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Abstract

Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence,
identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin
mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is
rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a
significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal
adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the
prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features,
namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM
matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The
prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/
faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization
of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections.
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Introduction

Adhesins are cell surface proteins that confer upon the microbes the

ability of attachment to cells, tissues and/or abiotic surfaces. Adhesins

pose as the first line of pathogen’s stratagem of host cell invasion and

are therefore indispensable determinant of its virulence. Due to

importance in host cell invasion, adhesins are the subject of intense

investigation to exploit its therapeutic potential. Apart from host cell

attachment and mating, fungal adhesins are implicated in numerous

other functions like social aggregation, foraging, biofilm formation on

tissues, biomedical prosthesis and catheters [1] and xenotypic

interactions with other microbes [2,3]. Biofilm formation further

contributes to increased drug resistance and persistence of infections.

Differences in adhesion have been shown to be responsible for greater

virulence/pathogenicity of one strain compared to the other in fungi

[4,5]. The phenotypic variability and plasticity of adhesins poses as a

remarkable stress-defense mechanism for fungi allowing them to alter

their adhesion properties in response to different environments [6].

Most fungal adhesins have a modular structure consisting of an

N-terminal carbohydrate or peptide-binding domain, central Ser-

and Thr- rich glycosylated domains and C-terminal region that

mediates covalent cross-linking to the wall through modified

glycosylphosphatidylinositol (GPI) anchors [6,7]. However there

are many examples that do not conform to this general model,

such as Mam3, Map4 (both from Schizosaccharomyces pombe), WI-1/

Bad1 (from Blastomyces dermatiditis), Int1p (Candida albicans) etc.,

rendering their identification a challenging task.

Separation and purification of such highly glycosylated proteins

like adhesins by experimental techniques is an arduous task. For

fungi with a diploid genome like Candida albicans, forward genetic

approaches involving the generation of non-adhesive mutants, are

also precluded [8]. Consequently, as compared to bacteria, very

few adhesins have been identified in fungi.

The efficacy of anti-adhesion therapy in treating microbial

infections and crop protection has been unequivocally demon-

strated in several different studies [9,10]. Microbial adhesins are

immunizing components in several approved vaccine formulations

and are also being currently evaluated in different organisms.

There are plenty of such examples for bacteria like FHA, pertactin

in B. pertussis [11], FimH for pathogenic E. coli [12], PsaA for

pneumococcal disease [13], BabA for H. pylori [14], for protozoa

like MIC1, MIC3, MIC4 in T. gondii, RAP-1 in B. bovis, CSL in C.

parvum, BAEBL, MAEBL in P. falciparum [15] and in fungi like WI-

1 for B. dermatiditis [16], Als1p, Als3p [17] and phospho-mannan

adhesin (US patent 5578309 by Cutler and Han, Candida albicans

phosphomannoprotein adhesion as a vaccine, The Research and

Development Institute, Inc., 1996) against Candida.

The cost, time and the incumbent limitations of experimental

methods, coupled with the tremendous biological significance and

mounting interest in these proteins have motivated attempts to

develop computational algorithms to identify adhesins. Two such

algorithms are Software Program for prediction of Adhesins and

Adhesin-like proteins using Neural networks (SPAAN) [18] and

Malarial Adhesins and Adhesin-like proteins Predictor (MAAP)

[19]. The latter is exclusively for the identification of malarial

adhesins. SPAAN has been used for the genome-scale identifica-

tion of fungal adhesins in one study [20], though it is trained

primarily on bacterial adhesins. This prompted us to check its
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potential for prediction of fungal adhesins in general, and we

observed that the program could not identify 38% of the 75 fungal

adhesins (used as positive training set in this work, see Materials

and Methods) with high confidence (i.e. these achieved Pad scores

below threshold of 0.7). This was reasonable since the program

was trained primarily on bacterial adhesins though in the non-

adhesin set, almost one-third of the proteins were from S. cerevisiae.

