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ABSTRACT: This work investigates the design of alternative
monitoring tools based on state estimators for industrial
crystallization systems with nucleation, growth, and agglom-
eration kinetics. The estimation problem is regarded as a
structure design problem where the estimation model and the
set of innovated states have to be chosen; the estimator is
driven by the available measurements of secondary variables.
On the basis of Robust Exponential estimability arguments, it
is found that the concentration is distinguishable with
temperature and solid fraction measurements while the crystal
size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other
distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and
(ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through
simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and
noisy measurements.

1. INTRODUCTION

Pharmaceutical, food, agrochemical, and chemical industries rely
on batch crystallization processes to formulate and separate high
value-added chemical components. Required quality targets for
the crystallization process are the yield and the purity,
morphology, and size distribution of the crystals. Off-spec
products can result from variations in the crystallization
operation such as mixing, temperature profile, and solute
concentration. Indeed, any changes in these conditions affect
the solute−solute interactions, the diffusion mechanism of the
solute toward the crystal lattice, and its aggregation to the lattice.
In other words, changes in the operating conditions determine
variations in the growth, nucleation, and agglomeration of
crystals.
Normally, yield and quality targets for batch crystallization are

given in terms of solute concentration and crystal size
distribution (CSD). For the purposes of this paper, we refer to
these two key variables as primary variables. The achievement of
the desired specifications for these primary variables relies on an
efficient monitoring tool for both separation supervision and
control. However, online measurements of the solute concen-
tration and CSD are not often available due to technical and
economical limitations.1 High purchase and maintenance costs
associated with the hardware analysers,2 measurements delays,
and reliability issues related to calibration have motivated us to
look for alternatives.
In the last decades, with the development of computer-aided

chemical engineering, the use of advance process models for
online simulation of the process dynamics has been proposed as a
complementary tool for monitoring purposes. However, even

detailed models based on first principles are approximations of
the real process. Thus, the quality of the estimation of the
primary variables tends to degrade. A remedy for this deficiency is
the use of state estimators that combine information from two
sources, namely, a process model and measurements of secondary
variables. It must be pointed out that here we use the expression
secondary variables (in contrast with the expression primary
variables) to identify other nonkey process variables (such as
flow rates, temperatures, densities, etc.).
Recently,3−7 the design of state estimators has been regarded

as the joint design of two subelements: (a) the estimation
structure and (b) the estimation algorithm. This methodology
has the advantage that the estimation performance is established
by means of an appropriate estimation structure design rather
than the chosen algorithm. The estimator structure design
includes the following:

(i) Choice of measurements of the secondary variables (or in
short the choice of the secondary measurements). These
measurements obtained with reliable and possibly not
expensive instruments must have negligible delays and
preferably (but not compulsorily) an informative content
of the dynamics of the variables we need to monitor.

(ii) Choice of the estimation model. This model should be
detailed enough to capture the main process dynamics, but
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it should be computationally efficient to be used in real
time.

(iii) Choice of the innovated states. The innovated states are (a
subset of) dynamic states of the estimation model whose
changes are captured by the secondary measurements.

The algorithm is the measurement processor. By means of the
algorithm, the secondary measurements are incorporated into
the process model in correspondence of the dynamic equations
of the innovated states, contributing to align the behavior of the
model to the process and obtaining an estimation of the primary
variables.
In the literature of state estimation for crystallization systems,

the estimation problem is not addressed by means of such a
methodology. However, it is worth summarizing the previous
papers in order to identify what models and algorithms have been
investigated and what measurements have been chosen. In the
following, we review the literature based on three categories:
models, measurements, and algorithms.
Models. For batch crystallization systems, the model of the

process consists of material end energy balances for the liquid
and solid phase, and the particulate feature of the solid product is
naturally modeled with the population balance equation
(PBE).8−10 The PBE in the form of a partial differential equation
(PDE) is a detailed first-principle model that describes the
evolution of the number of crystals along the size and time
domain due to crystal growth, nucleation, agglomeration, and
breakage. In industry, besides the crystal growth phenomena,
nucleation, especially due to attrition, is always present, and
agglomeration may not be negligible. On the other hand,
breakage rarely appears and can be avoided with appropriate
impeller settings. The main drawback is that the PBE cannot be
easily employed for estimator implementation purposes because
its solution is challenging if crystal growth, nucleation, and
agglomeration phenomena have to be modeled. Its analytical
solution may be obtained only under assumptions that do not
hold in practice.11 Instead, the numerical solution is generally
preferred. In the field of state estimation for crystallization
systems, the most popular approaches for dealing with the PBE
by means of numerical solutions are the use of the moment
model,9 which is a reduced version of the PBE, and the
discretization of the PBE.
By means of the moment model, only a finite number of the

CSD moments is described. This model guarantees simplicity
and tractability for online use due to its low dimensionality.
However, the reconstruction of the CSD from a finite number of
its moments is still an open problem12 and nonlinear
crystallization phenomena such as agglomeration cannot be
incorporated. Examples of the moment model for estimation
purposes can be found in Mesbah et al.,13 Shi et al.,14 and Nagy
and Braatz.15

The discretization of the PBE consists of transforming the
PDE into a set of ODEs by discretizing the internal coordinate
(crystal length or volume). The pioneers of the discretization of
the PBE are Baterham et al.16 and Hounslow et al.,11 and a wide
variety of discretization techniques have been proposed in the
last decades (seeMesbah et al.17 and references therein). The use
of these methods allows us to obtain a good description of the
CSD and its dynamics due to growth, nucleation, and
agglomeration. The accuracy of the solution often depends on
the resolution of the discretization grid, and accurate solutions
are normally highly computational demanding, which pose limits
for the online use. Thus, the accuracy may be penalized to reduce

the computation costs and make this numerical scheme usable in
online applications. Only a few papers deal with the discretized
PBE for state estimator derivation: Mesbah et al.18 use a
discretization scheme based on finite volume methods, and Bakir
et al.19 use a finite difference discretization scheme. It must be
pointed out that none of the above-mentioned papers explore the
performance of the estimator when growth and nucleation as
well as the agglomeration of crystals are considered.
Alternatives to the PBE approach, such as the stochastic

approach, have been recently proposed.20,21 The CSD is
described by means of the Fokker−Planck equation, and the
crystal length is considered a random variable. This approach
seems to lead to simpler models than the PBE and admits
analytical solution. This type of modeling allows the description
of the dynamics of the mean, most probable mode and standard
deviation of the CSD. The method can predict a log-normal-like
type of CSD, which is typical of growth-dominant crystallization
systems. Because of its simplicity, the use of this approach for
estimation purposes may be promising; however, the method-
ology may not be applicable for crystallization systems with
agglomeration phenomenon.

