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Microglia show differential transcriptomic response to Aβ
peptide aggregates ex vivo and in vivo
Karen N McFarland1,2,3 , Carolina Ceballos2,3,4, Awilda Rosario2,3,4, Thomas Ladd2,3,4, Brenda Moore2,3,4, Griffin Golde2 ,
Xue Wang5, Mariet Allen6, Nilüfer Ertekin-Taner6,7, Cory C Funk8, Max Robinson8, Priyanka Baloni8, Noa Rappaport8,
Paramita Chakrabarty2,3,4, Todd E Golde2,3,4

Aggregation and accumulation of amyloid-β (Aβ) is a defining
feature of Alzheimer’s disease pathology. To study microglial
responses to Aβ, we applied exogenous Aβ peptide, in either
oligomeric or fibrillar conformation, to primary mouse microglial
cultures and evaluated system-level transcriptional changes and
then compared these with transcriptomic changes in the brains of
CRND8 APP mice. We find that primary microglial cultures have
rapid and massive transcriptional change in response to Aβ.
Transcriptomic responses to oligomeric or fibrillar Aβ in primary
microglia, although partially overlapping, are distinct and are not
recapitulated in vivo where Aβ progressively accumulates. Fur-
thermore, although classic immune mediators show massive
transcriptional changes in the primary microglial cultures, these
changes are not observed in the mouse model. Together, these
data extend previous studies which demonstrate that microglia
responses ex vivo are poor proxies for in vivo responses.
Finally, these data demonstrate the potential utility of using
microglia as biosensors of different aggregate conformation, as
the transcriptional responses to oligomeric and fibrillar Aβ can be
distinguished.
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Introduction

Alzheimer’s disease (AD) is characterized by two hallmark pa-
thologies, senile plaques containing amyloid-β (Aβ) aggregates and
neurofibrillary tangles (NFTs) composed of hyperphosphorylated
and aggregated τ. Amyloid plaques are the earliest manifestations
of the disease process and can appear up to 20 yr before the onset
of cognitive symptoms (Bateman et al, 2012). Amyloid pathology, in
the absence of τ or neurodegenerative pathology, defines pre-
clinical AD and is the first step along the Alzheimer’s continuum in

humans (Vickers et al, 2016; Jack et al, 2018; Cummings, 2019). In
longitudinal studies, amyloid deposition precedes τ accumulation
which is more closely tied to cognitive decline relative to amyloid
(Villemagne et al, 2013; Hanseeuw et al, 2019). Furthermore, genetic
data strongly support a causal, triggering role for aggregation and
accumulation of Aβ in AD (Kunkle et al, 2019)—including the well-
studied APOE4 risk allele in late-onset AD, which reduces the clearance
of Aβ from the brain (Liu et al, 2013). Yet, despite intensive study, the
precise mechanism by which accumulation of Aβ aggregates trigger
the degenerative phase of the disease is not well understood.

As the primary immune and phagocytic cell in the brain, the role
of microglia has been of growing interest in AD and other neuro-
degenerative disorders. “Resting” microglia, which constitute up to
10% of the brain, constantly sample the surrounding brain mi-
croenvironment and can rapidly respond to an insult (Aguzzi et al,
2013). In AD, the presence of increased “reactive” microglial cells
both around senile plaques and in areas of neurodegeneration is a
well-established pathological feature (Dickson et al, 1988; Perlmutter
et al, 1992; Dickson, 1997). Notably, Aβ42 fibrils and oligomers cause
microglia activation resulting in the release of proinflammatory cy-
tokines whichmay contribute to neurotoxicity (Jimenez et al, 2008; He
et al, 2012; Dewapriya et al, 2013; Wang et al, 2016). Alterations in
microglial activation states can also impact both amyloid and τ
pathology in varying ways that are dependent on both the stimulus,
the model system, and the pathology that is being assessed.

Over the last decade, a series of genetic studies has firmly linked
microglial function to AD. Genetic studies of familial and late-onset
AD implicate a large number of loci that contain immune genes in
mediating the risk for AD (Harold et al, 2009; Lambert et al, 2009,
2013; Guerreiro et al, 2013; Jonsson et al, 2013; Jin et al, 2015;
Carrasquillo et al, 2017; Sims et al, 2017; Kunkle et al, 2019). Fur-
thermore, genetic studies identifying coding variants in three
microglial-specific genes (PLCG2, ABI3, and TREM2) highlight the
important role that microglia play during neurodegeneration
(Guerreiro et al, 2013; Jonsson et al, 2013; Jin et al, 2014; Bellenguez
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et al, 2017; Sims et al, 2017; Conway et al, 2018; van der Lee et al, 2019;
Strickland et al, 2020). In addition, system-level data analysis of
spatial, single-cell, single-nuclei, and bulk RNA-sequencing (RNA-
seq) studies reveal perturbations in immune transcriptional net-
works as well as distinct subpopulations of microglia that are
perturbed in the AD brain (Keren-Shaul et al, 2017; Krasemann et al,
2017; Conway et al, 2018; Friedman et al, 2018; Hammond et al, 2019;
Li et al, 2019; Chen et al, 2020; Olah et al, 2020).

The study of microglial cells is challenging in that they are highly
responsive to external stimuli and rapidly alter their phenotype once
removed from the brain (Bennett et al, 2016). Indeed, system-level
transcriptomic studies show that primary microglial cells are poor
proxies for in vivo microglia (Butovsky et al, 2014). Even rapid isolation
of microglial and subsequent “omic” analyses can be challenging as it
is clear the isolation process is sufficient to induce some tran-
scriptional—and likely functional changes. Nevertheless, many lab-
s—including our own—study primary microglial cells in culture. In
particular, the application of exogenous Aβ aggregates tomicroglia is a
widely used methodology to study both how microglial respond to Aβ
and how effectively the microglia can phagocytose and degrade Aβ.

Here, we used RNA-seq to examine the systems level response of
primary microglia in culture to synthetic Aβ42 aggregates in either
oligomeric (oAβ) or fibrillar (fAβ) form. Our analyses of the tran-
scriptomic data show that microglial cells in culture show massive
transcriptional changeswhenchallengedwithAβ42 aggregates. Although
some of the differentially expressed genes (DEGs) in response to the
different forms of Aβ42 are altered similarly, many show differential
expression in response to oAβ or fAβ. We also compared this global
transcriptional response with Aβ42 in primary microglial cells in culture
to transcriptomic data from a mouse model of amyloid deposition—the
amyloid precursor protein (APP) transgenic CRND8 mouse—at 3–20 mo
of age (Chishti et al, 2001). Subsequent comparisons of these datasets
indicate that most Aβ transcriptional responses in microglia are largely
not replicated in the intact brain. This comparisondemonstrates that the
transcriptional response to Aβ in primary cultures poorly reflect the
response toAβ bymicroglial cells in themousebrain. Thesedataamplify
themessage of several other recent studies indicating that onemust be
very cautious when using primarymicroglial cells cultured in isolation to
infer mechanistic insights about microglial function in vivo.