Several fungal species e.g. Candida spp., Aspergillus spp. pose

serious health hazards, causing persistent infections against which

there are only limited therapeutic options. Identification of

adhesion molecules would further our understanding of host-tissue

adhesion in fungi, thereby aiding the exploration of novel anti-

fungal drug targets and vaccine candidates. In this direction, we

present a SVM based method aimed at facilitating the identifica-

tion of fungal adhesins.

Results

Performance of similarity-based searches
Position-Specific Iterative-Basic Local Alignment Search Tool

(PSI-BLAST) is usually the first method of choice for the

functional annotation of proteins. We carried out the PSI-BLAST

analysis on the non-redundant positive dataset of fungal adhesins

in a manner like leave-one-out cross-validation (LOO CV), with

the cut-off E-value (-e option of blastpgp) of 0.001 and the number

of iterations as 3. Each sequence was used as the query sequence

once with the rest forming the target database, thus iterating, for

each sequence. Herein, no significant hits were obtained for 25 out

of 75 sequences, which signifies that homology-based searches

alone are not sufficient to identify these proteins.

Performance of standalone SVM models
We performed LOO CV of Amino Acid Composition (AAC),

Dipeptide Composition (DPC), Charge Composition (CC), Hydro-

phobicity Composition (HC), Multiplet Composition (MPC) and

Position-Specific Scoring Matrix (PSSM) based classifiers, trained

using the Radial basis function (RBF) kernel (Figure 1). Thereafter,

hybrid models using combination of two or more features were also

developed. Table 1 depicts the performance of the best SVM

classifiers for each module as observed in the LOO CV.

Composition based SVM classifiers
We obtained an accuracy of 83.65% with both the AAC and

DPC-based and 76.68% with MPC-based model. The CC and

HC-based models as standalones performed even worse with the

Figure 1. Flowchart of the experimental procedures. (1) A pool of fungal adhesins and non-adhesins sequences was generated from sequence
and bibliographic databases (GenBank, UniProt, PubMed). (2) Using CD-HIT, the redundancy of the sequences from both the sets was scaled to 50%
threshold, yielding 75 adhesins (positive set) and 341 non-adhesins (negative set). (3) Seven different features of different dimensions (mentioned
inside brackets) were extracted using PERL scripts for both the sets. For PSSM-b, lg means lag, i.e. distance along the sequence, for details c.f. [35] (4)
LOO CV was done on each of the features and several SVM models with different C and c generated. The models giving good accuracies and almost
equal sensitivity and specificity were selected. (5) Several different combinations of 2, 3, 4 and 5 features were made and LOO CV run on these. Here
also the best ones were selected. (6) If the performance of the seven best models trained on different individual features was comparable to or better
than the best hybrid models, it was selected for further evaluation. Here the models PSSM-a and PSSM-b were selected. (7) If the hybrid model
provided an edge over its constituent individual features or the other hybrid models (in terms of accuracy), it was selected (ACHM) for further
evaluation. ACM was another best model amongst the hybrids but offered lower accuracy than ACHM, so was not considered further. (8) & (9) The
best SVM models were tested on benchmark data sets. (10) The PSSM-a and ACHM models were implemented on the web server.
doi:10.1371/journal.pone.0009695.g001
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maximal accuracy of 73.55% and 73.31% respectively. It is clear

that the charge, hydrophobicity and multiplet compositions alone

lack sufficient information to provide a good discrimination

between adhesins and non-adhesins.

PSSM profile based SVM classifiers
Apart from encapsulating residue composition, the PSSM

profiles capture useful information about conservation of residues

at crucial positions within the protein sequence, because in

evolution the amino acid residues with similar physico-chemical

properties tend to be highly conserved due to selective pressure.

PSSM profiles have been employed for training SVMs for a legion

of classification problems, like prediction of cyclins [21], nucleic

acid binding residues [22], protein subcellular localization [23] etc.

For the model generated with PSSM profiles normalized using

the logistic function (PSSM-a), we got a maximum accuracy of

86.29%. For the other model based on PSSM (PSSM-b), initially

different lg values ranging from 5 to 40 were tried for Auto-Cross

Covariance (ACC) transformation of PSSM profiles but the

optimal lg (on the basis of highest accuracy) was obtained as 15.