Measurements. The problem of designing state observers
for monitoring and/or control of the time evolution of the crystal
phase has been extensively addressed with the use of the moment
model accompanied by (i) moment measurements,13 (ii) solute
concentration measurements,14 (iii) moment, composition and
temperature measurements.15 The discretized PBE has been
used by Mesbah et al.18 accompanied by the online measure-
ments of the CSD; Bakir et al.19 assume that the measurement of
the number of nuclei is available. Abbas and Romagnoli22

propose the use of the model discretized using the finite
difference method without any measurements. Finally, crystal
images have been used by Zhang et al.23 to monitor the mean and
variance of the CSD within a feedforward artificial neural
network model. Differently form first principle model-based
estimators, data-driven techniques such as the one proposed by
Zhang et al.23 requires a sufficiently large training data set to
guarantee a good prediction capability over a wide range of
operating conditions. Nevertheless, the monitoring strategies
proposed in the above-mentioned papers can be unlikely
implemented in industrial scale, because, as highlighted at the
beginning of the introduction, online CSD measurements or
measurements of its properties (moments), and online measure-
ments of the solute concentration are rarely available or reliable.2

Algorithms. The algorithms used in the literature for
measurement processing are (i) moving horizon estimator,17,18

(ii) extended Kalman filter15,18 and unscented Kalman filter,18

(iii) extended Luenberger observer,14,17 and (iv) high gain
observer.19

On the basis of the literature review, it emerges that the design
of estimators driven by the available measurements of secondary
variables for the online model-based monitoring of CSD and
solute concentration is still an open problem.
Recently, we have investigated the observability of the solute

concentration and the CSD of a batch flash cooling crystallization
system accounting for crystal growth, nucleation, and agglom-
eration by using measurements of secondary variables in an
exploratory study.24 In particular, the capability of observing the
CSD and the solute concentration has been evaluated by means
of detectability arguments25 and a data-derived approach.26,27

The study considered measurements of temperature, solute
concentration, and slurry volume revealing that the concen-
tration is distinguishable with the stand alone measurements
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mentioned above or any combination of these, while the CSD is
not distinguishable.
This work is justified by the results obtained in our previous

study and the necessity to recast the estimation problem for
crystallization systems under the new methodology which
regards the estimator structure design as a key step for a
successful achievement of the estimation goals. The estimator is
intended to give a satisfactory estimation of the two primary
variables, namely, concentration and CSD. The estimator is
driven by the measurements of secondary variables, namely,
temperature and solid fraction, which are likely to be available in
industrial set-ups. The estimation problem is cast by treating
separately the estimation structure design and the algorithm
choice. In particular, the structure is partially defined by the
process specifications since the choice of the measurements is
determined by the availability of sensors in the plant. The Robust
Exponential estimability analysis28 is the tool for innovated states
identification, and its results are used to motivate the choice of
the estimation model. In particular, a subset of the distinguish-
able states is chosen as innovated states, and the evolution of the
CSD, which is not distinguishable, is evaluated by means of the
PBE in open loop mode. The PBE accounts for crystal growth,
nucleation, and agglomeration, and it is numerically solved with
the method of characteristics (MOC),29 which guarantees
accuracy and acceptable resolution time. The measurements
are processed with the Geometric Estimator (GE)28 which offers
simple tuning guidelines and implementation, in the under-
standing that the performance mostly depends on the estimation
structure rather than the algorithm.
The paper is organized as follows. In Section 2, the nonlinear

estimation problem is cast as a structure design problem for batch
systems. Guidelines for the choice of the estimation model and
the partition between innovated and noninnovated states are
given based on detectability arguments, while the choice of the
measurements is not considered as a degree of freedom for the
estimation design. The Geometric Estimator (GE) is also
presented in this section. In Section 3, the estimation problem for
batch crystallization systems with nucleation, growth, and
agglomeration is addressed. The methodology for the selection
of the estimation structure is applied, and the GE with
temperature and solid fraction measurements and passive
innovation is designed. In Section 4, the performance of the
proposed estimator is investigated under the conditions of noisy
measurements and initial conditions and model parameters
mismatches. Conclusions are provided in Section 5.

2. NONLINEAR STATE ESTIMATION PROBLEM FOR
BATCH SYSTEMS

Let us consider a dynamic system of the form

̇ = =f u tx x x x( , ( )), (0) 0 (1a)

= hy x( ) (1b)

where the state ∈ ℜx n and the output ∈ ℜy m are following a
certain trajectory due to the application of a time varying input
u(t) during a batch run of duration tb. Without limiting the
validity of our results, in this work ∈ ℜu t( ) 1. Here, f and h are
nonlinear functions of the states and input, and

ℜ × ℜ → ℜ ℜ → ℜf h: , :n n n m1 The estimation problem is
addressed by using the estimator (eq 2) driven by the measured
signals y(t) and u(t):

̇ = ̂ =f u tx x y x x( , ( ), ), (0)e e e e0 (2)

where xe = [x,̂ xu], meaning that the estimator states xe includes
the estimate x ̂ of the plant states x and can include additional
states xu to enable the processing of the measured inputs. In
particular, the estimator (eq 2) performs the estimation of the
states x ̂ according to the mechanisms made explicit in the
following equations:

̂̇ = ̂ ̂ + ̂ − ̂ ̂

= ̂

ι ι ι

ι

f u t E u t k hx x x x y x x

x

( , ( )) ( , ( ), , )( ( )), (0)E u

0 (3a)

̂̇ = ̂ ̂ ̂ = ̂υ υ υ υf u tx x x x( , ( )), (0) 0 (3b)

In eqs 3, xι̂ are the innovated states and xυ̂ are the noninnovated
states, with x ̂= [xι̂, xυ̂], dim(x)̂≤ dim(x). The estimation model is
denoted by x ̇̂ = f(̂x,̂ u(t)), f ̂= [fι̂, fυ̂]

T.
E(x,̂u(t), kE,xu) (y−h(x)̂) is the estimation algorithm and kE its

tuning parameters vector.
The performance of the estimator (eq 2) relies on an

appropriate design of its structure which includes the following:

(i) Choice of the measurements y.
(ii) Choice of the estimation model x ̇̂= f(̂x,̂u(t)) which may be

a simplified version of the process model or have
mismatches in parameters.

(iii) Choice of the innovated xι̂ and noninnovated xυ̂ states.
With the expression innovated states, we refer to those
states whose dynamics are corrected by means of the
actual measurements according to eq 3a, while the
noninnovated states are inferred by the estimation
model in open loop fashion according to eq 3b.

