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A B S T R A C T   

Background: Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies 
showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind 
speed, solar radiation and mobility with the spread of the epidemic. 
In this work, we aimed to predict via Deep Learning the real-time transmission of SARS-CoV-2 in the province of 
Reggio Emilia, Northern Italy, in a grid with a small resolution (12 km × 12 km), including satellite information. 
Methods: We focused on the Province of Reggio Emilia, which was severely hit by the first wave of the epidemic. 
The outcomes included new SARS-CoV-2 infections and COVID-19 hospital admissions. Pollution, meteorological 
and mobility data were analyzed. The spatial simulation domain included the Province of Reggio Emilia in a grid 
of 40 cells of (12 km)2. We implemented a ConvLSTM, which is a spatio-temporal deep learning approach, to 
perform a 7-day moving average to forecast the 7th day after. We used as training and validation set the new 
daily infections and hospital admissions from August 2020 to March 2021. Finally, we assessed the models in 
terms of Mean Absolute Error (MAE) compared with Mean Observed Value (MOV) and Root Mean Squared Error 
(RMSE) on data from April to September 2021. We tested the performance of different combinations of input 
variables to find the best forecast model. 
Findings: Daily new cases of infection, mobility and wind speed resulted in being strongly predictive of new 
COVID-19 hospital admissions (MAE = 2.72 in the Province of Reggio Emilia; MAE = 0.62 in Reggio Emilia city), 
whereas daily new cases, mobility, solar radiation and PM2.5 turned out to be the best predictors to forecast new 
infections, with appropriate time lags. 
Interpretation: ConvLSTM achieved good performances in forecasting new SARS-CoV-2 infections and new 
COVID-19 hospital admissions. The spatio-temporal representation allows borrowing strength from data 
neighboring to forecast at the level of the square cell (12 km)2, getting accurate predictions also at the county 
level, which is paramount to help optimise the real-time allocation of health care resources during an epidemic 
emergency.  
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1. Introduction 

Since the first case of SARS-CoV-2 infection, modelling the epidemic 
growth pattern has been considered crucial to understanding the pan-
demic’s evolution and guiding the implementation of prevention and 
control measures [1]. 

The first case of SARS-CoV-2 infection in Italy was diagnosed in 
February 2020. Soon, the COVID-19 epidemic spread across Northern 
regions, including Lombardy, Veneto and Emilia-Romagna. In March, a 
lockdown, which limited individual mobility, and social distancing were 
imposed to slow down the diffusion of the SARS-CoV-2 virus. Based on 
mobility data, a few studies showed the effectiveness of the lockdown 
timing in reducing the daily number of infected people [2,3]. 

Soon after the epidemic’s beginning, it was observed that the COVID- 
19 outbreaks were predominantly in the Northern Hemisphere winter-
time, suggesting a potential transmission mechanism associated with 
cold temperature and stable humidity conditions [4]. 

Several studies have attempted to establish statistical relationships 
between meteorological variables and COVID-19 cases. Some found an 
association between a decreasing number of cases and an increase in 
temperature, humidity and solar radiation [5–7], although the overall 
variability of the virus spread could not be entirely explained by these 
factors [8]. 

Similarly, the observation that the pandemic had faster and wider 
spread in the most polluted areas contributed to formulating the hy-
pothesis of positive interaction between pollution and pandemic spread. 
Many recent studies have linked air pollution to the increasing spread of 
COVID-19 [9–11]. Several have focused on Northern Italy, being the 
region with the first large outbreak in Europe and, at the same time, 
having high atmospheric pollution levels [12,13]. However, the statis-
tical approaches applied in those studies cannot fully encompass the 
complexity of the epidemic dynamics, and recent literature [14] sug-
gested that several factors besides climatic conditions and air pollution 
may play a pivotal role in the transmission of SARS-CoV-2. 

In this study, we implemented a Convolutional Long-Short Term 
Memory (ConvLSTM) model [15], which is a Deep Learning (DL) algo-
rithm, to predict the real-time transmission of SARS-CoV-2, building on 
the work of Paul et al. [16], which is among few studies that considered 
the spatial correlation in the diffusion of COVID-19. 

