistically, lnc-DILC mediates the crosstalk
between TNF-a/NF-kB signaling and autocrine IL-6/STAT3
cascade and connects hepatic inflammation with LCSC
expansion, suggesting that lnc-DILC could be a potential
prognostic biomarker and possible therapeutic target against
LCSCs (229).

Interferons (IFNs) have an excellent inhibitory effect on the
growth of a variety of tumors. The anti-tumor mechanism of
interferon-alpha is to exert its cellular activity by binding to
specific membrane receptors. Once the IFN is attached to the cell
membrane, it conducts signal transduction through IFNAR1,
and IFNAR2, triggering a series of intracellular processes, such as
activating the JAK/STAT signaling pathway, to inhibit cancer cell
proliferation, and regulate the function of the immune system
(230). LncRNA IRF1-AS (Interferon Regulatory Factor 1
Antisense RNA) was an IFN-inducible nuclear lncRNA
reported to repressed esophageal squamous cell carcinoma
(ESCC) progression by promoting IFN response through a
positive regulatory loop with IRF1 (Interferon Regulatory
Factor 1). Mechanistically, IFNs upregulated IRF1-AS via the
JAK-STAT pathway. IRF1-AS activates IRF1 transcription
through interacting with ILF3 (Interleukin Enhancer Binding
Factor 3) and DHX9 (DExH-Box Helicase 9) (231). Interferon-g
(IFN-g) is essential for the innate immune response.
Mechanistically, Sros1 blocked the binding of Stat1 mRNA to
the RBP CAPRIN1, stabilizing the Stat1 mRNA and promoting
IFN-g-mediated activation of innate immune responses (232).
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Mineo et al. found that tumor IFN signal upregulated PD-L1
level to suppress T cell-mediated immune surveillance. Silencing
lncRNA INCR1 reduced the function of PD-L1, JAK2, and IFNg-
stimulated genes. In addition, knocking out INCR1 made tumor
cells susceptible to the killing effect of T cells, thereby making
improvements in CAR-T (154).

CCL18 is mainly produced by innate immune cells, including
dendritic cells, monocytes, and macrophages. CCL18 attracts
naive T cells, regulatory T cells, Th2 cells, immunosuppressive
and immature dendritic cells, and effector B cells. The expression
of CCL18 was positively associated with HOTAIR and promoted
tumor progression. Mechanistically, HOTAIR acted as a ceRNA
for miR-130a-5p to derepress ZEB1, promoting EMT in
esophageal squamous cell carcinoma (ESCC). CCL18 facilitated
cancer development by upregulating HOTAIR expression,
providing a potential new therapeutic target for cancer
diagnosis and treatment (233).
6 POTENTIAL APPLICATIONS FOR
CANCER DIAGNOSIS AND TREATMENT

LncRNAs have the characteristics of tissue-specific expression,
and the differentially expressed lncRNAs can be used as cancer
biomarkers. Moreover, lncRNAs remain relatively stable in
circulating body fluids, which makes non-invasive detection
possible. The detection of lncRNAs is also expected to bring
more information than DNA detection. In addition, from a
pharmaceutical perspective, long non-coding RNAs are also
attractive targets because they can directly regulate disease-
related gene expression. All in all, lncRNAs are closely related
to tumorigenesis, tumor development, and metastasis. It is
promising as a potential biomarker for tumor diagnosis and
novel target for tumor treatment (Figure 4) (234, 235).

Biomarker includes various objective indications or medical
signs which can be measured accurately and reproducibly. A
prognostic biomarker influences the clinical outcome (236).
Recent studies have shown that the abnormal expression of
MALAT1 in tumor tissues and body fluids can be used as a
biomarker for tumor diagnosis and prognosis. MALAT1
regulates various molecular signaling pathways, such as
MAPK/ERK, PI3K/AKT, WNT/b-catenin, and NF-kB, to
participate in immune response, angiogenesis and tumor
progression (237). SNHG15 serves as an oncogenic regulator
in cancer progression. The expression of SNHG15 was
significantly related to the poor prognosis. SNHG15 functions
as a ceRNA sponging miRNA in cancer, meditating oncogenic
factors, thus ruling malignant phenotype and EMT. Studies have
shown that SNHG15 participated in various signaling pathways
essential for cancer, including EMT, WNT/b-catenin, NF-kb,
and YAP-Hippo signaling pathways. SNHG15 may be a
prospective and effective biomarker for cancer diagnosis (238).