2.1. StructureDesign Problem. In the previous section, the
estimation problem is cast as an estimation structure design
problem.5,6,25 In our particular case, the degrees of freedom in
the structure design problem consist of the choice of the
estimation model and the choice of the innovated and
noninnovated states. On the other hand, the measurement
selection is not anymore a degree of freedom for the structure
design but is defined from the plant setup. In other words, we
want to design an estimator driven by measurements of
secondary variables such as temperature and solid fraction,
which are likely to be available in an industrial environment. This
is motivated by the lack of online and/or reliable measurements
of CSD and concentration. Guidelines for choosing the remain
degrees of freedom are drawn from detectability considerations
that arose by Robust Exponential (RE-) estimability argu-
ments.28

Robust Exponential (RE-) Estimability. The estimability
properties of the system (eqs 1) are evaluated by means of
Robust Exponential (RE-) estimability concepts.28 Under RE-
estimability, the motion x(̂t) generated by the estimator (eq 2)
driven by the measured signals u(t) and y(t) robustly
exponentially (RE-) converges to the motion of the plant x(t)
provided that they start sufficiently close, with exogenous input
and parameter errors that are kept sufficiently close.
The RE-estimability properties of nonlinear plants are

evaluated by taking each output map yi(t) = hi(x(t)) and its
recursive Lie derivatives up to the order κi − 1, which define the
nonlinear map ϕ

ϕ

= κ κ− −

U t

h L h L h h L h L h

x( , ( )))

[ , , ..., , ..., , , ..., ]f f m f m f m
T

1 1
1

1
1m1
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where

ϕ κ κ κ= + + ≤ >dim N( ) ... , 0m i1

U(t) = [u,...,u(v−1)]T, v≥ p, v > 0. The column vectorU(t) hosts
the input signal and its time derivatives up to the order v − 1.
Lf
iα is the recursive ith derivative of the scalar field α(x, t) along

the time-varying vector field f(x, t)28

α α α α= ≥ =+L L L i L( ), 1,f
i

f f
i

f
1 0

α α α α α α α= + = ∂ ∂ = ∂ ∂L f x t, / , /f x t x t

The nonlinear map ϕ(x, U(t)) defines the input derivative-
dependent28 surface Ξ(x, U(t))

ϕΞ = ∂
∂

U t U tx
x

x( , ( )) ( , ( ))
(4)

On the basis of the rank and the condition number of Ξ(x, U(t))
(eq 4), one can identify the following cases:

(a) RE-Observability

σ
σ

αΞ =
Ξ
Ξ

< Ξrank N( ) ,
( )
( )

max

min (5)

thus, κ = N and κi is called observability index of the
measurement yi. In other words, when the observability
conditions (eqs 5) hold, the states of the systems can be
reconstructed from the measurement and its time
derivatives ϒ(t) = [y1,...,y1

κ1 − 1,...,ym,...,ym
κm−1]T solving the

algebraic system ϒ(t) = ϕ(x,U(t)) for x: x(t) =
ϕ−1(ϒ,U(t)).
Note that in case of high observability indexes κi the

matrix Ξ(x, U(t)) may be ill-conditioned (i.e., σ
σ

Ξ
Ξ

( )
( )

max

min
very

large) leading to a nonrobust estimation (e.g., sensitive to
noise and modeling errors), making the estimators based
on observability not convenient in practice.

(b) RE-Detectability
When the conditions (eqs 5) do not hold, whether

because the Ξ(x, U(t)) is rank deficient or it is ill-
conditioned, one might do a partition between distin-
guishable xι and undistinguishable xυ states and evaluate
the less strict Robust Exponential (RE-) detectability
conditions (eqs 6)

κ
σ
σ

αΞ =
Ξ
Ξ

<ι ι
ι

ι
Ξrank( ) ,

( )
( )

max

min (6)

with

ϕΞ = ∂ ∂ι ι ιU t U tx x x( , ( )) ( , ( ))/ (7)

ϕ

=
ι

κ κ− −ι ι

U t

h L h L h h L h L h

x( , ( ))

[ , , ..., , ..., , , ..., ]f f m f m f m
T

1 1
1

1
1m1, ,

(8)

ϕ κ κ κ= = + + = <ι ι ι ι ιdim dim Nx( ) ( ) ... m,1 ,

(9)

which hold if the dynamics of the undistinguishable states
are input-to-state (SI) stable, according to the definition
given by Álvarez and Fernańdez.25

It must be noticed that the formulation of the RE-estimability
concepts28 is independent of the operating mode of the system

(i.e., continuous or batch). In fact, the rigorous derivation takes
into account the effect of the inputs and its derivatives U(t) by
means of the calculation of the recursive Lie derivatives along the
time-varying vector field f(x, t), accompanied by the definition of
practical (P-) stability for nonautonomous systems.25 Accord-
ingly, RE-estimability arguments can be applied to batch
processes in a very elegant manner.
In the following paragraphs, guidelines for the estimator

structure design (i.e., estimation model and innovated states) are
given based on the presented estimability arguments.

Choice of the Estimation Model. In case the states of the
system are distinguishable (i.e., the system is RE- observable)
with the considered secondary measurements, a simplifiedmodel
is generally suitable for estimation purposes. Indeed, the motion
of the estimates can be aligned to the plant motion by means of
the measurements. The simplified model has to retain at least the
dynamics of the states which are the objective of the estimation.
Model simplification can be done by neglecting or lumping
components as it has been done for a multicomponent
distillation column6,7 or by using simplified reaction rates in
case of (bio)chemical processes.30 In case a subset of
indistinguishable states is present and they are the objective of
the estimation problem, the description of their dynamics have to
be as detailed as possible, compatible with computation
requirements necessary to perform online calculations because
their estimation is done by the model itself in open loop fashion.

Choice of the Innovated States. When the RE-observability
condition (eqs 5) holds, one can innovate all the states of the
estimation model. If the RE-detectability (eqs 6) holds, only the
set of distinguishable states can be the innovated ones, while the
indistinguishable states are not innovated. Note that the
innovation of more than two states per measurements (or in
other words detectability indexes κι,i greater than two31)
normally leads to an ill-conditioned estimation (i.e., sensitivity
to noise and modeling errors). Thus, a refinement of the choice
of the innovated and noninnovated states can be done by means
of structural tuning based on performance simulation.