This model gave an accuracy of 81.97%, but the sensitivity for this

one (82.66%) was higher than the one generated using logistic

function (80%), while the reverse was true about specificities which

stood at 87.68 and 81.81% respectively for the PSSM-a and

PSSM-b models.

Performance of hybrid SVM models
With an aim to further enhance the prediction accuracy, we

developed and evaluated several hybrid models using different

combinations of features. Here we discuss only the best ones

obtained in the study, i.e. wherein the hybrid gave some edge over

any of the individual features used independently.

ACM based classifier. The 60-dimensional input vector for

this model comprised of AAC, CC and MPC features. The

sensitivity for this classifier stood at 80.00% which was higher than

any of the individual features used though the specificity (78.29%)

and overall accuracy (78.60%) were lower than the AAC based

model.

ACHM based classifier. The 85-dimensional input vector

for generating this classifier consisted of concatenated features of

AAC, CC, HC and MPC. Along with PSSM models, this was one of

the best classifiers obtained in the study with an accuracy of 86.05%,

sensitivity of 82.66 and specificity 86.80%. Thus this one was indeed

an improvement over any of the individual features alone.

Several other hybrids were generated with the PSSM-based

classifiers; however these performed only as well as the PSSM-

based classifiers, without offering any extra accuracy.

The best three models: the FaaPred ‘misses’ and ‘hits’
Based on the performance metrics of the various models

(Table 1) trained on individual features and combination of

features, we selected three best models and evaluated them further.

The best models are PSSM-a, PSSM-b and ACHM hybrid model.

Intriguingly, we observed a good overlap amongst the positives

missed out by these three models in LOO CV (Figure 2). Out of a

total of 75 adhesins, there were there were 24 positives (‘misses’)

which were missed by at least one of the models and only 5

positives (‘worst misses’) which were missed by all the three

classifiers. The rest 51 (‘hits’) were predicted by all the three

models. It was imperative to analyze ‘misses’ and ‘hits’ in order to

understand if there are any particular features that might explain

the occurrence of ‘misses’. Amongst the ‘misses’, there was no

specific bias towards any particular species. Further, we analyzed

three different aspects of ‘misses’ and ‘hits’- 1) Low Complexity

Regions (LCRs) using SEG program [24] (using default trigger

window length of 12 and trigger complexity cut-off 2.2) and

tandem repeat (TR) regions (with more than 4 amino acid

residues, see Methods), 2) AACs after removing the LCRs and

TRs and 3) the presence of GPI-anchor using GPI-SOM program

[25].

LCRs and TRs were more abundant in ‘hits’ and had relatively

higher content of Ser, Thr and Val (Figure S1). In ‘misses’, the

LCRs and TRs were less prevalent and had relatively higher

contents of Gln, Asn, Pro, Gly and the charged amino acids Asp,

Lys, Arg. 39 ‘hits’ and only 8 ‘misses’ showed the presence of TRs

while 51 ‘hits’ and 16 ‘misses’ showed the presence of LCRs.

After removing the LCRs and TRs, we analyzed average AACs

within the ‘misses’ and ‘hits’ sequences (Figure S2). The content of

Thr was still remarkably higher in ‘hits’ than in ‘misses’. The

contents of Ala, Gly, Leu and Asn and charged amino acids Asp,

Glu, Arg and Lys were higher in ‘misses’ than in ‘hits’.

In the analysis for the presence of C-terminal GPI-anchors, it

was observed that 35 hits, only 2 misses and none of the ‘worst

misses’ showed the presence of the anchor. The enrichment of the

sequences with GPI anchors within ‘hits’ indicates that the ‘misses’

may adopt different attachment signals than those of hits.

Figure 2. Venn diagram showing ‘misses’ and ‘worst misses’ of
the best three SVM classifiers. A good overlap is seen amongst the
24 positives missed out by any one of the best three classifiers
(‘misses’), 5 positive sequences (marked with red asterisk) are the ‘worst
misses’ which are not predicted by either of the three.
doi:10.1371/journal.pone.0009695.g002

Table 1. Performance of different SVM classifiers in LOO CV.

