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Cardiac neural crest cells contribute to the dormant
multipotent stem cell in the mammalian heart
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rodent cardiac side population cell fraction

formed clonal spheroids in serum-free medium,

which expressed nestin, Musashi-1, and multi-
drug resistance transporter gene 1, markers of undiffer-
entiated neural precursor cells. These markers were lost
following differentiation, and were replaced by the ex-
pression of neuron-, glial-, smooth muscle cell-, or car-
diomyocyte-specific proteins. Cardiosphere-derived cells
transplanted into chick embryos migrated to the truncus
arteriosus and cardiac outflow tract and contributed to
dorsal root ganglia, spinal nerves, and aortic smooth
muscle cells. Lineage studies using double transgenic

Introduction

Although the generation of cardiomyocytes in the mammalian
heart occurs predominantly during early development, cardio-
myocytes in the adult heart are known to proliferate following
heart failure or myocardial infarction. Adult cardiac stem cells
are self-renewing, clonogenic, and multipotent; they give rise
to myocytes, smooth muscle, and endothelial cells to enable the
formation of well-differentiated myocardium with blood-carrying
new vessels, and myocytes with the characteristics of young
cells (Beltrami et al., 2003). Adult heart-derived cardiac pro-
genitor cells expressing stem cell antigen—1 (Sca-1) were
shown by Oh et al. (2003) to differentiate into cardiomyocytes
in vitro following 5’-azacytidine treatment, and to contribute to
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mice encoding protein 0-Cre/Floxed-EGFP revealed un-
differentiated and differentiated neural crest-derived cells
in the fetal myocardium. Undifferentiated cells expressed
GATA-binding protein 4 and nestin, but not actinin,
whereas the differentiated cells were identified as cardi-
omyocytes. These results suggest that cardiac neural
crest-derived cells migrate into the heart, remain there as
dormant multipotent stem cells—and under the right con-
ditions—differentiate into cardiomyocytes and typical
neural crest-derived cells, including neurons, glia, and
smooth muscle.

the regeneration of damaged myocardium. Although accumu-
lating evidence demonstrates the existence of pluripotent or
lineage-committed progenitor cells in the heart, the origin of
these cells is unknown.

We previously described a method of isolating murine
hematopoietic stem cells by dual-wavelength flow cytometric
analysis with the fluorescent DNA binding dye Hoechst 33342
(Goodell et al., 1996, 1997; Matsuzaki et al., 2004). This
method relies on the differential ability of stem cells to efflux
the Hoechst dye, which—Ilike the activity of P-glycoprotein
(Zhou et al., 2001)—defines a small subset of side population
(SP) cells. SP cells are observed in various tissue types and
generally are considered to be tissue-specific progenitor cells.
For example, the SP cells in bone marrow are highly enriched
for long-term hematopoietic stem cells, and they were also ob-
served in various tissue types (Kim and Morshead, 2003). It is
possible that cardiac SP cells represent a cardiac stem/progenitor
cell population that can be enriched by the isolation of the
Hoechst 33342 effluxing fraction (Hierlihy et al., 2002).

Neural stem cells can proliferate in vitro as a floating
culture and can generate spheres (neurospheres) in serum-free
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medium in the presence of EGF, or differentiate into neurons or
astrocytes in the absence of EGF (Reynolds and Weiss, 1992).
Most cells within neurospheres express nestin and Musashi-1,
considered to be markers for undifferentiated neural precursor
cells (Lendahl et al., 1990; Sakakibara et al., 1996; Kaneko et
al., 2000). In addition to stem cells, Musashi-1 is expressed at
least in subsets of astrocytes (Kaneko et al., 2000). The neuro-
sphere culture method is a versatile method for assaying the
multipotency of neural stem cells, and for the in vitro expan-
sion of neural stem/progenitor cells (Reynolds and Weiss,
1992). A similar sphere-forming culture method can be applied
to tissue-specific stem cells from the retina, pancreas, epider-
mis, and inner ear, and to neural crest-derived cells (Tropepe et
al., 2000; Toma et al., 2001; Zulewski et al., 2001; Li et al.,
2003). Common features of sphere formation are the expression
of nestin, and the ability of sphere-derived cells to differentiate
into other cell types in addition to their own tissue-specific
cell type.

Because SP cells are dormant, they cannot be expanded
readily in vitro. In the present study, the stem cell fraction of the
rodent neonatal heart was enriched and expanded using a combi-
nation of the SP cell method and the neurosphere-generation
method. We identified multilineage potent progenitor cells in
the heart that could generate spheres and differentiate into car-
diomyocytes and cells with neural crest characteristics, includ-
ing peripheral nervous system (PNS)-type neurons, glial cells,
and smooth muscle cells. We investigated the neural crest
cell-like behavior of isolated sphere-derived cells in vivo by
transplanting them into chick embryos. Migration of these
cells into the heart region contributed to the neural crest-
derived dorsal root ganglia, spinal nerves, and aorta, which
subsequently differentiated into neurons, glia, and smooth
muscle cells. Analysis of transgenic mice hearts expressing
protein 0 (P0)-Cre and Floxed-EGFP confirmed that neural
crest-derived cells migrate and lay in a dormant, undifferenti-
ated state in the heart expressing nestin and GATA-binding
protein 4 (GATAA4), or can differentiate into cardiomyocytes
or in vitro—derived cardiospheres.

Results

Isolation and characterization of SP cells
in the heart

Because adult tissue stem cells can be enriched as SP cells
(Goodell et al., 1996, 1997; Matsuzaki et al., 2004), we initially
characterized the SP cells in neonatal and adult mouse hearts.
FACS analysis demonstrated the presence of cardiac SP cells
that are completely blocked by reserpine (Fig. 1 A). SP cells
make up 3.5% of heart tissue cells in 2-d-old mice, which is
markedly higher than the range of 0.01-1% that was observed
in various other organs, including blood, skeletal muscle, and
brain (Goodell et al., 1996). The proportion of heart SP cells
decreased rapidly up to postnatal day 7, and made up only
0.02% of heart cells at 6 wk (Fig. 1, B and C); this level was
consistent with that found in other organs. Cardiac SP cells
were characterized further by immunostaining of cytospin
preparations with the anti-sarcomeric myosin antibody (Fig. 1 D).
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30% of the main population (MP; non-SP) cell fraction con-
tained myosin-positive cardiomyocytes, whereas the SP frac-
tion contained no myosin-positive cells; this provided evidence
that cardiac SP cells are nonmyocytes.