2.2. Algorithm Selection. In this study, the chosen
estimation algorithm is the Geometric Estimator (GE)28 with
proportional innovation which has a formal connection with the
estimability properties of the system and guarantees simplicity of
implementation and tuning. To the best of authors’ knowledge,
this is the first application of the GE to batch systems. Under
detectability, the estimator assumes a passive structure where the
distinguishable states are innovated through the GE as eq 10a,
while the undistinguishable states are inferred in open loop
fashion (eq 10b):6

̂̇ = ̂ ̂ + Φ − ̂ ̂ = ̂ι ι ι ιf u t hx x K y x x x( , ( )) ( ( )), (0)E 0 (10a)

̂̇ = ̂ ̂ ̂ = ̂υ υ υ υf u tx x x x( , ( )), (0) 0 (10b)

In eq 10a,Φ =Oι
−1 andOι is the input derivative-independent

7,25

counterpart of Ξι(x,U(t)) (eq 7), i.e., Oι(x,u(t)) ≈ Ξι(x,U(t)).
According the original formulation,25 the approximation
Oι(x,u(t)) ≈ Ξι(x,U(t)) is valid if the pair x−u and the
noninnovated state estimation error are in a slow varying regime
(SVR) with respect to the fast innovated state error dynamics,
which is generally true since the output error dynamics are tuned
faster than the system dynamics. From the latter, one can notice
that the GE incorporates information on the estimability
properties of the system and their variation during the batch
run. In other words, for batch systems, the GE has a natural
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adaptation of its gain. KE is the tuning matrix. Tuning guidelines
for the GE are given in Alvarez and Lopez32 such that the
estimator RE-converges with observable error dynamics that are
faster than the unobservable ones. According to this paper, a set
consisting of κιi tuning parameters is necessary for every
measurement yi, with κιi being the detectability index of the
measurement yi. For a detectability order equal to two, the
proportional gains of the estimator follows:

ξω ω= =K K2 ;o o1 2
2

(11)

where the characteristic frequencyωo and the damping factor ξ of
the estimator should be chosen in the following intervals:

ω ω ω ξ∈ ∈[10 , 30 ]; [1, 3]o c c (12)

In eq 12, ωc is the characteristic frequency of the system.

3. ESTIMATION PROBLEM FOR BATCH SEEDED FLASH
COOLING CRYSTALLIZATION
3.1. Model Derivation. Consider the batch seeded flash

cooling crystallization of the solute of a binary solution carried
under vacuum. The driving force for the crystallization is
generated by means of the contemporary evaporation of the
solvent and the cooling of the mixture in the vessel. The model of
the process consists of material and energy balances for the liquid
and solid phases. The dynamics of the temperature (eq 13a), the
concentration (eq 13b), the volume (eq 13c), and the total mass
of solid (eq 13d) are described by ODEs, while the particulate
feature of the solid product is modeled with the PBE (eq 14).9

Under the assumptions of perfect mixing, size independent
crystal growth rate, absence of crystals and solute in the vapor
flow, dilute solution, and negligible effect of the volume on the
dynamics of the CSD, the crystallizer model is presented in the
following. The related notation is provided in the nomenclature
section.

Macroscopic Balances

ρ

ϕ
ρ

= − −

+
−Δ

= =

dT
dt

T T
V

dV
dt

F t h T
C T c C T V

H

C T c C T V
f T T

( ) ( ) ( )
( , ) ( , )

( , ) ( , )
, (0)

R w w

c c
T

p

p
0

(13a)

ϕ
= − − = =dC

dt
C

d
dt

C T

V
f C C

(logV) ( , )
, (0)c

C 0 (13b)

ρ
= − = =dV

dt
F t
C T

f V V
( )

( , )
, (0)

w

V 0
(13c)

ϕ= = =dM
dt

C T f M M( , ) , (0)c M 0 (13d)

where ϕc(C,T) = 3ρcVkvM2G(C,T), M2 = ∫ 0
∞ n(L)L2dL.

Population Balance Equation PBE

∂
∂

= − ∂
∂

+ − =

= =

n L
t

G C T
n L

L
B L D L f

n L t B G n L n

( )
( , )

( )
( ) ( ) ,

( , ) / , ( , 0)

A A n

seeds0 0
(14)

Note that the physical properties (hw, ρ, Cp) of the liquid and
vapor phases are calculated by means of polynomial functions
which are nonlinear in the temperature and in the concentration.
Thus, the model of the process (eqs 13−14) is constituted by a
system of partial-integro differential equations and algebraical
equations which are nonlinear and coupled. The system (eqs
13−14) is input-to-state (SI)25 stable.

Crystallization Kinetics. The model accounts for the
following crystallization kinetics. The size-independent power
law kinetics for crystal growth G (eq 15) is widely used in
crystallization modeling13,22 because of its simplicity. The
secondary nucleation B0 (eq 16) is modeled through the Evans
kinetics33 when only crystal-impeller collisions are considered.

ρ
=

−
G k

C C T( ( ))
g

sat
g

c

g

(15)

∫ρ ε=
− ∞⎡

⎣⎢
⎤
⎦⎥B k

C C T
C T

N

N
k n L L dL

( )
( )

( )ci
sat

sat

g
Q

P
c v

L
0

3
n

min
(16)

In eq 15 and eq 16, kg and kci are kinetics parameters. In eq 16,NQ,
NP, and ε are impeller parameters. One can refer to the notation
section for their meaning.
The birth BA and death DA functions due to agglomeration

phenomena are modeled according to ref 11, as shown in eq 17
and eq 18.

∫β λ λ
λ

λ= −
−

B L
L n L n

L
d( )

2
(( ) ) ( )

( )A

L2

0

3 3 1/3

3 3 2/3 (17)

∫β λ λ=
∞

D L n L n d( ) ( ) ( )A
0 (18)

Note that the modeling of the agglomeration phenomena is a
source of important nonlinearities for the system. The
agglomeration Kernel β defines the probability of agglomeration
between crystals, and it is considered size independent and
calculated according to the empirical expression (eq 19).

β ε= aG (19)

In eq 19, a is a kinetic parameter. The values of the kinetic and
impeller parameters are reported in Table 1. The kinetic

parameters of Case 1 are taken from Porru and Özkan.29 Case 2
has supersaturation orders for growth (gg) and nucleation (gn)
greater than one which are representative of a class of
crystallization systems of pharmaceutical interest.34−37

Solution of PBE through MOC. The PBE solution is obtained
with the method of characteristics38 (MOC). A detailed
discussion of the numerical scheme adopted can be found in
Porru and Özkan.29

Table 1. Kinetic and Impeller Parameters

Parameter Case 1 Case 2

kg 4.64 × 10−5 4.64 × 10−5 m/s
kci exp(12.54) exp(12.54) #/m3 s
gg 1 1.1 −
gn 1 2 −
Lmin 100 100 μm
a 3.016 × 10−12 3.016 × 10−12 −
NQ 1.6 1.6 −
NP 2 2 −
ε 2.1 2.1 m2/s3
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After application of the MOC and discretization along the
length domain, the PBE (eq 14) is transformed in the system of
ODEs

= =

=+ − =

=

=

=

⎧

⎨
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⎩
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dL
dt
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i seeds i

i

0 0

,0

i

i

(20)

Note the following:

(i) BA(Li) andDA(Li) are the discretized versions of eq 17 and
eq 18.

(ii) The number of ODEs constituting the system (eqs 20)
increases with time by virtue of the movement of the mesh
grid due to growth and the necessity to generate a new
cells of length L0 to allocate new nuclei.17

(iii) On the basis of this, in system eqs 20, i = 1,...,Nc(t), andNc

is the number of the grid points in the mesh grid.
(iv) The PBE (eq 14) (and its discretized version (eqs 20)) is

coupled with the material and energy balances for the
liquid phase through the process variables C and T needed
to compute the crystallization kinetics (eqs 15−19), and
M2.