DL algorithms are based on artificial neural networks (NN) with 
stacked layers composed of multiple neurons, which can learn increas-
ingly complex data representations [17]. Kafieh et al. [18] conducted a 
comparative study concluding that LSTM models are the most promising 
DL approaches to forecast the SARS-CoV-2 epidemic. 

Our work aimed to predict the real-time transmission of SARS-CoV-2 
in the province of Reggio Emilia in the Emilia-Romagna region, North-
ern Italy. Paul et al. [16] divided the map of Italy into relatively large 
grids and trained a ConvLSTM model with samples drawn from local 
distribution to predict new cases in an auto-regressive way. Differently 
from the work of Paul et al. [16], we dealt with the issue of relatively 
small grids, meaning sparse local distribution for training the model, and 
we also included meteorological, pollution and mobility data in the 
spatio-temporal model. Our model was then implemented into the web 
tool EPICO19 (EPIdemiological and logistic COvid19 model, https:// 
www.epico19.eu/en/), which is used as support for public health pro-
fessionals and decision-makers in managing outbreaks and assessing 
public health interventions. 

2. Material and methods 

2.1. Healthcare outcomes 

The Local Health Authority (AUSL) of Reggio Emilia provided the 
number of newly diagnosed infections with SARS-CoV-2, corresponding 
to the number of new positive tests based on quantitative reverse 
transcription-polymerase chain reaction (RT-PCR), and the number of 

COVID-19 hospital admissions occurred in the province of Reggio Emilia 
(532,000 inhabitants, located in Northern Italy), from February 1, 2020. 

Policies for testing, contact tracing and the diagnostic capacity 
changed from the first to the second wave [19]. In fact, in the first wave 
(i.e., from February 2020 until about July 31, 2020), tests were almost 
exclusively performed on suspect cases arriving at the emergency room 
and, in rare cases at home, only if severe symptoms were declared due to 
a lack of large availability of SARS-CoV-2 swab tests. In contrast, from 
the second wave (i.e., approximately from August 2020) onwards, 
availability of SARS-CoV-2 swab tests greatly increased, and tests were 
performed in outpatient dedicated facilities, the so-called “drive- 
through”, in people referred to testing from contact tracing, even if 
asymptomatic or with mild symptoms [19]. This could suggest that the 
number of SARS-CoV-2 infections was underestimated during the first 
wave. Moreover, the exponential increase in SARS-CoV-2 infections in 
March and April 2020 determined an unprecedented demand for bed 
occupancy, which exceeded the existing capacities in several hospitals. 
This allowed for better planning of hospital beds needed for future 
waves [20,21]. Due to such differences between the first months of the 
epidemic and what happened afterwards, we decided to not use the data 
of the first wave and thus consider data from August 1, 2020, until 
September 20, 2021, the last available data at the time of writing. 

2.2. Exposure input variable 

Very-High Resolution (VHR) satellite and aerial images, with a 
ground resolution of 30–50 cm and 11 cm, respectively, were used to 
estimate the crowding index as a mobility indicator. We calculated the 
crowding index for each cell as the ratio between the daily density of 
light vehicles and the relative baseline value referred to in the pre- 
COVID-19 period. An Artificial Intelligence vision proprietary algo-
rithm developed by Studiomapp has analyzed the VHR images to count 
the number of light vehicles, assessing the presence of people in the 
surroundings of hospitals, parking lots, supermarkets, working places, 
train stations, and logistics hubs (more details are available at STU-
DIOMAPP website [22]. 

Pollution data (PM10, PM2.5, NO2 air concentration) were collected 
from the Urban Tool for Air Quality (UTAQ) (www.utaq.eu) developed 
by TerrAria s.r.l [23], which uses background concentrations data pro-
vided by the Copernicus Atmosphere Monitoring Service (CAMS) [24] 
along with local emissions and air quality measurements from ARPA 
Emilia-Romagna stations, for high-resolution pollutants concentration 
forecasting [20]. 