Cardiac SP cells were phenotyped by analysis of cell
surface marker expression. Cell suspensions from P2 mouse
hearts were treated with Hoechst 33342 and monoclonal anti-
bodies (Abs). Two-dimensional FACS profiles (Fig. 1 E) re-
vealed that cardiac SP cells are negative for all markers of
mature hematopoietic cells, including CD11b, 13, and 45 and
Ter119, and are positive for the widely expressing antigens
CD29 and CD44. Heterogeneous expression was observed for
various immature hematopoietic cell or vascular stem cell
markers, such as CD34, c-Kit, Flk-1, and Sca-1. These results
provide evidence that the cardiac SP cell fraction is phenotyp-
ically immature and is not contaminated by mature hemato-
poietic cells.

Formation of neurosphere-like spheres

by cardiac SP cells in serum-free medium
SP cells were expanded in culture for further characterization.
An investigation of various culture procedures led to the suc-
cessful application of a method that was used previously to
generate neurospheres from cultured central nervous system
stem cells to generate neurosphere-like spheres from cardiac
SP cells. Using this approach, culture of isolated cardiac SP
cells resulted in cell division followed by detachment from the
culture plate to form a sphere of proliferating cells referred to
as a cardiosphere. Cardiospheres were similar in appearance to
neurospheres that were derived from cultured central nervous
system stem cells, and formed after 7-10 d in serum-free me-
dium in the presence of EGF and FGF2 (Fig. 1, F-I). MP cells
also proliferated in serum-free medium, although the popula-
tion of sphere-initiating MP cells was 100-fold lower than that
of cardiac SP cells. Proliferation of cardiospheres was not ob-
served in the absence of EGF and FGF2. Cells within the car-
diosphere did not express the cardiac myocyte marker myosin
(MF20) or differentiation markers of other mature cell types.
To compare the phenotype of cardiospheres with neurospheres,
the cells from cardiospheres were immunostained for nestin
and Musashi-1, markers of undifferentiated neural precursors.
Consistent with neurosphere cells, most cardiosphere cells
were positive for nestin and Musashi-1 (Fig. 1, J-N). RT-PCR
analysis also confirmed nestin and Musashi-I mRNA expres-
sion in the fetal heart, nonmyocyte fraction, and cardiospheres
(Fig. 1 O).

Neonatal and adult cardiac nonmyocytes
contain cardiosphere-initiating cells

To investigate the origin of cardiosphere-initiating cells, the
nonmyocyte and myocyte-enriched fractions were separated on
a Percoll density gradient then assessed in the cardiosphere-
forming assay (Reynolds and Weiss, 1992). Percoll-purified
neonatal rat or mouse cardiac nonmyocytes were plated at a
density of 10,000-20,000 cells/cm? on uncoated culture dishes
(10 cm in diameter). ~50~100 spheres (1-2 spheres/cm?) were
observed after 7-14 d in vitro. After dissociation and subcul-
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Isolation, characterization, and cardiosphere formation of SP cells in the neonate and adult heart. (A) Representative FACS analysis of the 2-d

neonatal heart tissues using Hoechst 33342. (B) Postnatal changes in FACS analysis of the SP cell fraction. (C) Percentage of SP cells at P2, P4, P7, and
P6 weeks. (D) Cytospin preparations of the SP and MP cells were stained with antisarcomeric myosin monoclonal Ab (MF20). Note that all the cardiomyo-
cytes were classified in the MP cell fraction. (E) FACS analysis of the cell surface marker antigen in SP cells obtained from the neonate heart. (F-l) Phase
contrast microscopy of cardiosphere formation. Cardiosphere formation was observed at O (F), 3 (G), 7 (H), and 14 (I) d. Cardiospheres stained with an-
tinestin (J) and anti-Musashi-1 (K) Abs. (L-N) Cardiospheres were dissociated with trypsin, and cells were plated onto gelatin-coated glass slides. Double
immunostaining with anti-Musashi-1 (L) and antinestin (M) was performed. (N) The merged view. (O) RT-PCR analysis of nestin and Musashi-1. Fetal brain

was used as a positive control.

ture as single cells, ~10% of the primary sphere-derived cells
formed secondary spheres. No primary spheres were observed
in cardiomyocyte fractions. These results show that cardio-
sphere-initiating cells are contained within the nonmyocyte cell
populations. We also found that cardiosphere formation can be
observed in nonmyocytes prepared from adult (10-24-wk-old)
murine hearts.

The optimum cell-plating density for formation of car-
diospheres was identified as 10,000 cell/ml; most cells that
were derived from cardiospheres were positive for nestin and
Musashi-1 (unpublished data). This result is consistent with the
report by Hulspas et al. (1997) that spheroid colonies displayed
clonal growth when murine neural stem cells were cultured at a
density of 10,000 cell/ml. We showed that cardiospheres are

NEURAL CREST AND CARDIAC STEM CELL
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Figure 2. Differentiation of cardiosphere-derived cells in
vitro. Cardiospheres were obtained from P2 neonates.
Dissociated cardiosphere-derived cells were maintained
in medium without EGF and FGF-2. At day O, almost all
cells stained with antinestin (A) and anti-Musashi-1 (C),
but did not stain with antisarcomeric myosin (MF20) (E
and F), anti-GFAP (G), or anti-MAP2 (I) Abs. At day 14,
the cells did not stain with antinestin (B), or anti-Musashi-1
(D) Abs. By comparison, some cells stained with anti-
sarcomeric myosin (F), anti-GFAP (H), or anti-MAP2 ())
Abs. The square box in (J) was enlarged in Fig. 3 C. (K)
RT-PCR analyses of nestin, Musashi-1, mdr-1, GFAP, and
MAP2. Note that cardiosphere-derived cells at day O ex-
pressed nestin, Musashi-1, and mdr-1, but not GFAP or
MAP2. By comparison, these stem cell markers disap-
peared at day 14, and cells began to express GFAP and
MAP2. (L) RT-PCR analysis of B-MHC. Fetal brain or heart
was used as a positive control.

derived from a single cell from primary cultures plated at
10,000 cell/ml. Primary cell cultures derived from the neonatal
hearts of wild-type mice and mice ubiquitously expressing
GFP (Okabe et al., 1997) were mixed at a ratio of 9:1. Result-
ant cardiospheres were GFP-negative or GFP-positive; there
was no evidence of mixing of the GFP-positive and GFP-
negative cells (unpublished data).