A numerical scheme for the solution of the system (eqs 20) can
be found in the Appendix. The discretized PBE model (eqs 20)
together with the macroscopic balance equations (eqs 13) are
used for observability analysis and to generate the measurements
of the secondary variables (temperature and solid fraction) that
will be used to estimate concentration and CSD.
Compact Notation. The system of equations (eq 13 and 20)

is here rewritten in compact notation:

̇ =

=

=
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Simulation of the Model. Physical properties and kinetics
parameters are set to return a behavior of the CSD representative
of industrial operations. The flow rate of vapor Fw is an input of
the system chosen to guarantee a low and almost constant
supersaturation level over the batch run. It is assumed to be given.
The behavior of the crystallization system is simulated in

MATLAB R2016a and a computer with Intel(R) Core (TM)2
Quad CPU 2.83 GHz. The ODEs (eqs 13) are solved with
ODE45 with a 60 s sampling time. At the end of this time interval,
the growth, nucleation, and agglomeration rates are calculated
and used to upgrade the CSD dynamics by applying the Euler
algorithm to eqs 20. The nuclei are accommodated in the length
class L0 = 0.1 μm.
For the cases at hand, the seeds are lognormally distributed

with mean μseeds = 74 μm and spread σseeds = 1.2. The initial mesh
grid is uniformly distributed and consists of 300 lengths with
length interval of 2 μm.
A predefined vapor profile is applied for 6720 s (112 min) and

generates monotonically decreasing temperature, concentration,
and volume profiles. The initial and final values of the vapor flow
are 0.005 and 0.001 kg/s, respectively. The flow is maximum
(about 0.09 kg/s) around 1000 s. The temperature variation is
22.5 K between its initial and final value. The variation between
the initial and final concentration is 141.9 kg/m3. The volume
variation is 0.3 m3. For the parameters of Case 1 in Table 1,
Figure 1 shows the CSD at time zero (seeds) at one forth of the
batch run and at its end. From Figure 1, one can notice three
modes in the volume fraction v (vi = nikvLi

3) that can be associated
with (i) nucleation and agglomeration of the nuclei, (ii) growth
of seeds, and (iii) growth and agglomeration of the initial seeds.
The simulation of 6720 s of a batch run takes approximatively

62 s for both cases in Table 1. According to Huisman,39 a
nonlinear model can be used for online applications if it is faster
than the real process by a factor of 100. Hence, the proposed
model can be employed as an estimation model.

3.2. Structure Design for Flash Cooling Crystallization.
The estimation problem for the batch flash cooling crystallization
consists of providing a proper estimation of the solute
concentration C and the CSD (defined by the pair Li - ni, i =

Figure 1. CSD in terms of volume fraction v at the beginning of the batch (seed), after 28 min and at the end of the batch run.
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1,...,NC) by means of secondary measurements, namely,
temperature T and solid fraction ϵS. The chosen estimation
algorithm is the GE (eqs 10) in the understanding that the
estimation performance relies on the choice of a proper
estimation structure rather than the estimation algorithm.
The analysis is done by means of RE-estimability concepts

previously described. One measurement at a time is considered.
RE-Estimability with Temperature Measurements. In the

case of temperature measurements, the output map assumes the
linear form: y1 = C1x, C1 = [1,0,0,...,0]T. The computation of the
corresponding sequence N − 1 of repeated Lie derivatives which
defines the nonlinear map ϕT(x,U(t)) (eq 21) cannot be
performed in practice because of the high dimensionality of the
system; however, from the analysis of the first two ones, one can
draw conclusive information:

ϕ =

=
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Due to the fact that the nonlinear mapϕT(x,U(t)) is a function of
only T, C, and V, the corresponding surface ΞT(x,U(t)) =
∂ϕT(x,U(t))/∂x has rank 3, and it is CSD (Li−ni, i = 1, ..., Nc)
independent, meaning that the system is not RE-observable.
However, the subset of ϕT defined as ϕι,T(x,U(t)) =
[h1,Lfh1,Lf

2h1]
T with κι,T = 3 generates a Ξι,T satisfying the

detectability conditions (eqs 6) for the distinguishable states xι,T
= [T,C,V]T. This in turn means the following:

(i) The subset of state T, C, and V is distinguishable with
temperature measurements.

(ii) The particle size distribution Li − ni, i = 1,...,Nc is not
distinguishable with temperature measurements.

Moreover, from the first-order Lie derivative Lfh1 = f t (eq 13a),
one can note that the solute concentration C is undistinguishable
with temperature measurements when the heat of crystallization
ΔHc = 0 because the variation of the physical properties cp and ρ
is weak during a batch run or when the growth rate G→ 0. The
latter is verified for supersaturation C− Csat→ 0, which normally
happens at the end of the batch run. In these cases, the set of
distinguishable states reduces to xι,T = [T,V]T.
RE-Estimability with Solid Fraction Measurements. Solid

fraction measurements can be recovered from density measure-
ment instruments that determine differential pressure measure-
ments. Such measurements can be successfully taken by locating
the instrument at two different points beneath the liquid surface
or in the circulation system far enough from turbulence.40,41 The
turbulence causes noise which can be removed with a suitable
electrical dampening.40 These types of measurements have been

used for parameter estimation in a 75 L DT crystallizer.42

Examples of reliable solid fraction measurements have been
obtained from an industrial batch crystallizer of 1100 L capacity
by Kalbasenka41 and used for parameter estimation and
optimization purposes.
In the case of solid fractionmeasurements, the output map is y2

= h2(V,C) = M/(Vρc). The corresponding repeated Lie
derivatives sequence in the ϕϵS matrix is

ϕ =ϵ
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which is difficult to compute in practice for high-dimensional
systems. However, one can note from the computation of the
first two Lie derivatives that ϕϵS only depends on T, C, and V.

Accordingly, the corresponding surface ΞϵS(x,U(t)) =

∂ϕϵS(x,U(t))/∂x has rank 3, and it is CSD (Li − ni, i = 1,...,Nc)
independent, meaning that the CSD is undistinghuishable with
solid fraction measurements as well, and the system is not RE-
observable. However, the subset of ϕϵS(x,U(t)) defined as

ϕι,ϵS(x,U(t)) = [h2,Lfh2,Lf
2h2]

T with κι,ϵS = 3 generates a

Ξι,ϵS(x,U(t)) satisfying the detectability conditions (eqs 6) for

the distinguishable states xι,ϵS = [T, C, V]T. This in turn means
that the subset of state T, C, and V is distinguishable with solid
fraction measurements, while the CSD size distribution is not.
Moreover, from the computation of the first-order Lie

derivative

ρρ= +L h T C V k G C T M MF V( , , ) 3 ( , ) /( )f v
w

c2 2
2

(23)

one can notice that in practice the concentration is distinguish-
able only if the second moment M2 of the CSD and the growth
rate G are large enough. Considering that at the beginning of the
batch the solid phase is in negligible quantity and that at the end
of the batch the supersaturation is almost all consumed, there is a
lack of estimability of the concentration at the beginning and end
of the batch run, when M2 ≃ 0 and G ≃ 0.