Meteorological data (air temperature, relative humidity, wind speed 
and solar radiation) were extrapolated from the COnsortium for Small- 
scale MOdeling (COSMO-5 M) model [25], available on the OpenData 
portal of the Regional Agency for the Protection of the Environment 
(ARPA) of Emilia-Romagna [26]. 

All the input data were collected daily from August 1, 2020, until 
September 20, 2021, i.e., for the entire observation period of the study. 

2.3. Deep learning model 

A ConvLSTM model consists of a Convolutional Neural Network 
(CNN) merged with an LSTM. CNNs are feed-forward NNs that combine 
convolution, Rectified Linear Unit (ReLU), pooling and fully connected 
layers to deal with the spatial correlations in data. The principle of CNNs 
is to exploit local connectivity among neurons to model spatial relations. 
Each neuron only processes inputs belonging to a spatially bounded area 
called receptive field and convolves them with weights called kernels or 
filters. Neurons in a convolutional layer are organized in a matrix called 
activation map or feature map. All neurons share the same kernels, 
which are applied to a differently centered receptive field, where the 
center position is slid across the rows and columns of the input matrix. 
Typically, multiple kernels are used in each layer to form multiple 
feature maps [27]. 
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LSTM networks are instead DL models designed to deal with data 
sequences instead of single data points and therefore suited for pro-
cessing time-series [28]. They are a particular type of Recurrent NN 
(RNN), able to handle long-term dependencies. The building block of a 
standard LSTM network is called LSTM unit or cell. Each unit comprises 
a memory part and three gates: an input gate, an output gate and a forget 
gate. An LSTM unit can remember values over arbitrary time intervals, 
and the three gates control the flow of information through the cell [27]. 

Using both CNN and LSTM network structures, ConvLSTMs can learn 
the dynamics of epidemic spread with high spatial resolution and a high 
degree of accuracy, thanks to their capability of building highly 
nonlinear representations [16]. In particular, ConvLSTMs are based on a 
recurrent layer, just like LSTMs, but where internal matrix multiplica-
tions are exchanged with convolution operations, like in CNNs [15]. The 
model can process a sequence of images, one slice at a time, similarly to 
how an LSTM goes through a series of data points one at a time. 

Several experiments were conducted with different ConvLSTM 
structures and parameters to find the optimal model that can forecast a 

minimum validation error. More in detail, considering a certain redun-
dant component present among the variables considered (such as tem-
perature and solar radiation, PM10 and PM2.5, NO2 and mobility), we 
evaluated the correlation of the single variables with respect to the 
outcomes. We empirically tested the performance of the different 
models, individually adding input variables and varying the time lag and 
the structure of the model iteratively. The evaluation of the performance 
of the various tests determined the choice of the model in all its 
components. 

We selected a DL model with two ConvLSTM layers and a final dense 
layer to predict the newly infected cases at the end of this process. We 
used eight kernels of size 3x3 in each ConvLSTM layer. We applied the 
dense layer, with a linear activation function, to the second ConvLSTM 
layer’s output produced at the last sequence element. We used a Mean 
Squared Error (MSE) loss function, optimizing it with the stochastic 
gradient descent (SGD) algorithm. We set the batch size to 10 and 
trained the model for 30 epochs, which means that the algorithm saw all 
the data 30 times. 

For the prediction of new hospital admissions, we used a shallower 
model due to the lower daily numbers of subjects that were hospitalized 
due to COVID-19. In particular, the simpler model had one ConvLSTM 
layer and one dense layer with a linear activation function, and 
ConvLSTM layers included 64 filters of size 3x3. Also, in this case, we 
used the MSE loss function and the SGD optimizer; we set the batch size 
to 10 and trained for 30 epochs. The architectures of both ConvLSTM 
models (new COVID-19 cases and new COVID-19 hospitalizations) are 
reported in Fig. 1. 