Figure 3. Analysis of the expression of neuron-specific
markers in cardiosphere-derived cells. Cardiospheres ob-
tained from P2 neonates were induced to differentiate as
described in “Materials and methods.” (A-D) Immuno-
staining of the neural markers: (A) peripherin, (B) p75
NGF receptor, (C) MAP2, (D) Hu. (E and F) Cardio-
sphere-derived cells were obtained from Ta-1-EYFP trans-
genic mice, in which all neurons express the yellow fluo-
rescent protein under the control of the neuron-specific
al+tubulin promoter. Some of the cardiosphere-derived
cells expressing EYFP (F) were stained with anti-MAP2
Abs. (G) RT-PCR analysis of MASH-1, p75, and PO.
MASH-1, a proneural basic helix-loop-helix transcription
factor, was expressed at day O, whereas the cells, in
turn, expressed PO, myelin glycoprotein, at day 14.
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Figure 4. Characterization of cardiosphere-derived cells
as stem cells for cardiomyocytes and smooth muscle cells.
Cardiospheres obtained from P2 neonates were induced
to differentiate as described in “Materials and methods.”
(A) RT-PCR analysis of cardiomyocytes-specific transcrip-
tion factors and proteins. Cardiospheres were dissoci-
ated and replated; at day O cells expressed GATA4, but
not Nkx2.5, muscle enhancement factor 2C, atrial natri-
uretic peptide, al subunit of the cardiac Ltype Ca**
channel, or a-skeletal actin. By comparison, the cells ex-
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cells to differentiate into neurons, glial cells, and cardiomyo-
cytes was investigated. At day 0, most cardiosphere-derived
cells were positive for nestin and Musashi-1 (Fig. 2, A and C).
At this stage, most cells were small in size, and did not express
microtubule-associated protein 2 (MAP2), glial fibrillary acidic
protein (GFAP), or myosin heavy chain (MHC) (Fig. 2, E, G,
and I). By day 14, the cells had lost the ability to express nestin
and Musashi-1 (Fig. 2, B and D). Differentiation of the cardio-
sphere-derived cells was associated with the induction of vari-
ous morphologic changes, including the formation of neuron-
like dendrites and the initiation of spontaneous beating within
several weeks, a characteristic feature of cardiomyocytes. Cells
within the differentiated population stained positively with
anti-MHC, anti-GFAP, or anti-MAP2 Abs. The expression of
markers for stem/progenitor cells, including nestin, Musashi-1,
and mdr-1 (multi-drug resistance transporter gene 1) (Zhou et
al., 2001), and for differentiated cells, including MAP2, GFAP,
and B-MHC, was assessed by RT-PCR (Fig. 2 L). Stem/pro-
genitor cell marker genes were expressed at day 0, but their ex-
pression gradually decreased and could not be detected at day
14. By comparison, expression of GFAP, MAP2, and B-MHC
were observed from day 7, which provided evidence of the dif-

pressed all of these transcription factors and proteins af-
ter day 7. (B) A fraction of the cardiosphere-derived cells
began spontaneous beating at day 14. This trace is rep-
resentative of the action potential of these cells at day 14.
Double immunostaining of Nkx2.5 (C) and nucleus with
DAPI (D). Double immunostaining with GATA4 (E) and
DAPI (F). (G) Triple immunostaining of sarcomeric myosin
(red), GFAP (green), and DAPI (blue). (H) Double immuno-
staining of actinin and DAPI. (I RT-PCR analysis of smooth
muscle markers. Double immunostaining of a-smooth
muscle actin (green) and nuclei with DAPI at day O (J)
and day 14 (K). Double immunostaining of the calponin
(green) and DAPI at day O (L) and 14 (M).
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ferentiation of cardiosphere-derived cells into neurons, glia,
and cardiomyocytes.

The ability of cardiospheres to differentiate into cells with PNS
characteristics also was examined. Differentiated cardiospheres
were immunostained with peripherin, a PNS neuronal marker;
p75, a common receptor subunit of the nerve growth factor
family that is expressed in sensory neurons, neural crest stem
cells (Morrison et al., 1999), and Schwann cells (Stemple and
Anderson, 1992); and MAP2, a pan-neuronal marker. A popu-
lation of small cardiosphere-derived cells with long axons
stained positive with all antibody markers (Fig. 3, A-C). Im-
munostaining with anti-Hu (a pan-neuronal marker) showed
strong expression of Hu in particular small cells, which con-
firmed their differentiation into a neuronal cell type (Fig. 3 D).

o-Tubulin promoter (Ta-1)-EYFP transgenic mice, in
which all cells with a neuronal lineage express enhanced yel-
low fluorescent protein (EYFP), were used to evaluate differ-
entiation of cardiosphere-derived cells into neuronal cell types
(Sawamoto et al., 2001). Differentiated cardiospheres from