Estimator Structure. The outcome the estimability study
shows that the solute concentration is distinguishable through
temperature and solid fraction measurements, while the CSD is
undistinguishable. The obtained results represent the starting
point for the design of the structure of the estimator. Even if the
system is not observable, it is detectable because the dynamics of
the undistinguishable states are stable according to the definition
of stability for batch processes given by Srinivasan and
BonvinSrin.43 In the light of the estimation objective (i.e.,
estimation of the primary variables: solute concentration and
CSD), the performed estimability analysis of the crystallization
system suggests the following:

(i) Due to the undistinghuishability of CSD, the estimation
model has to be detailed in the description of the CSD
dynamics, that is to say that the accuracy of the prediction
of the CSD behavior relies on the goodness of the
discretized PBE. In this case, it is appropriate to use the
rigorous model of the crystallization (eqs 13−20) as
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estimationmodel since it is accurate and suitable for online
use (i.e., it can be simulated 100 times faster than the real
process39).

(ii) Considering that the estimators with detectability indexes
larger than two generally leads to an ill-conditioned
estimation, one should choose up to a maximum of two
innovated states per measurements. Among the distin-
guishable states, the choice of the innovated states should
guarantee a good trade off between innovation of the states
describing the dynamics of the primary variables and
innovation of the states whose changes much affect the
measured outputs of the system. For this reason, it is
reasonable choosing to innovate (a) temperature and
concentration by means of temperature measurements
and (b) mass of crystal and concentration by means of the
solid fraction measurements.

As it is demonstrated in the following sections, this structure
guarantees a good estimation of the concentration under
measurement noises and model-plant mismatch and good
estimation of the CSD if its estimation model and the plant are
made to start sufficiently close.

4. RESULTS
4.1. Concentration and CSD Estimator. From the

discussion in the previous paragraphs, the passive estimator
(eqs 24) is proposed. The estimation has innovation of
temperature and concentration dynamics (and concentration
and solid mass dynamics) by means of temperature (and solid
fraction) measurements. Themeasurements are processed with a
GE with a proportional innovation mechanism. The CSD is
estimated in an open loopmode bymeans of the discretized PBE.
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where KT1 and KT2 (and Kϵ1 and Kϵ2) are the proportional gains
related with the innovation through temperature (and solid
fraction) measurements. ΦT,ij are the elements of the (2 × 2)
matrix ΦT which is the inverse of OιT(x,u(t))
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with Lf h1 = f T (eq 21). The elements of the second row ofOιT(x,
u(t)) are
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with temperature and concentration dependency of the density ρ
and specific heat cp being neglected.
ΦϵS,ij are the elements of the (2 × 2) matrix ΦϵS which is the

inverse of OιϵS
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with Lf h2 reported in eq 23. The elements of the second row of
OιϵS(x, u(t)) are
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with concentration dependency of the density ρ being neglected.
It is worth noticing that ΦT and ΦϵS are time-dependent

matrices as well as OιT and OιϵS since the latter are functions of
the input u(t). From this point of view, the realization of the GE
for batch systems can be seen as an estimator with adaptive gains
KTΦT(t) and KϵΦϵS(t). Furthermore, OιT and OιϵS are input
derivative-free, and the computation of these matrices is not
challenging, both in the cases of gg ≠ 1 and gg = 1 since Csat is a
polynomial function of T and hence analytically differentiable in
T.

4.2. Performance Evaluation of the Estimator. Industrial
batch crystallization processes are prone to operate under
uncertainties, which are due to measurement deficiency,
uncertain initial conditions, and uncertainties associated with
the kinetics parameters. To this end, the proposed estimator is
tested under the following scenarios: (i) uncertain initial
concentration, (ii) uncertain heat of crystallization, (iii)
uncertain initial distribution of seeds, (iv) uncertain kinetic
parameters, and (v) literature-based18 uncertain scenario.
The model with parameters of Case 1 in Table 129 are

considered for scenarios i, ii, and iii. Estimation performances
with Case 1’s and Case 2’s parameters are tested for scenario iv.
Estimation performance with Case 2’s parameters is tested for
the scenario v. The temperature and solid fraction measurements
are obtained by simulating the model without any uncertainty
under a predefined vapor flow (input) trajectory and a sampling
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time of 1 min. Then, secondary variables and input are corrupted
with a 65 dB white noise. For the parameters of Case 1, the
measurements of the secondary variables for state estimation are
depicted in Figure 2. With parameters of Case 2, the trajectories
are similar and hence not presented. The estimator is tuned
according to the guidelines (eq 11) with observer frequencyωo =
20ωc and damping factor ξ = 1. The inverse of the batch run time
is taken in place of the characteristic frequency ωc of the
crystallization. The proposed estimator is programmed in
MATLAB R2016a, and it takes approximately 62 s to simulate
6720 s of real process in a computer with Intel (R) Core (TM)2
Quad CPU 2.83 GHz.
Note that, for better readability, CSD results are given in terms

of volume fraction v rather than number density function n.
Between the two variables, the relation vi = nikvLi

3 holds.
Information about the median size of the crystals in terms of D50
is also given (D50 is the 50th percentile of the cumulative of the
CSD expressed in terms of volume fraction v).
Uncertain Initial Concentration. In this test, the estimator is

run with a +10% mismatch in C0 (eq 24c) with respect to the
reference model. Under this scenario, the estimation model

without any innovation manifests a consistent bias in the
prediction of both the concentration (Figure 3a) and the CSD
(Figure 3b) and its attributes (D50, Figure 3c). On the other
hand, if the temperature and solid fraction measurements are
used the trajectory of the concentration (Figure 3d), the CSD
(Figure 3e) and the D50 (Figure 3f) converges to the reference
trajectory. The convergence time depends on the low
distinguishability of the concentration at the beginning of the
batch run which is associated with the small amount of crystal
surface present, as found in Section 3.2. Accordingly, the
convergence rate cannot be improved by tuning. The reference
system has parameters according to Case 1 in Table 1.

Uncertain Heat of Crystallization. In this scenario, a high
level of uncertainty is assumed for the heat of crystallization, and
in the estimation model, this parameter is taken at 1/10 of the
reference value. Under this severe test, one can note that the
estimation model without any innovation predicts a much higher
consumption of solute (Figure 4a), while the estimator is able to
reconstruct the concentration profile with high accuracy (Figure
4d). On the other hand, the convergence of the concentration
estimation penalizes the transient of the estimation of the CSD

Figure 2. Measurements of the secondary variables: (a) temperature and (b) solid fraction.