We evaluated the performance of the models in terms of Mean Ab-
solute Error (MAE) compared with Mean Observed Value (MOV) and 
Root Mean Squared Error (RMSE). 

All analyses were performed in R [29], taking advantage of Keras 
[30], a high-level NN API developed with a focus on enabling fast 
experimentation. The Keras R interface uses the TensorFlow [31] 
backend engine by default. 

2.4. Data pre-processing 

The spatial domain is a grid including the whole Province of Reggio 
Emilia with 40 square cells (8 rows × 5 columns), each with an extension 

Fig. 1. ConvLSTM architecture for new COVID-19 cases forecasting (left) and 
for new COVID-19 hospitalization forecasting (right). 

Fig. 2. On the left side, the Province of Reggio Emilia in Italy. On the right side, the area of the Reggio Emilia Province, divided in 40 cells. The red one is the cell that 
includes the Reggio Emilia city, i.e., the most populated area. Spatio-temporal representation of input and output data of ConvLSTM model (T-1 stands for yesterday, 
T-2 for two days ago, etc.). 
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of 12 km × 12 km (Fig. 2). All the daily data (cases, hospital admissions, 
meteorological, air pollution, mobility) were mapped to this grid. 
Separate grid matrices were built for each variable considered, and they 
were concatenated as channels on a third axis. 

Data from August 1, 2020, to January 31, 2021, were used as the 
training set, data from February 1, 2021, until March 31, 2021, as the 
validation set and data from April 1, 2021, until September 20, 2021, as 
the test set. 

For each considered variable, mean and standard deviation (SD) 
were computed in the training test, and such values were used to stan-
dardize the respective variable both in training and in testing sets. The 
standardization was performed by subtracting the mean values and 
dividing by the SD. 

Moreover, all model input and output data are considered as ‘7 days’ 
average to smooth the daily variation due to the daily variance of case 
detections and hospital admissions during the weekdays and the 
weekends. 

Samples were obtained through a sliding window of 7 days, with a 1- 

day stride. Case and hospital admission models used a data window of 7 
days for each input variable (e.g., from t-7 to t-1) to forecast the target 
variable at t + 6 (Fig. 2). Hence, the t + 6 forecast represents the weekly 
average from t0 to t + 6 of daily cases and hospital admissions, 
respectively. 

ConvLSTM forecasted, separately for each cell in the grid, the 
average number of new infections (i.e., cases with RT-PCR positive 
SARS-CoV-2 test) and hospital admissions due to COVID-19 (i.e., a 
hospital admission occurring in a confirmed case from 2 days before 
diagnosis up to 21 after). Summing up these values, we obtained the 
total new infected and the total number of hospitalized COVID-19 cases 
at the province level. 

An anchored walk-forward approach has been implemented in the 
test set to mimic the realistic setting in which the web tool EPICO19 is 
used. In this approach, the predictions are on a time horizon of one 
week, and once a week is over, the actual values are added to the 
training set before the model is trained again, and the forecasts for the 
next week are made. 

More in detail, each Monday, data are updated, and each week a new 
training with all the available data from August 1, 2020, is performed to 
forecast the following week. In this way, all the available information 
improves the performance. 

3. Results 

In the entire Province of Reggio Emilia, the new COVID-19 cases in 
the train, validation and test sets were 22,895, 11,064 and 9,386, 
respectively; meanwhile, the new COVID-19 hospital admissions were 
respectively 1,680, 826 and 604 (Table 1). The mean, minimum and 
maximum of the mean daily values of meteorological, pollution and 
mobility indicators in the three periods are reported in Table 1. 

The trained model allowed us to predict the outcomes of the up-
coming week based on the data we collected in the previous 7 days, i.e., 
feeding the model with the data of the last week, up to Sunday, on 
Monday, the model forecasts daily outcomes up to next Sunday. 

Daily new cases, mobility index and meteorological variables with 
different lag times were tested. We conducted ablation studies on the 
validation set to select the best combination of variables and optimize 
lag times to achieve the best model accuracy [32]. 