Results

Large transcriptomic changes in primary microglia after Aβ
treatment

Preformed oligomeric (oAβ) or fibrillar (fAβ) forms of Aβ42 peptide were
applied to primary microglia cultures for 1- or 12-h. oAβ and fAβ were
characterized by Western blot and a representative image is shown (Fig
S1) demonstrating differences in the high molecular weight species
between oligomeric and fibrillar Aβ preparations. After treatment, RNA
was isolated and sequenced to identify transcriptional changes in
primary microglia that are responsive to different conformations of Aβ42
peptide. As noted in the methods, these data along with the mouse
CRND8 RNAseq data are publicly available and can be viewed using an
interactive data portal. Using cutoff values of a P-value (adjusted for
multiple comparisons) ≤0.05 and an absolute log2 fold change of 0.5, we

identifiedacute transcriptional changes after fAβ application after just 1-
h (versus control) with 997 up-regulated and 960 down-regulated genes
(Fig 1A and Table S1). Gene ontology (GO-MF) and Kyoto Encyclopedia of
Genes andGenomes (KEGG)pathwayanalysis identifieddown-regulated
genes as being enriched in cytoskeletal and extracellular matrix orga-
nization (i.e., tubulin binding, motor activity, and extracellular matrix
structural constituent; Fig 1E and Tables S2 and S4), whereas up-
regulated genes were involved in immune system responses (i.e., re-
ceptor for advanced glycation endproducts [RAGE] receptor binding and
chemokine activity), and kinase activity (i.e., mitogen activated protein
[MAP] kinase phosphatase activity; Fig 1F and Tables S3 and S5).

After 12-h of fAβ treatment, we identified 1,755 up-regulated and 1,975
down-regulated genes when compared with control (Fig 1B and Table
S6). Gene ontology (GO) and KEGG pathway analysis revealed enrich-
ment of down-regulatedgenes involved in cytoskeletal andextracellular
matrix organization (i.e., tubulin binding,motor activity, and extracellular
matrix structural constituent) in addition to heparin binding and gly-
cosaminoglycan binding (Fig 1E and Tables S8 and S10). Genes up-
regulated after 12 h fAβ treatment were enriched in genes involved
with antigen processing (transporter associated with antigen [TAP]
binding) and proteolytic activity (i.e., endopeptidase activator activity
and threonine-type peptidase activity; Fig 1F and Tables S7 and S9).

We next examined the effect of a 12-h oAβ treatment (versus
control) on primary microglial cultures. We identified 1,608 up-
regulated and 1,394 down-regulated genes after 12 h of oAβ (Fig
1C and Table S11). GO and KEGGpathway analysis revealed that down-
regulated genes are primarily involved in DNA transcription (i.e., DNA-
binding transcriptional repressor activity and transcription cofactor
binding; Fig 1C and E and Tables S13 and S15). Genes up-regulated by
oAβ treatment are enriched with GO terms suggestive of cell cycle
involvement (i.e., anaphase-promoting complex binding and kinet-
ochore binding; Fig 1F and Tables S12 and S14). A number of the topGO
category hits overlap somewhat between the 1- and 12-h fAβ
treatments; however, many of the changes seen after oAβ treatment
stand in stark contrast to those seen after both fAβ treatments.

To further examine differences and similarities in transcriptional
changes between fAβ and oAβ treatments, we directly compared
gene expression at 12 h of fAβ treatment (numerator) against gene
expression at 12 h of oAβ treatment (denominator) to identify DEGs
in these conditions. This comparison revealed disparate changes in
transcriptional responses between the conformations of Aβ pep-
tide and identified 982 up-regulated genes and 1,348 down-
regulated genes in fAβ versus oAβ treatments (Fig 1D and Table
S16). Affected down-regulated genes (down in fAβ, up in oAβ)
primarily affected cell cycle and DNA-binding activities (i.e., DNA
replication origin binding, kinetochore binding; Fig 1E and Tables
S18 and S20), whereas up-regulated genes (up in fAβ relative to
oAβ) were enriched in immune system responses (i.e., TAP binding,
T-cell receptor binding; Fig 1F and Tables S17 and S19).

Primary microglia have unique transcriptional responses to Aβ
conformations

To directly identify disparate changes in transcription in response
to Aβ conformation, we compared the log-fold changes for DEGs in
these Aβ treatments (Fig S2). We find a strong correlation (R = 0.74)
when comparing treatments of fAβ, 12-h (versus control) against
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Figure 1. Differential gene expression in primary microglia after treatment with Aβ42 oligomers (oAβ) or fibrils (fAβ).
(A) Total changes in down- (blue) and up- (red) regulated genes in primarymicroglia after 1 h of fAβ treatment versus control. (B) Volcano plot of differentially expressed
genes (DEGs) after 12 h of fAβ42 treatment versus control in primary microglial cultures. (C) Volcano plot of DEGs after 12 h of oAβ42 treatment in primary microglial
cultures. (D) Volcano plot of DEGs after 12 h of Aβ42 fibrils treatment in primary microglial cultures. (E) Bubble plots of Gene Ontology (GO) category enrichment results for
down-regulated genes. (F) Bubble plots of GO category enrichment results for up-regulated genes. Plots for GO category over-enrichment analyses show the top 10 hits
for each comparison by enrichment score after a filter step by a P-value adjusted for multiple comparisons of ≤0.05 and keeping GO categories with >5 genes within the
category.
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oAβ, 12-h (versus control). The 865 commonly up-regulated genes
are enriched with GO terms involved with peptidase and che-
mokine activity (i.e., threonine-type endopeptidase activity),
whereas the 865 commonly down-regulated genes are enriched in
terms involving posttranslational modifications (histone de-
methylase activity and ubiquitin-like protein ligase activity) (Fig
S2A and B and Tables S21 and S22). Interestingly, the 170 genes that
are up-regulated in oAβ, 12-h treatment but down-regulated in
fAβ, 12-h treatments are involved in cell cycle (i.e., anaphase-
promoting complex) and microtubule motor activities (i.e., motor
activity and ATP-dependent microtubule motor activity). The 51
genes down-regulated in oAβ, 12-h treatment but up-regulated in
fAβ, 12-h treatment which are involved in antigen binding and
immune responses (i.e., TAP complex binding and CD8 receptor
binding).

An analysis comparing fAβ, 1-h treatment with oAβ, 12-h treat-
ment reveals similar results (Fig S2C and D and Tables S23 and S24).
Commonly up-regulated genes (515 genes) have roles involving the
immune system (RAGE receptor binding and chemokine activity)
and kinase activities (MAP kinase tyrosine/threonine phosphatase
activity), whereas there was no significant enrichment of GO terms
(P-value adjusted for multiple comparisons ≤ 0.1) for the 387
commonly down-regulated genes. The divergently responding 56
genes that are up-regulated in oAβ, 12-h treatment but down-
regulated in fAβ, 1-h treatment are involved in the cell cycle
(anaphase-promoting complex binding) and microtubule motor
processes (microtubule motor activity), whereas the 78 genes up-
regulated in fAβ, 1-h treatment, but down-regulated in fAβ, 12-h
treatment are involved in the innate immune response (comple-
ment component C1q complex binding). This analysis highlights the
up-regulation of genes involved in the cell cycle and microtubule
motor pathways after oAβ treatment.