Figure 3. Estimation of the model without any innovation (top) and of the proposed estimator (bottom) of concentration (a,d), CSD at every 10min of
operation (b,e), and D50 (c,f), under 10% of uncertainty in the initial solute concentration.
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(Figure 4e) and its attributes (D50, (Figure 4f)), leading to
offsets. The reference system has parameters according to Case 1
in Table 1.
Uncertain Median of Initial Seeds. This uncertain scenario

corresponds to an error of the +10% in the initial mean of the
seeds. The performance of the estimation model without any

innovation and the ones of the estimator with secondary

measurements are presented in Figure 5. Both the model (Figure

5a) and the estimator (Figure 5d) give the correct prediction of

the concentration and an estimation of the CSD with limited

offsets. However, the estimator gives a slightly better estimation

Figure 4. Estimation of the model without any innovation (top) and of the proposed estimator (bottom) of concentration (a,d), CSD at every 10min of
operation (b,e), and D50 (c,f), under high uncertainty in the heat of crystallization.

Figure 5. Estimation of the model without any innovation (top) and of the proposed estimator (bottom) of concentration (a,d), CSD at every 10min of
operation (b,e), and D50 (c,f), under 10% of uncertainty in the median size of the seeds distribution.
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of the shape of the CSD (Figure 5e) and its D50 (Figure 5f). The
reference system has parameters according to Case 1 in Table 1.
Uncertain Kinetics Parameters. Under this scenario, a

mismatch between the kinetics parameters of the estimation
model and the reference model is assumed. The performance is
tested against a reference system with parameters of Case 1 and
Case 2 in Table 1.
For the system with parameters of Case 1, we assume that the

mismatch between the reference model and the estimation
model amounts to a +10% error in the growth and nucleation
rate constant (kg and kci) and in the agglomeration parameter a.
The simulation results are shown in Figure 6. Under this
scenario, the concentration of the solute is predicted with good
performance, both with the model without innovation (Figure
6a) and the estimator (Figure 6d). As expected from the
estimability analysis, the estimator driven by secondary measure-
ments is not able to deal with errors in the population balance
equation (PBE) leading to an estimation of the CSD (Figure 6e)
which is comparable with the one obtained from the model
without any innovation (Figure 6b). This is because the CSD is
indistinguishable with these measurements, or in other words,
variations in the evolution of the CSD are not captured by means
of temperature and solid fraction measurements. This confirms
that the estimation of undistinguishable dynamics relies on the
accuracy of the estimation model, as stated in the estimator
structure design section.
To the best of the authors’ knowledge, the majority of the

papers in the area of modeling of crystallization processes do not
give clear information about the uncertainty attached to the
parameters. In some cases, 95% confidence limits have been
reported. According to Qiu and Rasmuson,44 an appropriate
choice of the estimation technique, the objective function, and

the experiment operating conditions may limit the uncertainty in
the parameters as follows:

(S.a) Qiu and Rasmuson44 reported 15−20% for the nucleation
rate constant, 1.6−3.5% for the growth rate constant, 10%
for the supersaturation order of the growth rate, and 2.6%
for the supersaturation order of the nucleation rate.

(S.b) By means of data discrimination, the mismatch in the
nucleation parameters can be further reduced. In this case
Qiu and Rasmuson44 reported mismatches of 10% for the
nucleation rate constant, 7% for the growth rate constant,
6% for the supersaturation order of the growth rate, and
0% for the supersaturation order of the nucleation rate.

A simulation has been carried out to test the performance of the
estimator under the parametric plant-model mismatch (S. a), and
an initial concentration mismatch of +5%. Table 2 compares the

values of the parameters in the reference model (Case 2 in Table
1) and the estimation model under this uncertain scenario. The
performance of the estimator is satisfactory (Figure 7).

Literature-Based18 Uncertain Scenario. This scenario
considers parametric plant-model mismatches and uncertain
initial conditions at the same time: (i) Parametric plant-model
mismatches: + 15% error in kinetic parameters18 and (ii)

Figure 6. Estimation of the model without any innovation (top) and of the proposed estimator (bottom) of concentration (a,d), CSD at every 10min of
operation (b,e), and D50 (c,f), under 10% of uncertainty in the kinetics parameters kg, kci, and a.

Table 2. Parameters Information for Case 2

Parameter
Case 2: Reference

Model
Estimation
model Units Mismatch

kg 4.64 × 10−5 4.80 × 10−5 m/s +3.5%
kci exp(12.54) exp(12.7226) #/m3 s +20%
gg 1.1 1.21 − +10%
gn 2 2.052 − +2.6%
a 3.016 × 10−12 3.122 × 10−12 − +3.5%
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Uncertain initial conditions: + 2% error in the initial solute
concentration, and +5% error in the mean of the initial CSD.18

The estimator based on the system with parameters of the
Case 2 in Table 1 is tested under this uncertain scenario.
Simulation results are depicted in Figure 8. The concentration is
perfectly and quickly recovered by the estimator, and the
estimation of the CSD is satisfactory, even if the CSD dynamics is
not distinguishable with the measurements of temperature and
solid fraction. The shape of the CSD is very well preserved, and
the mismatch between the reference D50 and the estimated one
is only ≈6.5%.
4.3. Remarks. In this section, the performance of the

designed estimator are tested under uncertain scenarios. The
estimation performance is in line with the expectation in light of
the performed estimability analysis. In particular, the estimation
of the concentration profile is always good. The estimation of the
CSD is acceptable provided that the estimation model is accurate
enough. In fact, a good estimation of the CSD relies on a detailed
description of the crystallization phenomena in place (growth,
nucleation, and agglomeration) and a confident parameter
estimation, which is in agreement with our structure selection
guidelines.

5. CONCLUSIONS

In this work, a concentration and crystal size distribution (CSD)
estimator driven by secondary variables (temperature and solid
fraction) measurements has been developed and tested for a
crystallization system accounting for growth, secondary
nucleation, and agglomeration. The estimation problem is cast
as an estimation structure problem in the understanding that the

estimation performance relies on an appropriate structure
selection rather than the chosen estimation algorithm. The
estimation structure design has been performed based on
guidelines driven from RE-estimability arguments. For the case
under study, RE-estimability analysis mostly suggests to use a
detail estimation model to provide the best prediction possible of
the undistinguishable CSD dynamics and a passive innovation
scheme with temperature, concentration, and mass of crystals as
innovated states. The used estimation algorithm is the GE with
proportional innovation which offers simplicity of tuning and
implementation. Estimation testing through simulations have
confirmed our expectations: the performance of the designed
estimator is always good with respect to the concentration
estimation and acceptable for the CSD provided that an accurate
rigorous model is available.