NEURAL CREST AND CARDIAC STEM CELL
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Figure 5. Cardiosphere cells behave as neural crest in
the chicken embryonic environment. Cardiospheres ob-
tained from P2 neonates were labeled with Dil, and trans-
planted into the chick neural crest. (A) A dorsal view of a
chicken embryo that received cardiosphere cells into the
MSA at the second somite level. Cardiosphere-derived
cells are well-dispersed among embryonic cells 24 h after
transplantation. (B-D) Transverse sections of cardio-
sphereransplanted embryos, stained with HNK1 anti-
body for neural crest-derived cells and with DAPI for nu-
clei. Dil-labeled cardiosphere-derived cells contribute to
the developing dorsal root ganglia (drg, B) and spinal
nerve (sn, D). nt, neural tube. Many sphere-derived cells
also enter the lateral migration pathway (C). (E) A dorsal
view of a chicken embryo that received Dil-labeled car-
diosphere cells into the lateral pathway at the second
somite level. ov, ofic vesicle. (F) A side view of an em-
bryo, 48 h after transplantation into the lateral path-
way showing the developing heart. Many cardiosphere-
derived cells are entering the outflow tract area. a, atrium;
c, conotruncal; v, ventricle. (G) A transverse section of the
transplanted embryo showing the outflow tract and
conotruncal region. ¢, conotruncal. (G’) A higher magni-
fication view of the boxed area in (G). A Dillabeled
sphere-derived cell and a HNKI1-positive host-derived
crest cell are visible. (H) A dorsolateral view of an em-
bryo that received three cardiosphere cells into the MSA
at the wing limb bud level, 48 h after transplantation. Ib,
limb bud. () A transverse section of the transplanted em-
bryo, showing developing sympathetic ganglia (sg). da,
dorsal aorta. (I') A high magnification view of the boxed
area in (I) stained with HNK1 and DAPI. Cardiosphere-
derived cells are integrated into the ganglia.

Ta-1-EYFP transgenic mice were immunostained with the
anti-MAP2 antibody, and revealed expression of MAP2 by the
EYFP" cardiosphere-derived cells (Fig. 3, E and F).

RT-PCR of MASH1, a proneuronal basic helix-loop-helix
protein expressed in immature neuronal cells (Ross et al.,
2003); p75; and PO, a Schwann cell myelin marker (Lemke and
Axel, 1985; Lemke et al., 1988), also confirmed the differentia-
tion of cardiosphere-derived cells into neuronal cell types (Fig.
3 G). Differentiation of cardiosphere-derived cells leads to a re-
duction in p75 expression, and a reduction—followed by a
loss—of MASH1 expression. By comparison, expression of PO
was induced as a result of cardiosphere cell differentiation.
These findings are consistent with the differentiation pheno-
type of neuronal cells of the PNS lineage.

Cardiospheres and cells dissociated from cardiospheres express
GATA4, but not Nkx2.5 or muscle enhancement factor 2C,
which indicate that these cells are not cardiomyocytes, but their
early progenitors (Fig. 4 A). The cardiac-specific genes, ANP,
Cavl.2, or a-skeletal actin, are activated in cardiosphere-
derived cells 7 d after dissociation, whereas spontaneously beat-
ing cells are evident at 14 d. Fig. 4 B shows the representative
action potentials recorded from the cardiosphere-derived cardio-
myocytes at day 14. Compared with mature cardiomyocytes,

the resting potential was shallower but the duration of the

action potential was similar. Immunofluorescent staining for
Nkx2.5, GATAA4, and actinin was evident in particular cells at
day 14 (Fig. 4, C-H).

In the present study, the capacity of cardiosphere-derived
cells to differentiate into smooth muscle was investigated by
examining the production of a-smooth muscle actin (a-SMA)
and calponin (Fig. 4, J-M). At day 0, a-SMA™" cells repre-
sented 11.8 = 4.8% of total cells and were negative for calpo-
nin. By day 14, the population of a-SMA™ cells had increased
to 42.9 = 16.2% (Table SI; available at http://www.jcb.org/
cgi/content/full/jcb.200504061/DC1); most of these were pos-
itive for calponin. These findings show that the cardiosphere-
derived cell population consists largely of stem/progenitor
cells; a small fraction has the capacity to differentiate, at least
in part, into cardiomyocytes and smooth muscle cells.

At day 0, 99.8% of the cardiosphere-derived cells were nes-
tin® and Musashi-1", a characteristic of stem/progenitor cells
(Table SI). Following differentiation, the expression of these
markers is lost and is replaced by the expression of various
markers for differentiation. Many cells were positive for GFAP
(68.1 = 1.8%) and a-SMA (42.9 = 16.2%), whereas the popu-
lation of neurons and cardiomyocytes represented 0.45 = 0.21%



and 0.28 = 0.17% of the total cell population, respectively. Dif-
ferentiated neurons and cardiomyocytes did not express nestin.
The capacity of cardiosphere-derived cells to generate neurons,
glia, and smooth muscle cells in culture suggests that they have
neural crest-like characteristics. To investigate these characteris-
tics further, we tested the behavior of cardiosphere-derived cells
in vivo. Because neural crest cells that originate from the 1-3
somite level contribute to heart structures in the chick embryo,
one to three Dil (a lineage tracing dye)-labeled cardiospheres
were transplanted into the migration staging area (MSA) be-
tween the dorsal neural tube and somite at the first and/or second
somite level of Hamburger and Hamilton (1951) stage 9 chicken
embryos. Dil-labeled cardiosphere-derived cells were well-dis-
persed in the embryonic environment 24 h after transplantation
(Fig. 5 A). Many cardiosphere-derived cells seemed to migrate
along with host-derived human natrual killer-1 (HNK1)—posi-
tive neural crest cells (Fig. 5, B and C). Rodent neural crest cells
do not express HNK1. Because Dil is located at the cell surface
membrane, the border zone area between the Dil-labeled cardio-
sphere-derived cells and host-derived HNK1-positive cells ap-
pears yellow when many donor cells are concentrated among the
recipient cells. Medially migrating cardiosphere-derived cells
were found in the developing PNS, such as the dorsal root gan-
glion (Fig. 5 B) and the ventral spinal nerve (Fig. 5 D). Cardio-
sphere-derived cells also entered the lateral migration pathway
that normally is taken by neural crest-derived melanocyte pre-
cursors, ectomesenchymal cells, and those migrating into the
cardiac region. Very few cells reached the heart region.