LncRNAs-related immunotherapy has many advantages.
Firstly, lncRNAs can regulate a series of downstream target
genes by participating in various cell signaling pathways to
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regulate cancer treatment. In addition, the multiple regulatory
sites of lncRNAs can interact with other molecules, which helps
to develop new structure-based anticancer drugs (30). More
importantly, as discussed before, lncRNAs played a crucial role
in cancer immunology. They influenced many biological
processes, including neutrophil recruitment, macrophage
polarization, NK cells cytotoxicity, T cells functions, etc. The
potential therapeutic applications of lncRNAs have attracted
more and more attention.

Although various regulatory functions of lncRNAs have been
revealed, one primary concern is how we can effectively and safely
target these lncRNAs. Recently, studies have discussed the new
technologies in lncRNA biology. According to the information
from human genome sequencing and the base-pairing rules of
Watson and Crick, it is possible to design therapeutic
oligonucleotides (239–243). Arun et al. used antisense
oligonucleotides (ASO) to systematically knock down Malat1,
which slowed down tumor development in the mouse cancer
model (244). RNA interference (RNAi) can silence lncRNA.
Pichler et al. found that lncRNA FLANC induced angiogenesis
through the STAT3/VEGFA pathway. Using nanoparticles that
carry small interfering RNA to target FLANC can reduce
angiogenesis. This may be a potential new type of cancer
treatment (245). In addition, CRISPR/Cas9, as a newly discovered
genome editing tool, Cas9 nuclease can delete the lncRNA gene or
introduce RNA unstable elements into its locus (246). Zhu et al.
introduced a method based on CRISPR/Cas9 utilizing paired-
gRNAs (pgRNAs) to produce large-fragment deletions, which
allowed the identification of functional lncRNAs in tumor cells
(247). In another study, a CRISPR/Cas9 technology system named
CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and
Immunoprecipitation System) was developed to visualize and
separate endogenous lncRNA by precisely inserting an MS2 tag
into the distal end of the lncRNA locus. By this method, lncRNA
NEAT1 was effectively labeled and monitored for its endogenous
expression variation (248).

In addition, recent advances revealed that regulation of the
immune system and combined immunotherapies might be
effective strategies (249, 250). For example, Li et al. identified a
cancer immunogenic lncRNA named lncRNA inducing MHC-I,
and immunogenicity of tumor (LIMIT) was involved in the
MHC-I expression and T cells responses via LIMIT-GBP-HSF1
axis. LIMIT cis-activated the guanylate-binding protein (GBP)
gene cluster, and GBPs disrupted the association between HSP90
and heat shock factor-1 (HSF1), thereby resulting in HSF1
activation and transcription of MHC-I (107). Immunotherapies
such as Immune Checkpoint Blocking (ICB) and Chimeric
Antigen Receptor T Cell Therapy (CAR-T) have been
gradually applied to tumor treatment (30, 251). In recent years,
immune checkpoint-targeting drugs, such as CTLA-4, PD-1, and
PD-L1 have been utilized for cancer immunotherapy (44). In one
study, H3K27 acetylation activated two immune checkpoint
molecules, PD-L1 and galectin-9. LncMX1–215 worked as a
tumor suppressor molecule in head and neck squamous cell
carcinoma (HNSCC), showing its negative function in
immunosuppression. Mechanistically, lncMX1–215 was bound
February 2022 | Volume 13 | Article 851004

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Guo et al. LncRNAs in Tumor Immune Microenvironment
to GCN5, a known H3K27 acetylase, to interference with the
interaction with H3K27 acetylation (252). However, the
application of (CAR)-T cells is limited due to poor tumor
invasion, progression of failure, and insufficient antigen.