■ APPENDIX

Numerical Solution Scheme for Population Balance
Equation with Simultaneous Growth, Nucleation, and
Agglomeration
In this Appendix, the numerical scheme adopted for the
simulation of the CSD dynamics (eqs 20) is presented.
Let us defineΛ = [L0,L1,L2,...,Lmax]

T as the vector of dimension
dim(Λ) = γ containing the length classes obtained by discretizing
the internal coordinate L. Let N = [n(L0), n(L1), n(L2), ...,
n(Lmax)]

T (or in short N = [n0,n1,n2,...,nmax]
T) be the vector of

number densities associated with each length class having
dim(N) = dim(Λ) = γ. The crystal size distribution if univocally
identified by the pair [Λ,N].

Figure 7. Performance of the estimator under the uncertain scenario (S.a)44 (Table 2) and an initial concentration mismatch of +5%: concentration (a),
CSD at every 10 min of operation (b), and D50 (c).

Figure 8. Performance of the estimator under a literature-based18 uncertain scenario: concentration (a), CSD at every 10min of operation (b), and D50
(c).
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Let (tf in − tin) be the sampling time of the numerical scheme
and Nsamp be the number of iteration needed to simulate the
batch time. The dynamics of the CSD (eqs 20) can be simulated
by means of the following numerical scheme:

= =t n n0;in i t i seeds, ,in (27a)

γ= =k N ifor 1, ..., ; for 1, ...,samp (27b)

=L Lt1, 0fin (27c)

= + −+L L G t t( )i t i t in fin in1, ,fin in (27d)

= * + − −n n B L t D L t t t[ ( , ) ( , )]( )i t i t A i in A i in fin in, ,fin fin (27e)

end (27f)

γ γ= = = +t t n n; ; 1in fin i t i t, ,in fin (27g)

end (27h)

In eqs 27,Gin denotes the growth rate at the time tin. BA(Li,tin) (or
DA(Li,tin)) denotes the birth (or death) rate of crystals in the
length class Li at the time tin. ni,tf in* is the number of particle per unit
volume due to the nucleation and growth phenomena according
to

* =n B G/t in1, 0,infin (28a)

* =+n ni t i t1, ,fin in (28b)

where B0,in denotes the birth rate at time tin.
∀Li ∈ Λ:
1. The evaluation of the birth rate

∫β
λ λ

λ
λ=

−
−

B L t
L n L n

L
d( , )

2
(( ) ) ( )

( )A i in
i

L
i

i

2

0

3 3 1/3

3 3 2/3

i

(29)
involves the computation of the elementsΛi,j* of the vector
Λi*

γΛ* = Λ* Λ* Λ* = *γ* dim[ , ..., ] , ( )i i i
T

i i,1 , i

Λ* = − =L L j i( ) , 1, ...,i j i j,
3 3 1/3

being γi* the dimension of the subset of crystal classes

Λ = ⊂ Λ− L L[ , ..., ]i i
T

0 (30)

γ γ* = Λ <−dim( )i i (31)

2. Evaluate the number density n(Λi,j*) corresponding to each
crystal length Λi,j* by extrapolation, involving the two
adjacent length classes Lk, Lk+1 such that Lk < (Li

3 − Lj
3)1/3

< Lk+1 and the corresponding number densities n(Lk) and
n(Lk+1).

3. Evaluate the elements Fi,j of the vector Fi = [Fi,1,...,Fi,γi*]
T

according to

=
Λ* Λ

Λ*

−

F
n n( ) ( )

( )i j
i j i j

i j
,

, ,

,
2

The integral term IB(Li) in eq 29

∫ λ λ
λ

λ=
−

−
I L

n L n
L

d( )
(( ) ) ( )

( )B i

L
i

i0

3 3 1/3

3 3 2/3

i

is evaluated by computing the area under the curve defined
by the matrix of points [Λi

−, Fi]
T by means of a trapezoidal

rule.
4. The birth rate by agglomeration

∫β λ λ=
∞

D L n L n d( ) ( ) ( )A i i
0 (32)

can be evaluated by means of the approximation of the
integral

∑β=
+ −γ

=

−
+ +⎡

⎣⎢
⎤
⎦⎥D L n L

n n L L
( ) ( )

( )( )
2A i i

i

i i i i

1

1
1 1

(33)
A detailed analysis of the performance of this algorithm
can be found in the paper by Porru and Özkan.29
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■ NOMENCLATURE
a = Agglomeration parameter
BA = Birth function due to agglomeration [#/s μm m3]
B0 = Nucleation rate for primary and secondary nucleation
[#/s m3]
C = Solute concentration [kg/m3]
cp = Specific heat of the mixture [J/kgK]
Csat = Solute concentration at saturation [kg/m3]
DA = Death function due to agglomeration [#/s μm m3]
G = Crystal growth rate [m/s]
gg = Supersaturation order in the growth rate law [−]
gn = Supersaturation order in the nucleation law [−]
kg = Growth rate constant [m/s]
kci = Nucleation rate constant [#/m3 s]
kv = Volumetric shape factor [−]
L = Internal coordinate crystal length [m]
L0 = Characteristic length of crystal nuclei [m]
Lmin = Crystal length above which crystals undergo attrition
[m]
M = Mass of crystals [kg]
M2 = Second moment of the CSD, proportional to the total
crystal surface [# m2/m3]
n = Number density function [#/m3 μm]
nseeds = Number density function of the seeds [#/m3 μm]
NQ = Impeller flow number [−]
NP = Impeller power number [−]
T = Temperature of the system [K]
TR = Reference temperature [K]
t = Time [s]

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b00243
Ind. Eng. Chem. Res. 2017, 56, 9578−9592

9590

mailto:m.porru@tue.nl
http://orcid.org/0000-0003-1710-567X
http://dx.doi.org/10.1021/acs.iecr.7b00243


V = Volume [m3]
v = Volume fraction [m3/μm m3]
Fw = Mass flow of the vapor [kg/s]
hw = Enthalpy of the vapor [J/kg]
ΔHC = Heat of crystallization [J/kg]
β = Agglomeration kernel [−]
ϵS = Solid fraction [−]
ε = Specific power input [m2/s3]
ρ = Density of the mixture [kg/m3]
ρc = Density of the solid phase [kg/m3]
ϕc = Crystal production term due to crystal growth [kg/s]
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(26) Alhoniemi, E.; Hollmeń, J.; Simula, O.; Vesanto, J. Process
monitoring and modeling using the self-organizing map. Integrated
Computer Aided Engineering 1999, 6, 3−14.
(27) Corona, F.; Mulas, M.; Baratti, R.; Romagnoli, J. A. Data-derived
analysis and inference for an industrial deethanizer. Ind. Eng. Chem. Res.
2012, 51, 13732−13742.
(28) Alvarez, J. Nonlinear state estimation with robust convergence. J.
Process Control 2000, 10, 59−71.
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