To facilitate the migration of cardiosphere-derived cells
into the heart region, Dil-labeled cardiospheres were trans-
planted directly onto the lateral pathway between the dorsal
somite and the overlying epidermal ectoderm. Again, cardio-
sphere-derived cells were well-dispersed in the embryonic en-
vironment 24 h after transplantation (Fig. 5 E). 48 h later, the
labeled cells successfully entered the out-flow tract and the
conotruncus of the developing heart (Fig. 5 F). On transverse
sections of transplanted embryos, cardiosphere-derived cells
were found in the heart region along with HNK1-positive host-
derived cardiac crest cells (Fig. 5, G and G’). To examine fur-
ther the migratory capacity of cardiosphere-derived cells in
vivo, labeled cardiospheres were transplanted into the MSA at
the wing level of stage 12—13 embryos. 48 h after transplanta-
tion, cardiosphere-derived cells seemed to migrate along the
medial pathway (Fig. 5 H). On transverse sections, many car-
diosphere-derived cells were found to contribute to the PNS,
such as the sympathetic ganglia (Fig. 5, I and I'), and also to
dorsal root ganglia and spinal nerves (not depicted). These re-
sults show that cardiosphere-derived cells behave like neural
crest cells and migrate in the chick embryonic environment.

To examine the differentiation of transplanted cardio-
sphere-derived cells in vivo, cardiospheres were prepared from
GFP-expressing rat SP cells, because the GFP label allows
longer-term identification of individual cells. GFP-labeled car-
diospheres were transplanted as described above, and the distri-
bution and differentiation of cardiosphere-derived cells were
assessed 2 d later. Many cardiosphere-derived cells formed
peripheral ganglia and many also expressed the neuronal marker
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Figure 6. Differentiation of GFP-labeled cardiosphere-derived cells in the
chick embryonic environment. Cardiospheres obtained from P2 neonates of
the GFP-Tg mice were transplanted into chick neural crest. Cardiospheres
were fransplanted info the MSA at trunk level (A-C), or info the lateral path-
way at the first somite level (D-O). The transplanted embryos were allowed
to develop for 2 d. Cardiosphere cells contribute to the peripheral ganglia
(A-K), and express the neuronal marker Hu (A-C, D-G) or glial marker
GFAP (H-K). Arrows indicate double immunofluorescent-positive cells.
Some cardiosphere-derived cells also invade the anterior cardinal vein and
express smooth muscle actin (M-O, arrows). E-G, I-K, and M-O are higher
magnifications of the boxed areas in D, H, and L, respectively.

Hu (Fig. 6, A—G). Expression of the glial marker GFAP at the
trunk and cranial levels also was evident (Fig. 6, H-K). Several
cardiosphere-derived cells also contributed to the major blood
vessels and expressed smooth muscle actin (Fig. 6, L-O). These
results indicate that cardiosphere-derived cells have the capacity
to contribute to neural crest-derived tissues in the chick embryo.

For the analysis of the neural crest cell lineage, Yamauchi et al.
(1999) generated transgenic mice harboring a Cre gene driven
by a promoter of PO, and crossed PO-Cre transgenic mice with
CAG-CAT-Z indicator transgenic mice, which carry a lacZ
gene downstream of a chicken-actin promoter and a “stuffer”
fragment flanked by two loxP sequences. In three different
PO-Cre lines crossed with CAG-CAT-Z transgenic (Tg), em-
bryos carrying both transgenes showed lacZ expression in
tissues that were derived from neural crest cells, such as spinal
dorsal root ganglia, sympathetic nervous system, enteric ner-
vous system, and ventral craniofacial mesenchyme at stages
later in development than E9.0.
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Figure 7. Distribution and coimmunostaining of neural crest derived cells in the heart. (A-E) PO Cre/CAG-CAT-EGFP double Tg mice heart was immunostained
with Toto-3 and anti-GFP antibody. Distribution of EGFP* cells in the heart was demonstrated. EGFP* cells were concentrated in the outflow tract and aortic
valve (A and B) and were observed in the subepicardial layer (C) and intramuscular layer (D and E) of the ventricles. EGFP* cells were observed at the free wall
(C), apex (D), interventricular septum (E), and atrium (C). (F-H) Triple-immunostaining for actinin (red), GFP (green), and Toto-3 in E17.5 PO-Cre/CAG-CAT-
EGFP double Tg mice heart. EGFP* cells did not stain with actinin. (H) and (H’) show the same field. (I Double immunostaining for GATA4 (red) and GFP
(green) in E17.5 double Tg mice heart. Some of the EGFP* cells stained with anti-GATA4 antibody. () and K) Triple immunostaining for nestin (red), GFP (green),
and Toto-3 (blue) in E17.5 double Tg mice heart. EGFP* cells were stained with antinestin antibody. (J and J’) and (K and K') show the same fields. (L and M)
Triple-immunostaining for actinin (red), GFP (green), and Toto-3 in 10-wk-old adult PO-Cre/CAG-CAT-EGFP double Tg mouse heart. EGFP* cells expressed acti-
nin with complete striation indicating cardiomyocytes. (N-N"’) Expression of EGFP in a cardiosphere isolated from a 10-wk-old adult PO-Cre/CAG-CAT-EGFP
double Tg mouse indicating its neural crest origin. AV, aortic valve; LA, left atrium; LVFW, left ventricular free wall; IVS, intraventricular septum.

Double Tg mice carrying PO-Cre recombinase and CAG-
CAT-EGFP transgenes showed EGFP expression in tissues
that were derived from neural crest cells, including spinal dor-
sal root ganglia, sympathetic nervous system, enteric nervous
system, and ventral craniofacial mesenchyme (unpublished
data). EGFP" cells were concentrated at the outflow tract be-
tween the aortic and pulmonary arteries and the aortic valves,
and at the intramuscular and subepicardial layer of both ventri-
cles, including the intraventricular septum, free wall, and apex
(Fig. 7, A-E). EGFP" cells also were observed at the atrial
wall. Triple immunostaining of the heart at E17.5 showed a
lack of staining with the anti-actinin antibody (Fig. 7, F—-H) and
evidence of staining with the anti-GATA4 antibody (Fig. 7 I).
Some EGFP™ cells stained with anti-nestin antibody (Fig. 7, J
and K). Triple immunostaining of the heart of 10-wk-old mice
clearly demonstrated that a portion of the GFP* cell population
were actinin® cardiomyocytes (Fig. 7, L and M). Consistent
with these results, the cardiosphere-derived cells from 10-
wk-old double transgenic mice hearts were clearly GFP*
(Fig. 7 N). These findings strongly suggest that neural crest-
derived cells remain in the heart as stem cells in adults and
have the capacity to differentiate into various cell types, in-
cluding cardiomyocytes.