The validated models allowed us to predict the number of new 
COVID-19 cases/hospital admissions in the upcoming week. The fore-
casting model of new COVID-19 cases included the daily new cases 
collected in the previous 7 days, the crowding index with a lag time of 
14 days, the solar radiation (lag time = 28 days) and the PM2.5 air 
concentration (lag time = 14 days). The forecasting model of new 

Table 1 
Descriptive values of environmental factors and healthcare outcomes in the 
training, validation and test periods. Mean, minimum and maximum values of 
the mean concentrations of environmental factors on the whole grid are 
reported.   

Training set 
(August 1, 2020 
– January 31, 
2021) 

Validation set 
(February 1, 2021 
– March 31, 2021) 

Test set 
(April 1, 2021 – 
September 20, 
2021) 

New COVID-19 
cases 

22,895 11,064 9,386 

New COVID-19 
hospitalizations 

1,680 826 604 

Environmental factors, mean (range) 
NO2 (µg/m3) 17.5 

(0.0, 220.3) 
21.7 
(0.0, 158.4) 

9.6 
(0.7, 150.2) 

PM10 (µg/m3) 23.2 
(0.0, 104.7) 

28.7 
(1.7, 96.8) 

13.4 
(2.1, 52.9) 

PM2.5 (µg/m3) 16.3 
(0.0, 89) 

17.7 
(0.0, 80.8) 

7.7 
(0.8, 28.3) 

Temperature (◦C) 11.6 
(− 7.9, 34.2) 

6.9 
(− 10.5, 17.7) 

20.1 
(− 3.3, 34.0) 

Solar radiation (W/ 
m2) 

105.6 
(2.1, 293.8) 

134.4 
(3.8, 226.3) 

235.7 
(7.2, 343) 

Relative humidity 
(%) 

72.3 
(29.3, 100.0) 

68.1 
(31.7, 99.9) 

54.7 
(25.6, 99.8) 

Wind speed (m/s) 1.8 
(0.4, 11.3) 

2.0 
(0.4, 7.7) 

2.4 
(0.6, 7.6) 

Crowding index (%) 68.2 
(3.2, 98.7) 

65.2 
(6.3, 92.5) 

79.3 
(9.1, 98.9)  

Fig. 3. Extraction from the data of temporal intervals of observations and predictions.  
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COVID-19 hospital admissions included the daily new cases collected in 
the previous 7 days, the crowding index (lag times = 14 days) and wind 
speed (lag times = 14 days), as shown in Fig. 3. 

To assess the contribution of meteorological and mobility variables 
in the forecasting model of COVID-19 new cases and new hospital ad-
missions, we have reported in Fig. 4 MOV, MAE and RMSE computed on 
the validation set for the final selected model and a simpler model with 
only the new cases collected in the previous 7 days (without meteoro-
logical and mobility variables). 

When considering the prediction of new COVID-19 cases in the entire 
Province, the MAE decreased from 43.31 to 7.48, corresponding to an 
83% reduction. We observed a similar result for RMSE (Fig. 4). 

When considering the prediction of new hospital admissions, the 
reduction of the validation error is lower, going from 2.39 to 1.28 for 
MAE and 3.01 to 1.64 for RMSE (Fig. 4). Looking at the cell of Reggio 
Emilia only (red square in Fig. 2), the error reduction between the model 
with meteorological and pollution variables, crowding index and those 
with only new infections in the previous week is lower. 

In Fig. 4 and Fig. 5, the number of predicted and observed cases of 
infections/hospital admissions over the validation and test periods are 
superimposed at the Province level and the cell of Reggio Emilia only. 
Models that include meteorological and pollution variables and 
crowding index have a smaller gap between the predicted and observed 
values than a simpler model with only new infections in the previous 
week as input data. 

Finally, we reported the distributions of absolute errors and the 
observed values on the test set (Table 2). A mean observed value (MOV) 
of 52.35 new cases with a mean absolute error (MAE) of 22.27 was 
observed (Province level). In the Reggio Emilia cell, there was a MOV of 
13.79 with an MAE of 5.78. Looking at the forecasting of hospital ad-
missions over the province, there was a MOV of 3.31 with a MAE of 2.72. 