A direct comparison of significant changes in gene expression
between acute 1-h versus longer term 12-h fAβ treatments ex-
pose 515 commonly up-regulated genes involved in cytokine and
immune activity (immunoglobulin receptor binding and che-
mokine receptor binding) and 507 commonly down-regulated
genes involved in microtubule motor activity (microtubule
binding and microtubule motor activity; Fig S2E and F and Tables
S25 and S26). Longer term fAβ treatment resulted in up-
regulation of 93 genes that are initially down-regulated in 1-h
fAβ treatment that are involved in adenylation and GTPase
activities (adenylyltransferase activity, GTPase activity, and
nucleoside-triphosphatase activity). Acute fAβ, 1-h treatment
triggered an up-regulation of 98 genes that are down-regulated
after 12 h of treatment which are enriched in diverse GO terms,
including complement component C1q complex binding, DNA
helicase activity, and integrin binding.

For a more comprehensive view of these disparate changes in
microglia after the application of different Aβ species, we examined
all genes that were identified as a DEG in any of the of the three
treatment paradigms versus control and plotted a heat map of their
z-scores with hierarchical clustering of the genes (Fig 2). Clear
patterns of transcriptional changes can be seen between condi-
tions. To identify the genes within these clusters, we cut the hi-
erarchical tree at a height of 5.75 which resulted in 13 gene clusters
that were then analyzed by GO analysis (Fig 2 and Tables 1 and

Figure 2. Hierarchical clustering of differentially expressed genes in Aβ42-
treated microglia reveals unique gene signatures.
Hierarchical clustering Z-scores of gene expression data. A cut height of h = 5.75
was applied to identify clusters of genes with similar expression patterns which
produced 13 clusters.
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Table 1. Gene ontology (GO) analysis of differentially expressed gene clusters in Aβ-treated microglia.

Cluster Control oAβ, 12-h fAβ, 1-h fAβ, 12-h GO category (molecular function) Enrichment score P-value

13 ↑ Mix Mix Mix

Carbohydrate:proton symporter activity 24.95 9.15 × 10−3

JUN kinase activity 22.46 1.02 × 10−2

Neurexin family protein binding 17.28 1.32 × 10−2

12 ↑ ↓ ↓ ↑

Kainate selective glutamate receptor activity 5.44 4.14 × 10−2

Testosterone dehydrogenase (NAD+) activity 5.44 4.24 × 10−2

Alpha-adrenergic receptor activity 5.44 4.26 × 10−2

4 ↑ ↓ ↑ ↓

ATPase inhibitor activity 4.66 3.16 × 10−4

RNA polymerase II transcription cofactor binding 3.11 9.28 × 10−3

LBD domain binding 2.66 1.26 × 10−2

10 ↑ ↓ ↓ ↓

Histone demethylase activity (H3-K9 specific) 8.02 3.99 × 10−6

Leucine binding 8.02 1.64 × 10−3

Insulin binding 8.02 2.14 × 10−3

8 ↑ ↑ ↓ ↓

DNA insertion or deletion binding 8.09 1.49 × 10−3

MutLalpha complex binding 8.09 1.52 × 10−3

sphingosine N-acyltransferase activity 6.94 2.06 × 10−3

2 ↑ ↓ ↑ ↓

3-hydroxyacyl-CoA dehydrogenase activity 2.08 4.12 × 10−3

Co-receptor binding 1.85 1.52 × 10−3

Dolichyl-phosphate-mannose-protein
mannosyltransferase activity 1.85 6.07 × 10−3

11 ~ ↓ ↑ ↓

STAT family protein binding 1.39 7.17 × 10−3

Complement component C1q binding 1.39 7.36 × 10−3

TAP complex binding 1.24 9.57 × 10−3

9 ↓ ~ ↑ ↓

Stearoyl-CoA 9-desaturase activity 7.39 1.72 × 10−3

MAP kinase tyrosine/serine/threonine phosphatase
activity 6.83 8.84 × 10−6

Acyl-CoA desaturase activity 6.34 2.39 × 10−3

3 ↓ ↑ ↓ ↑

Threonine-type endopeptidase activity 3.25 4.46 × 10−14

Threonine-type peptidase activity 3.25 4.46 × 10−14

Proteasome-activating ATPase activity 3.25 7.92 × 10−5

7 ↓ ↓ mix ↑

TAP binding 6.99 7.76 × 10−10

TAP complex binding 6.10 6.10 × 10−7

CD8 receptor binding 5.99 4.93 × 10−8

6 mix mix ↓ ↑

Platelet-derived growth factor binding 6.51 6.36 × 10−7

Extracellular matrix structural constituent conferring
compression resistance 5.58 1.57 × 10−6

Cobalt ion binding 4.69 4.11 × 10−4

1 ~ ↑ ↓ ↓

Single-stranded DNA-dependent ATPase activity 7.97 3.77 × 10−18

Kinetochore binding 7.76 3.05 × 10−6

Single-stranded DNA-dependent ATP-dependent DNA
helicase activity 7.28 2.24 × 10−7

5 ↓ ↑ ~ ~

G protein–coupled adenosine receptor activity 5.31 3.35 × 10−3

Structural constituent of presynapse 4.13 5.78 × 10−3

Low-density lipoprotein particle receptor activity 3.71 6.96 × 10−3

GOseq analysis to analyze GO category over-enrichment was applied to these clusters identified in Fig 2. The top three categories are shown after ranking by
enrichment score and filtering for genes with a P-value of <0.05 and to remove categories with <5 genes within the category.
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S27–S29). Cutting the hierarchical tree at this height identified
clusters of gene that were visually apparent. By this analysis, we
identified clusters of genes that have similarities in expression
patterns after treatment with different Aβ conformations. For
example, genes in cluster 10 are involved in transcriptional
processes and have decreased expression in all three conditions
compared with controls. However, this analysis also highlights the
clusters of genes that have a unique transcriptional signature in
response to specific Aβ conformations. Genes within clusters 11
and 9 have increased expression levels after acute fAβ treatment
and are enriched in terms involving metabolic processes and
immune responses and cell signaling. Genes in cluster 7 are
increased after long-term fAβ treatment and encompass func-
tions of the antigen processing and the immune system. Genes in
clusters 1 and 5 are strongly increased in expression after oAβ
treatment and are involved in cell cycle and nucleobase
metabolism.

Gene network changes in microglia highlight specific
transcriptional responses to Aβ conformations

We applied a weighted gene co-expression network analysis
(WGCNA) onto the expression data from Aβ-treated primary
microglial cultures. WGCNA is a method to study biological net-
works by analyzing pair-wise correlations between the genes
within the dataset (Langfelder & Horvath, 2008). We identified 71
co-expression modules (Fig 3 and Tables S30 and S33). We cor-
related the modules with treatment paradigms (Fig 3A) and an-
notated these modules using a gene overlap analysis (Shen, 2020)
with genes identified with subpopulations of microglial cells
identified in prior bulk, single-cell (sc-), single-nuclear (sn-) RNA-
seq, or spatial transcriptomic studies (Fig 3B and Table S34). We
additionally annotated the modules by KEGG and GO analysis to
identify enrichment of pathways within the modules (Fig 3C and
Tables S31 and S32). By relating the modules to each treatment
condition, we observed interesting patterns in module behavior.