The present study used the neurosphere culture method to dem-
onstrate that a certain proportion of SP cells in the heart could
proliferate, and that the SP cell-derived cardiosphere-initiating
cells were multipotent and could give rise to PNS-type neu-
rons, Schwann cells, smooth muscle cells, and cardiomyocytes.
Moreover, cardiosphere-derived cells display characteristics of
neural progenitor cells with respect to the expression of nestin,
Musashi-1, and p75 (Mujtaba et al., 1998).

Hierlihy et al. (2002) reported that cardiac SP cells were
progenitor cells for cardiomyocytes. The present study is the
first report to demonstrate that cardiac SP cells are cardiomyo-
cyte progenitor cells and neural crest-like multipotent stem/
progenitor cells. Recent studies report that adult tissue-specific
stem cells have common characteristics (Reynolds and Weiss,
1992; Tropepe et al., 2000; Kawaguchi et al., 2001). First, all
express nestin in their immature and multipotential state. Sec-
ond, they usually are smaller than the major mature cell type.
Third, they proliferate and form floating spheres in serum-free
medium in the presence of growth factors, and lose their multi-



potency when cultured in the presence of serum. The present
study demonstrated that the characteristics of cardiac SP cell-
derived cardiosphere-forming cells are consistent with the
common characteristics of tissue-specific stem cells.

The present study showed that a portion of the cardio-
sphere-derived cell population expressed neuron-specific mark-
ers. This result is consistent with previous studies that
showed that the conduction system of the heart expresses neu-
ron specific markers, including protein gene product 9.5, neu-
rofilament (H, M, and L), HNK1 (chick), tyrosine hydroxylase,
Do170, and RMO270 (Verberne et al., 2000; Mueller et al.,
2003). To our knowledge, expression of MAP2, peripherin,
and Hu has not been demonstrated in the cardiac conduction
system. In the present study, the neuron-like cells that were de-
rived from cardiospheres did not stain with anti-myosin anti-
body. Taken together, the expression profile of the neuron-like
cells that were derived from cardiospheres suggests differentia-
tion into neuronal cells, not conduction cells.

In the present study, we assessed the characteristics and
multipotency of cardiospheres that were derived from P2 neo-
nate mice, and demonstrated the formation of cardiospheres
from the adult heart with similar characteristics. Cardiospheres
that are derived from adult mice hearts are multipotent, but
have several characteristics that distinguish them from cardio-
spheres that are derived from neonatal mice hearts. First, car-
diospheres that are derived from adult hearts form with a
greatly reduced efficiency than cardiospheres that are derived
from those of neonates. Second, neonatal-derived cardio-
spheres have a greater capacity than adult-derived cardio-
spheres to form secondary or tertiary cardiospheres following
dissociation. Further characterization of adult-derived cardio-
spheres is required for any future clinical application.

The relationship between cardiosphere-
derived cells and neural crest stem cells
Neural crest-derived cells have stem cell characteristics be-
cause they have the capacity to proliferate and differentiate into
various types of cells, including sensory and sympathetic neu-
rons, glial cells in the PNS, and smooth muscle cells in the
blood vessels (Le Douarin and Kalcheim, 1999; Hall, 2000;
Gammill and Bronner-Fraser, 2003). Because neural crest-
derived cells express nestin, Musashi-1, and p75, and can pro-
liferate and differentiate into multiple lineages in vitro, they are
regarded as stem cells (Morrison et al., 1999).

The heart develops in the neck region, directly beneath
the pharyngeal arches; the caudal area of the cranial neural
crest is sometimes referred to as the cardiac crest (Kirby, 1989;
Osumi-Yamashita et al., 1996). Paracrine factors from cardiac
neural crest-derived cells play a potentially crucial role in heart
maturation and in the formation of the outflow tract and ven-
tricular septum (Waldo et al., 1999). A recent study in zebra
fish demonstrated that the cardiac crest cells also can differen-
tiate into cardiomyocytes (Sato and Yost, 2003).

In the present study, transplantation of cardiospheres into
chick embryos revealed that these cells migrate by way of dor-
solateral pathways to the cardiac outflow tract, and contribute
to the smooth muscles of blood vessels and to the PNS, includ-

ing dorsal root ganglia, sympathetic ganglia, and spinal nerves.
The possibility that nonneural crest-derived cells from cardio-
spheres migrate in the chick embryo is unlikely, because mi-
gration is along neural crest-derived cell-specific pathways,
and cells are integrated and committed into the neural crest-
derived organs. Based on the expression of stem cell markers,
multipotency in vitro, and behavior in vivo, it seems that a por-
tion of the cardiosphere-initiating cell population originates
from the cardiac crest cells. By lineage analysis using PO-Cre
recombinase/Floxed-EGFP double transgenic mice, we also
demonstrated that neural crest-derived cells migrated into the
myocardium, in addition to the outflow tract and aortic valves;
remained in the heart as neural crest-derived cells that could
form cardiospheres; and had the capacity to differentiate into
various types of cells, including cardiomyocytes.

Along similar lines, recent studies report the presence of
neural crest stem cells in the postnatal gut that have the capac-
ity to proliferate and differentiate; this suggests that persistence
of neural crest stem cells in the adult tissues may help regener-
ation after injury or disease (Bixby et al., 2002; Kruger et al.,
2002). Consistent with these studies, the present study demon-
strated that neural crest-derived cells lay dormant in the neona-
tal heart, expressing nestin. Some of these cells expressed
GATAA4, but did not express cardiomyocyte-specific proteins,
which indicates that they exist as cardiac stem/progenitor cells.
An attractive hypothesis is that neural crest-derived cardio-
sphere-initiating cells that are present in the neonate will re-
main as the stem cells in the adult heart. Although the present
lineage analysis of the neural crest-derived cells and the forma-
tion of cardiospheres by neural crest-derived cells support this
hypothesis strongly, further investigation using PO-Cre-EGFP
double transgenic mice is required.