In the cell of Reggio Emilia, a MOV of 1.2 with an MAE of 0.62 were 
computed. Furthermore, in Table 2, more details about the distribution 
of the observed values and the absolute errors on the test set are reported 
in terms of mean, SD, median, first and third quartile (IQR), minimum 
(Min) and maximum (Max). 

To illustrate the ConvLSTM performance on the whole grid in the test 
set, we report in Fig. 6 the MOV and MAE separately for each cell, 
showing that the models reach good performance, both in forecasting 
new cases and new hospital admissions. MOVs and MAEs for each grid in 
the validation period are reported in Supplementary Fig. 1. 

4. Discussion 

In an emergency setting, accuracy in the short-term forecasting of the 
number of new COVID-19 cases and hospital admissions is of funda-
mental importance to optimize the resources, i.e., shifting hospital 
wards from COVID-19 to non-COVID-19 dedicated. This study used a DL 
approach based on ConvLSTM to forecast new COVID-19 cases and new 
hospital admissions. 

Other ML/DL methods have been proposed to address spatio- 
temporal forecasting. Among them, Wen and colleagues [33] 
compared several DL methods for air pollution prediction (a non- 
COVID-19 context), and they found out that combining CNN and 
LSTM was the most promising approach when dealing with spatio- 
temporal forecasting in comparison with simple LSTM, ARMA, support 
vector machine or logistic regression. Yelsilkanat [34] forecasted the 
daily number of COVID-19 cases in a spatio-temporal setting using 
Random Forest (RF). However, this work made the spatial forecasting at 
the country level in this work, without considering adjacencies on a grid 
map. Indeed, to our knowledge, a RF cannot deal with data adjacencies 
on cells in a grid as CNN does. 

Fig. 4. Observed and predicted distributions in the validation set (February 1, 2021, until March 31, 2021) of new COVID-19 cases and new COVID-19 hospital 
admissions, in the total Province of Reggio Emilia and in the cell of Reggio Emilia. MOV = Mean Observed Value, MAE = Mean Absolute Error, RMSE = Root Mean 
Squared Error. 
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Furthermore, our aim was not only to forecast at a very fine-grain 
spatial resolution, but also to deal with a set of covariates, developing 
a single architecture for the implementation in a web tool. 

Given these considerations, ConvLSTM was selected for this work 
since it meets all the requirements mentioned above and provides 
acceptable errors. 

Our ConvLSTM models achieved good performances, particularly at 
the level of the entire Province and allowed us to manage the spatio- 
temporal correlation of data. Indeed, the forecasting in an area likely 
depends on past data (temporal dimension) and data from neighbor-
hoods due to mobility from/to an area, and meteorological or environ-
mental conditions, spanning regions. 

We observed in our study that, even at a local level (single grid cells), 
the predictions are good (Fig. 6), with a maximum MAE of 5.78 cases 
compared to a MOV of 13.79 cases in the Reggio Emilia cell. 

However, the model tended to overestimate the number of new 
COVID-19 hospital admissions. A possible explanation could be the ef-
fect of vaccination, which began in January 2021. In September 2021, 
74% of the population was fully vaccinated. In other words, we tested a 
model trained during the period August 2020-January 2021, when the 

vaccination campaign had not yet started, and tested it in a period with 
more than 70% of people immunized. Moreover, in Italy, in September 
2021, the “green pass” was introduced to allow access to public indoor 
places only to individuals with vaccination, negative test, or evidence of 
recent recovery from infection. Such data, which affect the epidemic 
trend, are not available for the current study, and this is a limitation that 
leads to overestimation, particularly in the forecasting of new COVID-19 
hospitalizations. 

The ablation studies performed showed that mobility information, 
solar radiation, PM2.5 and wind speed are helpful in improving the 
performance in the forecasting of new COVID-19 infections/hospital 
admissions, confirming results already found in the literature [2,35,36]. 