Of these modules, 17 modules are positively correlated with
all forms of treatment and indicate a nonspecific response to
Aβ treatment. These modules include antiquewhite4, brown,
coral1, darkseagreen4, honeydew1, lavenderblush3, lightcoral,
lightcyan, lightcyan1, lightgreen, lightsteelblue1, orangered3,
orangered4, saddlebrown, violet, white, and yellow4. GO and KEGG
pathway analysis reveals that genes within these modules are
involved in a variety of molecular functions previously linked with
AD including cytokine and chemokine activities (lightgreen) the
proteosome (brown and saddlebrown), the splicesome (laven-
derblush3 and saddlebrown), and neurodegenerative pathways,
including AD, Parkinson’s disease, and Huntington’s disease
(brown and saddlebrown). Fifteen modules are negatively cor-
related with all forms of Aβ treatment—again, indicating a non-
specific response—and include the black, brown4, darkmagenta,
darkolivegreen, floralwhite, greenyellow, magenta, mediumpurple3,
midnightblue, navajowhite2, paleturquoise, sienna3, skyblue, sky-
blue2, steelblue, and yellowgreen modules. The genes within
these modules are enriched in genes involved in Rab and Ras
GTPase activities (mediumpurple3) and with fatty acid metabolism
(darkolivegreen).

Six modules are positively correlated with acute, 1-h fAβ
treatment and are either negatively correlated or not significantly
correlated with the other treatments. These modules characterize
the acute response to fAβ treatment and include the tan, salmon,
skyblue3, maroon, plum2, and cyan modules. These modules
represent genes with functions involved with ion channel ac-
tivities (cyan), histone modification activity (plum2), RNA pro-
cessing and splicing, and protein ubiquitination and acetylation
(skyblue3).

There are five modules that are positively correlated to long-
term, 12-h fAβ and include the darkslateblue, lightpink4, palevio-
letred3, blue, and coral2 modules. Genes within these modules are
enriched with genes with immune/inflammatory/cytokine func-
tions (blue), RNA binding (darkslateblue), GTPase activity (pale-
violetred and coral2), and transcriptional regulation (lightpink4). In
addition, it is within the blue module that most reactive and re-
sponsive microglial markers reside (Fig 3C).

Five other modules are positively correlated with long-term, 12-h
oAβ treatment and include bisque4, thistle2, mediumorchid, tur-
quoise, and salmon4. These modules are enriched with genes
which are involved with extracellular matrix structural components
(bisque4) and DNA replication and repair and the cell cycle (tur-
quoise). These analyses further support our original observation
that indicates unique microglia transcriptional responses to dif-
ferent species of Aβ peptides.

Interestingly, subpopulations of microglia previously identified
in sc-, sn-RNA-seq, or spatial transcriptomic studies did not fall
within any single module (Fig 3B). For example, plaque-induced
genes (PIGs) which are found in microglia surrounding Aβ plaques
(Chen et al, 2020) fall across multiple modules and those modules
do not fit any pattern of being correlated or not with any
treatment paradigm, including being both negatively and pos-
itively correlated with various treatments. This pattern also
holds for genes found within the neurodegenerative disease-
associated phagocytic microglia cells (DAMs) (Keren-Shaul et al,
2017) and microglia associated with a neurodegenerative phe-
notype (MGnD) (Krasemann et al, 2017). As noted in these prior
studies, the microglia subpopulations share a number of genes
in common.

To examine the strength of gene–gene connections with these
networks, we chose representative modules that were positively
correlated in only one treatment type and examined the networks
across all treatments (Fig 4). We plotted edge weights to represent
gene–gene connection strengths in an ordered heat map to vi-
sualize the overall network strength more easily between the
various treatment paradigms. Given that the salmon module has
the strongest correlation value with the 1-h fAβ treatment, we used
this as a representative network for acute, 1-h fAβ treatment. We
find the genes within the salmon module have a stronger overall
connection as compared with long-term, 12-h fAβ, or oAβ treat-
ments (Fig 4A). Similar enhancements in gene–gene network
strength were seen for the blue module which is positively cor-
related with long-term, 12-h fAβ treatment (Fig 4B). Although this
module does not have the strongest correlation value of the five
modules highly correlated with the 12-h fAβ treatments, we chose
to examine this module as its member genes are enriched in in-
terferon and immune signaling pathways. Finally, the turquoise
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module, which has the highest correlation value of the fivemodules
highly correlated with oAβ treatment, was chosen as the repre-
sentative module for positive correlation with long-term, 12-h oAβ
treatment (Fig 4C). This module also shows a striking increase in

network connection strength as compared with the other two
conditions. Genes within this module show enrichment in cell cycle,
DNA replication, and repair pathways. The top hub genes for these
three modules are listed in Table 2.

Figure 3. Weighted gene correlation network analysis.
Genemodules found by weighted gene co-expression network analysis in Aβ-treated primarymicroglia. (A)Modules are colored in a heat map by their correlation value
with the different Aβ treatments. Modules with nonsignificant P-values associated or with an absolute correlation value or <0.5 are indicated in gray. (B) Bubble plot of a
gene overlap analysis to identify shared genes between the module and previously identified microglial subtypes. Modules with significant (P ≤ 0.05) odds ratios of
overlapping genes are colored as in the scale to the right. The number of overlapping genes is indicated by the dot size. (C) KEGG pathway over-enrichment analysis for
genes within each module. Pathways with an over-represent P-value ≤ 0.05, the number of module genes within the pathway >5, and an enrichment score >1.5 are
depicted. P-value is indicated by the color scare and the enrichment score by the dot size.
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Transcriptional changes in primary microglia do not mimic those
seen in the transgenic CRND8 mouse brain

To understand how well ex vivo changes in primary microglia
cultures recapitulate in vivo processes, we examined transcrip-
tional changes in the brains of transgenic amyloid mouse model
CRND8 at 3, 6, 12, and 20 mo of age by bulk RNA-seq. Using the
same cutoff values to identify DEGs as above, we find that at 3
mo of age there are few transcriptional changes between the

transgenic CRND8 and their nontransgenic littermate controls (11
up-regulated and 4 down-regulated, Fig 5A and Table S35). By
6 mo of age, the number of transcriptional changes increases to
187 up-regulated and 105 down-regulated genes (Fig 5B and Table
S40). At 12 mo of age, the number of DEGs is higher than at
previous time points and is dominated by changes in up-
regulated genes (493 up-regulated genes) over those that are
down-regulated (103 down-regulated genes, Fig 5C and Table
S45). At 20 mo, more genes continue to be up-regulated (746

Figure 4. Gene networks are strongest in the modules that are positively correlated with Aβ treatments.
Gene networks are shown as heat maps of the edge weight. A greater edge weight (darker blue shades) indicates a strong gene–gene connection. The order of genes
within each heat map is preserved for the comparisons across Aβ treatment types. (A) The gene network for the salmon module, a representative module positively
correlated with acute, 1-h fAβ treatment, is strongest than in 12-h fAβ or 12-h oAβ treatments. (B) The gene network for the blue module, a representative module positively
correlated with long-term, 12-h fAβ treatment is stronger than in 1-h fAβ or 12-h oAβ conditions. (C) The gene network for the turquoise modules, which represent a
module positively correlated with long-term, 12-h oAβ treatment, is strongest in oAβ treatments.
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genes) than down-regulated (115 genes, Fig 5D and Table S50).
Trends for GO term enrichment in down-regulated genes was not
evident until 12 mo with enriched terms including a variety of
receptor binding activities (i.e., glucocorticoid receptor binding
and steroid hormone receptor activity) and involvement of core
promoter activity (core promoter sequence-specific DNA binding;
Fig 5E and Tables S37, S39, S42, S44, S47, S49, S52, and S54). Up-
regulated genes are enriched primarily with immune responses
(immunoglobulin receptor activity and IgG binding) that are

consistent as the mice age (Fig 5F and Tables S36, S38, S41, S43, S46,
S48, S51, and S53).