The relation between cardiosphere-
initiating cells and other cardiac

stem cells

Beltrami et al. (2003) reported the existence of stem cells in the
adult heart as multipotent CD45~CD34 c-kit"Lin~ cells with
the capacity to form spheres. In the present study, cardiac SP
cells had some characteristics in common with those described
by Beltrami et al. (2003), as well as some distinct characteristics.
In this study, clonal cardiospheres could differentiate into cardio-
myocytes, smooth muscle cells and PNS-type neurons and glial
cells, whereas the Lin~c-kit" cells that were described by Bel-
trami et al. (2003) only had the capacity to differentiate into en-
dothelial cells, smooth muscle cells, and cardiomyocytes. This
discrepancy suggests that cardiosphere-initiating cells can be
derived from other cell lineages, including c-kit™ cells.

Oh et al. (2003) reported the existence of adult heart-
derived cardiac progenitor cells expressing Sca-1. According to
their analyses, the SP cells in the adult heart were CD45 c-kit™
CD34 Sca-1"CD31"CD38 Lin Flk Flt " VE-CAD vWF",
which is in partial agreement with the results that were obtained
from neonatal heart SP cells in the present study. The cells of the
cardiosphere described in the present study and cardiac Sca-1"
cells share characteristics, but also vary. In the present study,
expression of Sca-1 by cardiac SP cells was low or negative.
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Cardiosphere-derived cells and Sca-1* cardiomyocyte progeni-
tor cells are distinct cells populations because the cell surface
marker, percentage of population, multipotency, and gene ex-
pression characteristics are very different.

Cai et al. (2003) reported that hearts of mice lacking isl1, a
LIM homeodomain transcription factor, are completely missing
the outflow tract, right ventricle, and much of the atria, and that
isl1 is a marker for a distinct population of undifferentiated car-
diac progenitors. Laugwitz et al. (2005) identified is11* cardiac
progenitors in postnatal rat, mouse, and human myocardium.
Co-culture studies with neonatal myocytes indicated that isl1*
cells represent authentic, endogenous cardiac progenitors that
display highly efficient conversion to a mature cardiac pheno-
type. The finding that isl1 ™ cells did not express Sca-1 and were
relatively concentrated at the outflow tract of the heart is consis-
tent with the findings for SP cell derived-cardiosphere form-
ing cells. isl1™ cells were observed only at the looping heart,
whereas we observed EGFP* cells from PO-Cre/EGFP mice in
neural crest-derived tissues. Thus, cardiosphere-forming cells
and isl17 cells have common and distinct characteristics.

Martin et al. (2004) showed that the adult heart contains an
Abcg2-positive SP cell population that is capable of proliferation
and differentiation, and defined the molecular signature of car-
diac SP cells that function as a progenitor cell population for the
development, maintenance, and repair of the heart. The multipo-
tency or developmental origin of the cardiac SP cells was not ad-
dressed. The present study did address these issues and advanced
the characterization of the cardiac SP cell fraction. A portion of
the SP cell population could form cardiospheres; differentiate
into neurons, glia, smooth muscle cells, and cardiomyocytes; and
seemed to originate from the cardiac neural crest.

We have used the cardiosphere formation assay to iden-
tify and isolate multipotent stem/progenitor cells in the heart,
expand them in vitro, and analyze them in vivo. Further analy-
sis of these cells will contribute to the understanding of the
mechanisms that underlie cardiac development. The potential
use of these cells for clinical organ repair after injury or disease
provides a challenging and exciting prospect.

Materials and methods

Animals

1-d-old neonatal ICR mice and Wistar rats were purchased from Japan
CLEA. Ta-1-EYFP Tg mice were generated to express the EYFP under the
control of the neuron-specific Ta-1 as described previously (Sawamoto et
al., 2001). The PO-Cre recombinase Tg mouse (Yamauchi et al., 1999)
was provided by K. Yamamura (Kumamoto University, Kumamoto, Japan).
The CAG-CAT-EGFP Tg mouse (Kawamoto et al., 2000) was a gift from J.
Miyazaki (Osaka University, Osaka, Japan). All experimental procedures
and protocols were approved by the Animal Care and Use Committees of
the Keio University and conformed to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.

Cell preparation

Primary cultures of cardiomyocytes and cardiac nonmyocytes were pre-
pared from the ventricles of 1-7-d-old neonatal and adult rats or mice by en-
zymatic dissociation. The Percoll gradient method was used to separate car-
diomyocytes from nonmyocytes as described previously (Sano et al., 2000).

Isolation of SP cells and FACS analysis

Hoechst 33342 solution (Sigma-Aldrich) was prepared immediately be-
fore use. Cells were resuspended at 10° cells/ml, and stained with 6.0
ng/ml of Hoechst 33342 in calcium- and magnesium-free HBSS+ (supple-
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mented with 2% FCS, 10 mM Hepes, and 1% penicillin/streptomycin)
medium for 90 min at 37°C. As a negative control for SP cells, 10° cells
were stained in the presence of 100 wM reserpine (Sigma-Aldrich) in
parallel experiments.

Antibody staining

For FACS analysis, cells were washed once in cold HBSS+, resuspended
at 108 cells/ml, and stained with FITC- or phycoerythrin-conjugated Abs
against CD11b, 13, 29, 31, 34, 44, 45, 49b, 49e, 73, and 117 (ckit),
Flk-1, Ter119, and Sca-1 (BD Biosciences) at saturating concentrations. Af-
ter antibody staining, the cells were washed with an excess amount of
HBSS+ and resuspended at 107 cells/ml in HBSS+ containing 2 pg/ml
propidium iodide (Sigma-Aldrich).

Flow cytometry

Cell analysis and sorting was performed on a triple laser FACS Vantage
(Becton Dickinson). Hoechst 33342 was excited at 350 nm, and fluores-
cence emission was detected using a 405/BP30 and 570/BP20 optical
filter for Hoechst blue and Hoechst red, and a 550-nm long-pass dichroic
mirror (Omega Optical Inc.) to separate the emission wavelengths.
Hoechst blue and red emit fluorescence according to a linear scale. Pro-
pidium iodide fluorescence was measured through 630BP30 after excita-
tion at 488 nm with an argon laser, and a live cell gate was defined to ex-
clude propidium iodide-positive cells. The SP population was defined as
described in previous reports after collecting 10° events (Goodell et al.,
1996, 1997; Matsuzaki et al., 2004).