In addition, other variables, such as temperature, relative humidity, 
PM10, NO2, did not improve the forecasting, probably, due to high 
correlations between humidity and other meteorological variables 
(temperature, relative humidity, wind speed and solar radiation), and 
between PM10, PM2.5 and NO2 and mobility. The inclusion of all these 
highly correlated variables can produce noise instead of improving the 
forecasting. Furthermore, we cannot exclude that the observed associ-
ations with meteorological and environmental variables and the number 

Fig. 5. Observed and predicted distributions in the test set (from April 1, 2021, until September 20, 2021) of new COVID-19 cases and new COVID-19 hospital 
admissions, in the total Province of Reggio Emilia and in the cell of Reggio Emilia. 
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of new cases are due to a causal link, but simply due to confounding 
being associated with other variables that are the actual causative fac-
tors [37]. 

Our study presents several limitations. The first one is intrinsic to the 

DL approach, which is challenging to apply in the initial stages of epi-
demics because it needs enough data for the training process. Further-
more, DL algorithms focus mainly on making predictions at the expense 
of interpretability. For example, it is challenging to figure out how solar 

Table 2 
Results of predictions of the 7th day after of new infected cases and the 7th day after of new hospital admissions, in the testing periods (from April 1, 2021, until 
September 20, 2021). RMSE = Root Mean Squared Error, Min = Minimum, Max = Maximum, SD = Standard Deviation, IQR = Inter-Quantile Range.   

Test set 
(From April 1, 2021, until September 20, 2021) 

New COVID-19 cases 
New cases, PM2.5, mobility, solar radiation 

New COVID-19 hospitalizations 
New cases, mobility and wind speed 

Province of Reggio Emilia (whole map)  
Observed Values Absolute Errors Observed Values Absolute Errors 

Mean (SD) 52.35 (40.14) 22.27 (18.74) 3.31 (3.21) 2.72 (1.80) 
Median (IQR) 49.14 (18.43–65.57) 17.85 (6.52–31.92) 2.14 (1.00–3.71) 2.76 (1.11–4.15) 
Min-Max 3.57–144.71 0.41–79.17 0.29–11.71 0.00–6.51 
RMSE  29.07  3.23 
Reggio Emilia Cell  

Observed Values Absolute Errors Observed Values Absolute Errors 
Mean (SD) 13.79 (9.65) 5.78 (5.69) 1.2 (1.14) 0.62 (0.48) 
Median (IQR) 12.86 (4.71–18.14) 4.10 (0.99–8.42) 0.86 (0.43–1.29) 0.51 (0.27–0.87) 
Min-Max 0.86–38.14 0.00–23.8 0.00–4.14 0.01–2.08 
RMSE  8.09  0.78  

Fig. 6. Mean Observed values (MOV) and Mean Absolute Errors (MAE) in the test period (April 1, 2021, until September 20, 2021) for each cell in the grid. The red 
cell is the one containing most of Reggio Emilia city, the most populated cell. 
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radiation with lag times of 28 days behaves in the forecasting mecha-
nism. DL methods are “black-boxes”, in which understanding the 
mechanisms used to forecast and evaluate the contribution of single 
input variables is still an open challenge. 

5. Conclusions 

In conclusion, we showed that ConvLSTMs, a model embedded into 
the web application EPICO19 (EPIdemiological and logistic COvid19 
model, https://www.epico19.eu/en/), might perform well in fore-
casting new cases and hospital admissions due to COVID-19, taking 
advantage of a spatio-temporal DL representation. Information about 
mobility, meteorology and air pollution can be mapped to a fine- 
resolution spatial grid. This approach also allows for accurate pre-
dictions at a local level (small areas with a limited extension of 12 km ×
12 km). The capability of the ConvLSTM to forecast at a local level could 
be helpful in optimizing the real-time allocation of health resources to 
support public health professionals and decision-makers in managing 
outbreaks and assessing public health interventions. 
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