Not surprisingly, direct comparisons of the microglial-specific
genes in Aβ-treated primary microglia with transgenic CRND8 mice
are poorly correlated (Figs 6 and S3). Correlation values are low
between differentially expressed microglial genes in transgenic
CRND8 mice at 20 mo versus Aβ-treated primary microglia for any
treatment paradigm, oAβ 12-h (Fig 6A), fAβ 12-h (Fig S3A), or fAβ 1-h
(Fig S3B). In the transgenic CRND8, these genes are nearly

Table 2. Weighted gene co-expression network analysis module statistics.

Hub gene Gene significance Gene significance P-value Module membership Module membership P-value kWithin

Salmon to fAβ42, 1-h

Gabbr2 0.9984 8.34 × 10−14 0.9854 5.17 × 10−9 167.213

Vegfa 0.9980 2.47 × 10−13 0.9927 1.58 × 10−10 166.033

Cyth1 0.9977 4.60 × 10−13 0.9953 1.79 × 10−11 164.974

Rab7b 0.9976 5.71 × 10−13 0.9903 6.51 × 10−10 159.731

Tnfrsf21 0.9971 1.72 × 10−12 0.9929 1.42 × 10−10 164.391

Gpcpd1 0.9965 3.83 × 10−12 0.9920 2.47 × 10−10 157.545

Usp2 0.9962 6.38 × 10−12 0.9498 2.32 × 10−6 155.563

Folr2 0.9961 6.94 × 10−12 0.9800 2.46 × 10−8 167.461

Picalm 0.9961 7.20 × 10−12 0.9726 1.16 × 10−7 159.591

Plek 0.9959 8.80 × 10−12 0.9896 9.34 × 10−10 159.217

Blue to fAβ42, 12-h

Tmem176a 0.9997 3.13 × 10−17 0.9513 1.98 × 10−6 468.954

Acp2 0.9996 4.65 × 10−17 0.9321 1.02 × 10−5 462.765

Gpr18 0.9996 5.40 × 10−17 0.9432 4.24 × 10−6 450.890

Fnbp1l 0.9995 1.77 × 10−16 0.9736 9.61 × 10−8 452.921

Tmem176b 0.9995 2.50 × 10−16 0.9316 1.05 × 10−5 479.564

Adgre1 0.9994 5.13 × 10−16 0.9676 2.65 × 10−7 485.170

Slc11a2 0.9994 5.51 × 10−16 0.9240 1.76 × 10−5 487.036

Cep85 0.9991 5.73 × 10−15 0.9440 3.94 × 10−6 463.008

Cd82 0.9989 1.12 × 10−14 0.9493 2.43 × 10−6 462.487

Nr1h3 0.9989 1.34 × 10−14 0.9719 1.33 × 10−7 466.064

Turquoise to oAβ42, 12-h

Asf1b 0.9998 6.09 × 10−19 0.991 3.71 × 10−10 400.289

Alox5 0.9998 2.49 × 10−18 0.933 9.27 × 10−6 402.563

S100a4 0.9998 3.79 × 10−18 0.973 1.18 × 10−7 400.107

Klf2 0.9996 4.53 × 10−17 0.952 1.89 × 10−6 402.789

Hal 0.9996 7.56 × 10−17 0.868 2.49 × 10−4 401.621

Top2a 0.9996 7.82 × 10−17 0.996 6.24 × 10−12 401.975

Cks1b 0.9996 8.13 × 10−17 0.950 2.16 × 10−6 403.304

Pygl 0.9991 3.81 × 10−15 0.961 6.31 × 10−7 403.646

E2f1 0.9991 5.78 × 10−15 0.965 3.66 × 10−7 402.021

Mcm7 0.9989 1.35 × 10−14 0.958 9.81 × 10−7 400.930

Top 10 hub genes within the modules depicted in Fig 3 identified by weighted gene co-expression network analysis. Results are sorted by gene significance to
each treatment type. Module statistics including gene significance value (to treatment), P-values corresponding to the gene significance (P-value), module
membership value (of gene to module), module membership P-value, and gene connectivity within the module (kWithin) are shown.
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Figure 5. Differential gene expression in transgenic CRND8 mice.
(A) Total changes in down- (blue) and up- (red) regulated genes in transgenic CRND8 mouse brains versus nontransgenic controls at 3 mo. (B) Total changes in down-
and up-regulated genes in transgenic CRND8 mouse brains versus nontransgenic controls at 6 mo. (C) Total changes in down- and up-regulated genes in transgenic
CRND8mouse brains versus nontransgenic controls at 12 mo. (D) Total changes in down- and up-regulated genes in transgenic CRND8mouse brains versus nontransgenic
controls at 20 mo. (E) Bubble plots of Gene Ontology (GO) category enrichment results for down-regulated genes. (F) Bubble plots of GO category enrichment results for
up-regulated genes. Plots for GO category over-enrichment analysis show the top 10 hits for each comparison by enrichment score after a filter step by a P-value adjusted
for multiple comparisons of ≤0.1 and keeping GO categories with >5 genes within the category.
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universally up-regulated, but are both up- and down-regulated in
the primary microglia. We examined representative genes that are
highly differentially expressed in Aβ-treated microglia (Fig 6B) which
reveal little (Vim) to no (Sod2, Sgk1) corresponding changes in the
transgenic CRND8 mice over time—indeed some changes were
opposite of those observed in CRND8 (Fcgr2b). Conversely, ex-
amining a selection of genes that are consistently and signifi-
cantly changed in transgenic CRND8 mice over time (Fig 6C; Cst7,
Irf8, and Plek) exposes variable responses in microglia after the
application of either fAβ or oAβ peptide. In addition, a panel of
Alzheimer’s-disease relevant genes, which are consistently up-

regulated in the transgenic CRND8 mouse brain over time, also
reveals variable (Abi3 versus Plcg2)—and sometimes unexpected
(Trem2)—responses to Aβ peptides in microglia (Fig 6D). This
pattern is also seen in a selection of cytokines (Fig 6E; Ccl3, Ccl4
and Tnf) and cytokine receptor (Fig 6F; Ccr5, Csf3r, and Tnfrsf1a)
genes.