Cardiosphere cell culture
Cells were suspended at a density of 1-2 x 10° cells/ml in 10-cm un-
coated dishes in DME/M199 (1:1) serum-free growth medium containing
insulin (25 pg/ml), transferin (100 pg/ml), progesterone (20 nM), so-
dium selenate (30 nM), putrescine (60 nM) (all from Sigma-Aldrich), re-
combinant murine EGF (20 ng/ml) (Funakoshi), and recombinant human
FGF2 (20 ng/ml) as described previously (Reynolds and Weiss, 1992).
Half of the medium was changed every 3 d. Passaging was performed
using 0.05% trypsin and 0.53 mM EDTA-4Na every 7-14 d. Cardio-
spheres were dissociated into a single-cell suspension then reseeded into
fresh medium.

For monolayer cultures, cardiospheres were dissociated and seeded
onfo gelatin-coated glass slides in DME/M199 (1:1) containing 0.5-10%
FBS in the presence or absence of EGF and FGF2. Half of this medium, re-
ferred to as differentiation medium, was changed every 2-4 d.

Immunofluorescent staining

Cells were cultured on gelatin-coated glass coverslips, fixed with 4%
paraformaldehyde/PBS, then incubated with primary Abs against mouse
anti-nestin, Rat 401 (Hockfield and McKay, 1985, Hybridoma Bank),
anti-MAP2, anti-GFAP, anti-NeuN, anti-sarcomeric myosin MF20, and anti-
aSMA (all from Sigma-Aldrich) MoAbs, rat anti-Musashi-1 MoAb, 14H1
(Kaneko et al., 2000), rabbit anti-peripherin (Chemicon) and anti-
p75 (Sigma-Aldrich) PoAbs, and human anti-Hu (Okano and Darnell,
1997) MoAb for 12-24 h at 4°C. Cells were incubated with secondary
Abs for 2-6 h at room temperature. Secondary Abs were used at the fol-
lowing dilutions: anti-mouse IgG/Texas red (1:500), anti-mouse IgG/
FITC (1:100), anti-mouse IgG;/FITC (1:500) (BD Biosciences), anti—
mouse IgGy,/Texas red (1:500), anti-mouse IgG/HRP (DakoCytoma-
tion), anti-rabbit IgG-PE, and anti-human IgG-Alexa542. The samples
were washed twice with PBS, then treated with 0.5 ng/ml DAPI (Sigma-
Aldrich) for 2 min.

RT-PCR analysis

Isolation of RNA and RT-PCR was performed as described previously
(Sano et al., 2000). Detection of cardiomyocyte-specific or stem cell
marker genes, including nestin, Musashi-1, MDR-1, and p75; neuronal
lineage markers, including MAP-2 and MASH1; glia-specific markers,
including GFAP and PO; cardiomyocyte markers, including Nkx2.5,
GATA4, B-MHC, a-skeletal actin, atrial natriuretic peptide, and «;. sub-
unit of Ltype Ca?* channel; and smooth muscle markers, including calpo-
nin and aSMA, was performed using 0.01 pg of total RNA. The primers
are listed in Table SII (available at http://www.jcb.org/cgi/content/full /
icb.200504061/DC1).

Action potential recording

Action potential of the beating cells was recorded in DME/M199 (1:1)
medium containing 1.49 mmol/L CaCly, 4.23 mmol/L KCl, and 25
mmol/L Hepes (pH 7.4), and was performed as described previously
(Makino et al., 1999).



Transplantation of cardiosphere into chick embryos

Dil was made up in 0.5% stock solutions in 100% ethanol, and was di-
luted in 0.3 M sucrose to 0.5 pg/pl. Cardiospheres were washed in
DME/M199, labeled with Dil by for 30 s, and washed three times again
in DME/M199.

Fertilized chicken (Gallus gallus) eggs were incubated at 38°C.
Embryos were staged according to Hamburger and Hamilton (1951).
Transplantation procedures essentially were performed as described previ-
ously (Wakamatsu et al., 1998). In brief, the medial or lateral pathway of
stage 9 or 12-13 host embryos was opened with sharp tungsten needles,
and one to three cardiospheres containing ~50-100 cells were inserted
with a blunt tungsten needle. Whole-mount images of transplanted em-
bryos were captured with a cooled CCD camera equipped on a fluores-
cent dissection microscope (MZFLIIl, Leica). Fixed embryos were cryosec-
tioned and stained with HNK1 (Tucker et al., 1988), 16A11 anti-Hu
(Marusich et al., 1994), anti-GFAP, or anti-SMA Abs. Cell nuclei were
counter-stained with DAPI. Immunostaining was performed as described
previously (Wakamatsu et al., 1998). Images were captured with cooled
CCD camera equipped on a fluorescent microscope (Axio Planll, Zeiss),
and were processed with Adobe Photoshop (v5.0) software.

PO-Cre/EGFP mice

PO-Cre Tg mice were crossed with CAG-CAT-EGFP indicator Tg mice.
Hearts from E17.5 mice were dissected, washed in PBS, embedded in
OCT Compound (TED PELLA), and quickly frozen in liquid nitrogen. Cryo-
stat sections (8-pm thick) were stained overnight at 4°C using specific Abs.
Anti-GFP (MBL), anti-actinin, anti-GATA4, and anti-nestin Abs were used fo
identify EGFP" cells, cardiomyocytes, and hematopoietic cells. The sec-
tions were incubated with secondary Abs conjugated with Alexa 488 or
594 (Molecular Probes). Nuclei were stained with Toto-3 (Molecular
Probes). Slides were observed under a confocal laser scanning micro-
scope (LSM 510 META; Carl Zeiss Microimaging, Inc.).

Online supplemental material

Table S| shows temporal changes of the immunofluorescent staining posi-
tive cells of the stem cell or differentiation markers. Table S2 shows the
PCR primers used in this study. Online supplemental material available at
http://www.jcb.org/cgi/content/full /jcb.200504061/DCT1.
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