Model C c Th SN SP Accuracy MCC

AAC 19 0.001 20.9 80.00 84.45 83.65 0.557

DPC 2 0.01 20.7 80.00 84.45 83.65 0.557

CC 0 4 21.0 64.00 75.65 73.55 0.328

HC 0 0.1 21.0 68.00 74.48 73.31 0.346

MPC 2 0.001 21.0 77.33 76.53 76.68 0.439

ACM 0 0.00001 21.0 80.00 78.29 78.60 0.479

ACHM 20 0.001 20.8 82.66 86.80 86.05 0.610

PSSM-a 22 4 20.6 80.00 87.68 86.29 0.604

PSSM-b 60 0.0001 20.6 82.66 81.81 81.97 0.541

Th–Threshold, SN–sensitivity, SP–specificity, MCC–Matthews Correlation
Coefficient.
doi:10.1371/journal.pone.0009695.t001
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Receiver Operating Characteristic (ROC) plot
The ROC curve (Figure 3) was used to evaluate the threshold-

independent performance of the three best models and shows the

trade-off between true positive rate (sensitivity) and false positive

rate (specificity) over their entire range of possible values. The

ACHM classifier had Area Under Curve (AUC) of 0.911 while

PSSM-a and PSSM-b models of 0.892 and 0.879 respectively.

Thus the three best classifiers chosen performed far better than the

AUC threshold of random prediction, i.e. 0.5. This confirmed the

effective discriminative power and robustness of the models.

Performance on benchmarking datasets
Table 2 lists the performance of the three classifiers on the

independent positive and negative test datasets. This was assessed

at the default thresholds obtained by cross-validation studies (see

Table 1), however for practical purposes, the higher the scores, the

higher is the confidence level of prediction. The remarkably fair

accuracies of the three classifiers for both the datasets demonstrate

its efficiency and justify its use for practical application.

Web Implementation
The prediction algorithm presented in this study is implemented

as a freely accessible web server at http://bioinfo.icgeb.res.in/faap

(Figure 4). The web server is hosted on a T1000 SUN server using

Apache. PHP is used for server side scripting. The background

running programs for calculation of compositional properties and

PSSM profiles and their conversion to SVM format are done using

PERL scripts. The program predicts adhesins using the ACHM

and PSSM-a classifiers. Since the PSSM-b classifier uses 6000

variables, the predictions are extremely time-intensive while the

performance is as good as the other two classifiers; this model has

not been put up on the web-server. The input sequences are

provided in the FASTA format and the program allows the user

to perform prediction at thresholds ranging from -1.0 to 1.5.

The output returns the sequence ID, the SVM score and the

decision of the model regarding the sequence based on the

threshold chosen.

Sensitivity of the SVM models for species not
represented in training datasets

In order to assess if the FaaPred approach could be applied to

species which are not represented in the training dataset (i.e. to

check if the method could be used to predict novel fungal

adhesins), we excluded adhesin and non-adhesin Candida albicans

sequences and the closely related Candida dubiliniensis from the

training datasets and then generated three new SVM models for

ACHM, PSSM-a and PSSM-b classifiers. Thereafter we checked

the performance of these models on the excluded adhesins. The

ACHM model was able to predict 12 out of 14 adhesins while both

the PSSM-a and PSSM-b could correctly predict 11 and 14

adhesins respectively. The promising results obtained from this

analysis demonstrate that the FaaPred may be applied to species

not included in the training sets.

Application of FaaPred for whole proteomes
We used the ACHM and PSSM-a models to scan Schizosacchar-

omyces pombe proteome (http://www.sanger.ac.uk/Projects/S_

pombe). We used a stringent SVM score threshold of 0.5 to reduce

Figure 3. ROC curves of the different SVM classifiers. ROC plot of SVMs based on different protein sequence features depicting relative trade-
offs between true positive and false positives. The corresponding Area Under Curve (AUC) is given in brackets in the legends.
doi:10.1371/journal.pone.0009695.g003

Table 2. Performance on benchmark datasets.