We then examined the transcriptional profile of microglial cell
subsets that have been identified in past sc-, sn-RNA-seq, or spatial
transcriptomic studies of microglia (Fig 7). As evidenced by the
increase in the transgenic CRND8 brains, the expression of these
genes within the subpopulations is increased in AD. A general

Figure 6. Microglia transcriptional responses at the individual gene level are not reflective of changes seen in the CRND8 model. (A, B) Comparisons of log2 fold
change values for microglial genes (Zhang et al, 2014) in transgenic CRND8 versus oAβ treatment in primary microglia show little correlation. Geometric means of FPKM
data of representative genes differentially expressed in Ab-treated primary microglia is shown for Aβ-treated microglia (top row) and CRND8 mouse brains (bottom row)
(B). (C, D, E, F) Similar plots are shown for representative differentially expressed genes identified in CRND8mice (C), Alzheimer’s disease-relevant genes (D), representative
cytokine genes (E), and representative cytokine receptor genes (F).
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Figure 7. Microglia subtype transcriptional signatures in primary microglia do not reflect changes seen in the CRND8 model.
Gene signatures for microglia genes and sub-populations of microglia are shown for primary microglia cultures (left) and CRND8 mouse brains (right). (A) Microglia
expression signature identified in Zhang et al (2014). (B) Activated microglia expression signature in Aβ-treated microglia. (B) Homeostatic (H2M) microglial gene
expression signature as in Sala Frigerio et al (2019). (C) Cycling and proliferating microglia gene expression signature as in Sala Frigerio et al (2019). (D) Interferon-
responsive microglia gene expression signature as in Sala Frigerio et al (2019). (E) Disease-associated microglia gene expression signature identified in Keren-Shaul
et al (2017). (F) Activated response microglia gene expression signature as in Sala Frigerio et al (2019). (G) Plaque-induced microglia gene expression signature as in Chen
et al (2020). (H) Neurodegenerative microglia phenotype (MGnD) gene expression signature as in Krasemann et al (2017). *P-adj < 0.05; **P-adj < 0.01; ***P-adj < 0.001. FPKM,
fragments per kilobase per million mapped fragments.
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transcriptomic signature of microglial-enriched genes (Zhang et al,
2014) is increased after all Aβ treatments in microglia primary
cultures—a signal that mimics increases seen in transgenic CRND8
mice over time (Fig 7A). A homeostatic microglia (H2M) signature
(Sala Frigerio et al, 2019) increases over time in transgenic CRND8
mice, but this increase is seen only in microglial cultures treated for
12-h fAβ (Fig 7B). We examined the transcriptional signature as-
sociated with cycling and proliferative microglia (Sala Frigerio et al,
2019) (Fig 7C). There is a large increase in the cycling and prolif-
erating microglia signature in oAβ-treated microglia, but no dif-
ference is seen in the transgenic CRND8—which stands as a
contrast to the general trend in the other microglial subtypes. This
likely reflects that this population represents a very small per-
centage of microglial cells within the brain (Sala Frigerio et al, 2019),
and its signature is lost within the larger milieu of other cell types
within the brain. We also examine interferon-responsive microglia
(Fig 7D) (Sala Frigerio et al, 2019). This transcriptional signature
increased over time in transgenic CRND8 but a large change is seen
only in response to long-term fAβ treatment. Interestingly, an in-
creased transcriptional response in the disease associated microglia
profile (DAMs, found in themicroglia surrounding Aβ plaques [Keren-
Shaul et al, 2017]) is seen in response to fAβ, but not oAβ treatment,
whereas a steady increase is seen in the transgenic CRND8 (Fig 7E).
Intriguingly, transcriptional responses linked to both activated re-
sponse microglia (Fig 7F [Sala Frigerio et al, 2019], which are re-
sponsive to Aβ deposition) and PIGs (Fig 7G [Chen et al, 2020]) are
decreased or unchanged in all treatment paradigms in primary
microglia while these genes steadily increase over time in transgenic
CRND8. In contrast, genes linked to the microglial neurodegenerative
phenotype (MGnD, Fig 7H) (Krasemann et al, 2017) appear as a likely
reliable indicator of transcriptional changes for all Aβ treatment
paradigms as well as in transgenic CRND8 brains.

Discussion

Acute exposure of cultured primary microglia to oAβ or fAβ elicits a
robust and rapid transcriptional response. Both forms of Aβ induce
significant increases and decreases in RNA levels for hundreds of
genes. Nevertheless, transcriptomic responses to oAβ and fAβ at
12-h are distinguishable. Of note, the finding that oAβ increases
RNAs associated primarily with cell cycle, whereas fAβ increases
RNAs associated primarily with phagocytic processes is intriguing.

As there are numerous validated and candidate Aβ receptors
expressed on microglia (Jarosz-Griffiths et al, 2016), such studies
indicate that acute exposure to Aβ aggregates induces robust
cellular events that can be assessed at the systems level using
transcriptomic approaches. Based on the studies of fAβ there is a
clear temporality to the response with varying clusters of genes
changing in both similar and different directions at the various time
points. These data are reminiscent of studies examining acute
effects of LPS on primary microglia, although given numerous
experimental differences with historical datasets a much more
systematic, side by side, comparison would be needed to evaluate
the overall similarity in response to classic proinflammatory me-
diators such as LPS and Aβ.

As we and others have used primary microglia to study uptake
and clearance of Aβ and Aβ aggregates, a primary objective of this
study was to determine if the response to Aβ in such acute studies
is indicative of system levels changes in mouse models of Aβ
deposition, where Aβ accumulates over time. In this case, we have
compared the transcriptomic changes in CRND8 transgenic model
(compared with nontransgenic controls) with our acute tran-
scriptomic signatures of the primary microglia exposed to Aβ. These
data reveal that acute transcriptional responses of primary
microglia to Aβ poorly reflect the in vivo responses of genes to
chronic progressive Aβ accumulation. Like a number of other recent
studies, these data suggest that although primary microglial
studies may have utility in some settings, extrapolating results from
these studies to the in vivo setting is problematic.

Many laboratories in the field, including our own, have focused
on responses of microglia to classic cytokines including but not
limited to TNFα, IL1α, IL1β, IL10, IL6, and IFNγ (Chakrabarty et al, 2010,
2011, 2015; Colon-Perez et al, 2019; Webers et al, 2020). Although
these cytokines show massive changes in transcript in primary
culture, in vivo transcript levels in the brain are very low throughout
the lifespan of the non-Tg and Tg mice. Although some cytokines
show small increases over time in the presence of amyloid de-
position, the magnitude of this increase is nowhere near the scale
of increase observed in the primary culture. The massive increases
in transcript levels observed in primary microglial cultures of many
of these cytokines and other immune factors have likely contrib-
uted to the field’s focus on these as key mediators of the microglial
responses to Aβ and other insults. However, data presented here,
as well as other studies (Butovsky et al, 2014), highlight differences
between the ex vivo and in vivo microglial responses and indicate
that the focus on some of these cytokine and other immune factors
may be misleading.

Notably, microglia—at least at the transcript level—express
moderate to high levels of many classic cytokine receptors in vivo.
Perhaps, the low level of ligand expression compared with rela-
tively high levels of receptor would suggest that these receptors on
microglia serve primarily to sense non-CNS changes in the cytokine
levels after peripheral insults. In any case, these data along with
numerous other studies demonstrating the heterogeneity of
microglia in vivo (Butovsky et al, 2014; Keren-Shaul et al, 2017;
Krasemann et al, 2017; Friedman et al, 2018; Hammond et al,
2019; Chen et al, 2020; Olah et al, 2020) highlight the notion that
primary isolated microglia cells are poor proxies for in vivo
responses. As study of microglial cells in the brain has many
limitations, additional efforts to develop better ex vivo models of
microglial responses would benefit the field. Although several
reports of such efforts exist (Arber et al, 2017; Croft et al, 2019),
further evaluation and “stress-testing” of these and other ex vivo
methods will be needed before they are likely to be widely adopted.