Another concern lies in the efficient delivery of lncRNAs.
Although lncRNAs are attractive therapeutic targets, there are
still some limitations. For example, the molecules can be rapidly
degraded and cleared from circulation. Besides, the large size
makes it difficult to pass through the cell membrane (253).
Nowadays, various materials and approaches, including
biomaterials, controlled release systems, and nanoparticles
(254, 255). They also show the potential to deliver lncRNAs
and target cells. For example, implantable biomaterials construct
a structure to attract and reprogram DCs for immunotherapy.
Ali et al. revealed that polymers had the potential to be structured
for releasing cytokine, presenting cancer antigens, recruiting
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immune cells, and promoting immune responses (256, 257).
There are also injectable biomaterials such as hydrogels, gelatin,
and mesoporous silica micro rods. These materials are highly
deformable and self-assembled without surgical implantation,
creating a local immunogenic environment to recruit and
activate immune cells. Ji et al. explored a hydrogel patch
harboring LSD1 inhibitor and chemotherapy agent, which
enhanced tumor immunogenicity and increased T-cell
infiltration via epigenetic activation of innate immunity (258).
This study revealed the broad applicability of epigenetic
remodeling hydrogel patches, which also inspired the lncRNA-
related strategies. Hori et al. developed a kind of alginate with
rapid self-gelling property in vivo. This material was fabricated
by the mixture of calcium-loaded alginate microspheres with
soluble alginate solution and DCs. When the constructed
material was injected into mice, the activated DCs in the
FIGURE 4 | Potential applications for cancer diagnosis and treatment. Various findings demonstrated the importance and value of long non-coding RNAs. Studies
highlighted the potential of lncRNA in biomarkers for cancer diagnosis and targets for cancer therapy. Created with BioRender.com.
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alginate facilitated the recruit and immune responses of the T
cells (259, 260). Nanoparticles have been adopted for the delivery
of lncRNAs and targeting desired cells (261). Amita M Vaidya
et al. developed RGD-PEG-ECO/siDANCR nanoparticles to
facilitate delivery of siDANCR and then silence lncRNA
DANCR, which was a therapeutic target for triple-negative
breast cancer (TNBC). The results showed prolonged DANCR
silencing and suppressing TNBC proliferation in mice with no
overt side-effects (262). In another study, due to the
biocompatibility and biodegradability of poly (lactic acid/
glycolic) (PLGA), PLGA-based nanoparticles were applied to
develop a drug delivery and controlled release system.
LINC00958 was associated with lipogenesis that exacerbated
HCC. Based on PLGA, a nanoplatform was fabricated to deliver
si-LINC00958 for HCC suppression (263). Besides, there was a
study about protein-mimicking nanoparticles, which was reported
to modulate a cellular homeostasis without displaying a general
toxicity (264), which may act as potential nanomedicines to
combination lncRNA-based therapy in cancer treatment.
Nucleic acids are not allowed to transfer biological membranes
directly. However, the polymorphic lipid phase can temporarily
compromise the permeability barrier and allow nucleic acids to
enter the cell. Extracellular vesicles as therapeutic vehicles have
stoked lots of interest (265, 266).Via EVs, lncRNAs were delivered
between immune and tumor cells to play a regulatory role in
cancer development. A previous study demonstrated that TAMs
enhanced breast cancer cells’ aerobic glycolysis and apoptotic
resistance by the EV delivery of HIF-1a-stabilizing long
noncoding RNA (HISLA). Mechanistically, HISLA interrupted
the reaction between PHD2 and HIF-1a, thereby suppressing the
hydroxylation and degradation of HIF-1a (267).
7 CONCLUSIONS

The interactions between the immune system and tumor
microenvironment are complex. LncRNAs have been
demonstrated to participate in various cellular metabolic,
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immune cell activations, and immune responses. Moreover,
they play a crucial role in regulating tumorigenesis, tumor
progression, angiogenesis, and immunosuppression. Therefore,
understanding the regulatory role of lncRNAs in the TIME can
broaden the field of antitumor immunity. Targeting lncRNAs
could be a promising clinical approach in cancer therapy. Herein,
we critically reviewed various characters and regulatory roles of
lncRNAs. Potential strategies include increasing infiltration
of antitumor immune cells, enhancing the work efficiency of
antigen-presenting cells, improving the toxicity of effector cells,
and reprogramming immunosuppressive cells.

There are perspectives on the awaiting challenges and future
directions of immunotherapies based on lncRNAs. So far, the
proportion of patients who respond well to immunotherapy is
still deficient. Only a few measures have been able to enter
human clinical research. Therefore, understanding the molecular
and cellular drivers of immune escape is significant. Besides,
optimizing long-term survival with multi-agent cancer
immunotherapy can be promising. The combination of
immunotherapy and lncRNAs have the potential to promote
tumor treatment. Moreover, it is expected to enhance the
therapeutic effect of immunotherapy and reduce side effects.
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