Previous studies have focused on the functional consequences
of treating various primary CNS cells with oAβ or fAβ. oAβ species
have been conceptualized by some in the field as the proximal
neurotoxin in AD (Haass & Selkoe, 2007; Wang et al, 2016; Cline et al,
2018; Li & Selkoe, 2020), as they disrupt synaptic transmission in
neurons at very low, picomolar concentrations (Waters, 2010;
Rammes et al, 2011). However, the evidence that oAβ species are
overtly toxic with respect to inducing neuronal death is lacking;
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further there is debate as to whether appreciable concentrations of
intrinsically soluble oligomers exists in the AD brain or mouse
models of amyloid deposition (Tseng et al, 1999; Jan et al, 2008, 2011;
van Helmond et al, 2010). In contrast, at least in primary neuronal
cultures, higher concentrations of various aggregates have been
linked to induction of neuronal death via apoptotic mechanisms
(Deshpande et al, 2006). Both direct toxicity of the aggregates or
aggregate growth and indirect toxicity via activation of glial cells
that results in neurotoxicity have been invoked as mechanisms
underlying Aβ induced neuronal death (Kayed & Lasagna-Reeves,
2013). Clearly, the massive alterations in microglial cells observed
here in response to synthetic Aβ aggregates reinforces the potential
for neurotoxicity in mixed primary cultures. However, we would
note that both oAβ and fAβ induce massive changes in the tran-
scriptome of microglia and certainly lend little credence to claims
by some in the field that fAβ is inert (reviewed in Walsh and Selkoe
[2007]). Indeed, our results suggest that microglial transcriptional
responses to fAβ more closely mimic in vivo responses to amyloid
accumulation as evidenced by the behavior of the “blue” module
genes in our study which positively correlated with fAβ treatment
are paralleled in the transgenic CRND8 brain and the microglial
subtype analysis.

As suggested above, the concept that microglial cells might make
exquisitely sensitive biosensors that can be used to distinguish
between various aggregate forms is intriguing. Microglial do appear
at the transcript level to respond in partially overlapping, but
distinct ways to oAβ or fAβ. Much more extensive studies will be
needed to follow up on this intriguing observation. However, from a
teleological point of view this concept makes quite a bit of sense.
Microglial cells with a plethora of damage associated and pathogen
associated receptors are designed to respond rapidly to potentially
harmful proteins and other stimuli (Deshpande et al, 2006). One
would predict that overlapping but distinct binding interactions
could result in partially overlapping but distinct responses that
might essentially provide a type of integration of signals to dis-
tinguish various aggregates.

As the main goal of these studies was to assess the system level
responses of microglial cells in culture to Aβ aggregates and
compare that to a longitudinal transcriptomic study in amyloid
precursor protein (APP) mice, there are a number of limitations
that are worth noting. First, preparations of oligomeric and fi-
brillar forms of Aβ were not purified; however, the method of
preparation is one that is typically used in many laboratories
and each preparation have distinctive features that evident on
Western blotting. In addition, these preparations elicit distinct
transcriptional responses as outlined in this study. Second, both
dose response and more extended time courses were not con-
ducted. Third, we did not include monomeric Aβ42, as it would
likely aggregate at these concentrations during incubation; nor
did we include a short-term oAβ42 time point. Finally, we have not
pursued studies to determine whether fAβ and oAβ induce dif-
ferent functional states in the cultured microglia cells. It is almost
certain such studies would yield interesting data, but it is unlikely
that it would alter the relevance of the work with respect to
disease implications in AD.

A recent elegant study exploring in vivo microglial responses
to LPS using translational profiling approaches to assess both

ribosome-associated transcripts and proteins showed major dis-
crepancies between the proinflammatory transcriptomic signature
and amore immunemodulatory and homeostatic protein signature
(Boutej et al, 2017). Given the massive up-regulation of proin-
flammatory transcripts in cultured microglia exposed to Aβ and the
large number of up-regulated microglial transcripts in APP mouse
models and human AD, it will be important to integrate proteomic
and transcriptomic studies of microglia in the future. Indeed, at
least in the Boutej study, the biologic inferences derived from
evaluating the proteome or transcriptome are disparate and only
when the two are compared directly does the concept of wide-
spread translation repression emerge. Additional studies also show
that even the process of rapid isolation of microglial cells from the
brain changes their transcriptome (Tham et al, 2003; Lin et al, 2017;
He et al, 2018). Thus, even though single-cell transcriptomic and
proteomic studies of isolated microglia cells potentially provide
new insights into their roles in health and disease, additional
validation using in situ methodologies is needed to confirm that
changes observed reflect changes in situ and are not induced
during the isolation.

The number of studies focusing on microglia cells and their
impact on AD and other neurodegenerative disorders is rapidly
expanding. This study and many others highlight that traditional
methods to study them, such as in primary cultures, are highly
artificial and may lead to inappropriate conclusions. Current efforts
to develop strategies to harness microglial function in a thera-
peutically beneficial fashion must by necessity study the effect of
that therapy in vivo. However, given the large number of immune
factors that are emerging as modulators of neurodegenerative
pathologies, and the limitations of only studying these cells in vivo,
additional efforts to validate ex vivo systems that better approxi-
mate microglial functions in vivo ware warranted.

Materials and Methods

Animal research

All animal research was performed under protocols approved by
the Institute for Animal Care and Use Committee at the University of
Florida.

Microglial primary cultures and Aβ42 treatment

Mouse pups for primary microglial cultures are obtained from
matings of B6/C3HF1 mice (Envigo). Mice are given ad libitum access
to food and water and are maintained on a 12-h light/12-h dark
cycle. Primary microglia cultures were isolated following described
protocols (Rosario et al, 2016). Briefly, cortices were isolated at
postnatal day P2-P3. The mixed microglial/astrocyte cultures were
maintained in 75-cm2 flasks with 20 ml of DMEM containing 10%
fetal bovine serum. After 10 d, the flasks were shaken on a rotary
platform for 30 min at 37°C at 150 rpm to dislodge the microglia
from the adherent astrocyte layer. The microglia were plated into
six-well plates and maintained at 37°C. 1 d after plating, microglia
were treated with 5 μM Aβ42 fibrils or oligomers for 1- or 12 h as
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noted. Cells were washed with PBS before harvest. Three replicates
for each condition were performed.

Fibrillar and oligomeric Aβ preparation

Fibrillar and oligomeric forms of Aβ were prepared as previously
described (Stine et al, 2003; Chakrabarty et al, 2018). Aliquots (10,
100, and 1,000 ng) were separated on SDS–PAGE page run using
Biorad Criterion 10% bis-tris gel and XT running buffer/sample
buffer for 60 m at 180 V (constant). Gel transferred onto 0.2-mi-
cron PVDF in Towbin transfer buffer for 45 m at 150 V (constant).
6E10 (BioLegend) primary antibody diluted at 1:1,000 and applied for
1.5 h at 37°. Primary antibody was detected with goat anti-mouse
IR700 and scanned on LiCor Odyssey 700 mm channel.

RNA extraction and sequencing

Microglial RNA was extracted using the RNeasy mini extraction kit with
on-column DNase treatment (QIAGEN). RNA quality was determined
with the Qubit RNA HS assay. RNA quality was checked via RIN on an
Agilent Bioanalyzer 2100 with the Eukaryote Total RNA Nano chip.
Librarieswere generatedwith the IlluminaRNA-seq library prep for low
input RNA. Libraries were sequenced on paired-end, 75 bp runs on the
Nextseq 500 (Illumina). RNA QC, library preparation, and sequencing
were performed at the University of Florida’s Interdisciplinary Center
for Biotechnology Research sequencing core.

Transgenic CRND8 RNA-sequencing data

Data for the transgenic CRND8 mice were obtained from the AMP-AD
Knowledge Portal (doi: 10.7303/syn3157182). Experimental details are
located within the data portal’s Web site. BAM files were downloaded
from the AD Knowledge portal and used with the analysis method
described below. Animal numbers are as follows: 3-mo, nTg-F: 6; 3-
mo, nTg-M: 6; 3-mo, Tg-F: 6; 3-mo, Tg-M: 6; 6-mo, nTg-F: 5; 6-mo, nTg-M:
7; 6-mo, Tg-F: 5; 6-mo, Tg-M: 6; 12-mo, nTg-F: 5; 12-mo, nTg-M: 5; 12-mo,
Tg-F: 7; 12-mo, Tg-M: 7; 20-mo, nTg-F:11; 20-mo, nTg-M: 5; 20-mo, Tg-F: 5;
and 20-mo, Tg-M: 3. Male and female mice of the same age and
genotype were grouped together for this analysis.

RNA-seq analysis

FASTQ alignment, gene counts, and differential expression
analysis
Resulting FASTQ files were aligned against the mouse genome
(GRCm38) and GRCm38.94 annotation using STAR v2.6.1a (Dobin et al,
2013) to generate BAM files. BAM files were used to generate gene
counts were generated using Rsamtools (Morgan et al, 2018) and the
summarizeOverlaps function with the GenomicAlignments package
(Lawrence et al, 2013). Differential gene expression analysis was
performed with DESeq2 package using the “DESeq” function with
default settings (Love et al, 2014) which fits a generalized linear model
for each gene. SubsequentWald testP-values are adjusted formultiple
comparisons using the Benjamini–Hochberg method (adjusted
P-value). Pair-wise changes in gene expression levels were examined
between groups to identify DEGs. DEGs were defined as an absolute
log2 fold change ≥0.5 and an adjusted P-value ≤0.05.

WGCNA

The WGCNA package in R (Langfelder & Horvath, 2008, 2012) was
used to construct gene correlation networks from the expression
data after filtering and removing genes with zero variance. For the
microglia dataset, a soft power setting of nine was chosen using
the “pickSoftThreshold” function within the WGCNA package. The
network was constructed using all microglial samples. Adjacency
matrices were constructed using expression data and this power
setting with the “adjacency” function and a signed hybrid network.
Module identification was performed using the “cutreeDynamic”
function and a deepSplit setting of two with aminimummodule size
of 30 for all analyses.

Functional annotation of DEGs, heat map clusters, and WGCNA
modules

Gene ontology enrichment analysis was performed with goseq
v1.42.0 (Young et al, 2010) to identify gene ontology catego-
ries—focusing on the molecular function category—and KEGG
pathways that are affected between the various conditions. For
DEGs, up- and down-regulated gene lists were analyzed separately.
For WGCNA, gene lists from each module were used as input. Over-
represented P-values were adjusted for multiple comparisons
using the Benjamini–Hochberg adjustments for controlling false-
discovery rates. An enrichment score was calculated by an observed-
over-expected ratio of

ðDEG=totalDEGÞ=ðCategoryTotal=GeneTotalÞ;

where DEG represents the total number of DEGs or module genes
within the GO or KEGG category, totalDEG represents the total
number of DEGs or module genes; CategoryTotal represents the
total number of genes within the GO or KEGG category, and Gen-
eTotal represents the total number of genes examined. GO terms
and KEGG pathways are filtered for P-values adjusted for multiple
comparisons (BHadjust) <0.05 (Aβ-treated microglia) or 0.1 (CRND8
mice), enrichment scores >1, and total number of genes within the
category >5.

Z-scores for genes identified as a DEG for any Aβ-treatment
comparison versus control were plotted in a heat map using
pheatmap v1.0.12. Clusters were identified using the cutree function
with h = 5.75. goseq was used for GO and KEGG pathway analysis on
genes within each cluster. GO terms and KEGG pathways are filtered
for P-values < 0.05, enrichment scores >1, and total number of genes
within the category >5.

Gene lists to annotate WGCNA modules and identify microglia
subtype signatures were identified from previously published
studies (Zhang et al, 2014; Keren-Shaul et al, 2017; Krasemann et al,
2017; Friedman et al, 2018; Hammond et al, 2019; Sala Frigerio et al,
2019; Chen et al, 2020) (see also Table S33). Gene overlap analysis
was conducted with the GeneOverlap package in R (Shen, 2020).
GeneOverlap uses Fisher’s exact test to calculate the P-value for
significance testing and calculating the odds ratio. goseq was used
for GO and KEGG pathway analysis of genes within each module
filtering for those terms with P-values < 0.05, enrichment scores >1,
and total number of genes within the category >5.
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Direct comparisons of DEGs between treatment types

DEG datasets for each treatment paradigm against control were
filtered for significant gene changes using criteria described above.
The distribution of resulting log2 fold change was tested for a
normal distribution using the Shapiro–Wilk normality test. The
correlation value for the log2 fold change value in each pair-wise
comparison was calculated using Spearman’s rank-order correla-
tion test at a confidence level set to 0.95 in R and graphs were
drawn using the ggpubr package in R (Kassambara, 2020).

Statistical analysis and data visualizations

ANOVA with Tukey’s post hoc multiple comparisons test was per-
formed in R. Data visualizations were generated in R using the
ggplot2 package (Wickham, 2016) unless otherwise noted. Bar plots
show mean ± SD. For boxplots, upper, middle, and lower hinges
correspond to first quartile, median, and third quartiles, respec-
tively. Upper (or lower) whiskers correspond to the largest (or
smallest) observation beyond the upper hinge up to 1.5 times the
interquartile range. Outliers beyond the upper and lower whiskers
are plotted independently.

Data Availability

FASTQ files for the Aβ-treated primary microglia samples are available
via the AD Knowledge Portal (https://adknowledgeportal.org). The AD
Knowledge Portal is a platform for accessing data, analyses, and tools
generated by the Accelerating Medicines Partnership (AMP-AD) Target
Discovery Program and other National Institute on Aging-supported
programs to enable open-science practices and accelerate transla-
tional learning. The data, analyses, and tools are shared early in the
research cycle without a publication embargo on secondary use. Data
are available for general research use according to the following require-
ments for data accessanddataattribution (https://adknowledgeportal.org/
DataAccess/Instructions).

For access to content described in this manuscript, see: http://
doi.org/10.7303/syn25006578. Interactive data portals are available for
viewing at the following: Aβ-treated microglial DEG data: https://tinyurl.
com/y3q3kaoe. CRND8 DEG data: https://tinyurl.com/y5evwkuw cross-
treatment comparisons of DEG data: https://tinyurl.com/yyph68vc.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202101108.
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