Model Positive set (32) Negative set (310)

ACHM 31 263

PSSM-a 32 280

PSSM-b 32 264

The numbers show the correctly predicted sequences out of the total shown in
the first row, 32 for the positive set and 310 for the negative set.
doi:10.1371/journal.pone.0009695.t002
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the number of false positives. The ACHM and PSSM-a models

reported 33 and 35 positives respectively. The complete list of

predicted adhesins includes 10 ‘sequence orphans’ or ‘dubious’

proteins and few proteins annotated as ‘conserved fungal proteins’.

Of special interest were 16 positives common to both the models

(Table S1). Two amongst these are Mam3 and Map4 proteins which

are known for their role in adhesion. Ten of these are annotated as

cell wall glycoproteins (one as cell wall organisation protein). We

term these as ‘adhesin-like’ proteins which are the candidate adhesin

proteins that could be investigated for their role in adhesion. Though

the exact role in adhesion is not established for these, interestingly

another study [26] based on comparative phylogenetics had

previously suggested six of these ten sequences as potential adhesins

(c.f. Table S1). Some false positives also appear in the list. An

optimum experimental strategy would include considering the total

number of proteins to be characterized, prioritizing proteins with

other complementary evidence (such as subcellular localization or

expression data) while keeping the number of false positives as low as

possible. We also performed the above analysis after excluding S.

pombe sequences from the training sets and generating new models

and obtained almost similar results. In this case, we obtained 33

positives for both the models of which 15 are common to both and

are the same ones as discussed above.

Discussion

We developed several SVM-based models using compositional

properties as well as PSSM profiles to facilitate the identification of

fungal adhesins. The ACHM model emerged as the best classifier

followed by the two PSSM models and also performs reasonably

faster than the latter which require the generation of PSSM

profiles for the input sequences. However one PSSM model, i.e.

PSSM-a has been provided on the web server to serve as a

complementation to the ACHM model.

The analysis of the prediction ‘misses’ and ‘hits’ for the SVM

models developed in the study reflects distinct AACs within the

entire protein and low-complexity regions. More GPI-anchors are

predicted in the ‘hits’ as compared to the ‘misses’. One of the

‘misses’, namely WI-1/Bad1 adhesin, is known to utilize an

alternative mechanism for cell wall attachment. The protein is

secreted into the external medium and subsequently attached to the

cell wall exterior by non-covalent binding to chitin chains- a process

that requires its tandem repeat domains [27]. There are other

alternative ways too for cell wall attachment in fungi. Proteins with

internal repeats (Pir proteins, which are a group of non-adhesive

proteins) become covalently attached to the cell wall sugar

molecules directly through glutamine residues within their tandem

repeat domains [28]. Some proteins are non-covalently associated

with the cell wall polysaccharides or ionically bound to the multiple

negatively charged groups like phosphodiester groups in the O- and

N-linked carbohydrate side chains of cell wall glycoproteins [29].

Though these mechanisms are not yet established for adhesins, it is

plausible that the ‘misses’ could be having any of these or some

other alternative mechanisms of cell wall attachment, making them

distinct from the ‘hits’. This also highlights that the SVM classifiers

developed in the study overcome the limitation of the presence of

GPI anchor to a great extent as there are only five misses (‘worst

misses’) which are not predicted by either of the three classifiers.

Figure 4. Snapshot of FaaPred web server sample output. The web server predicts fungal adhesins based on the two best classifiers, namely
based on PSSM profile (PSSM-a) and the hybrid classifier: ACHM. The two classifiers may be chosen together for a comparative prediction. The server
accepts FASTA formatted sequences and allows user defined thresholds of prediction, ranging from 21.5 to 1.5.
doi:10.1371/journal.pone.0009695.g004
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The overall adhesion determinants resulting from the differential

overall compositions as well as within the LCRs and thereby the

charge and hydrophobicity characteristics of the ‘misses’ might be

quite different from those of ‘hits’, accounting for the inability of one or

more classifiers to predict them. The enrichment of both positively

and negatively charged amino acids within the ‘misses’ is intriguing

and it is tempting to speculate that this could provide basis for a unique

way of cell wall attachment, which may be investigated further.

The adhesin dataset used in the study represents adhesins from

29 different species with diverse taxonomic positions (Figure S3),

however this certainly does not represent adhesins from all the

fungi. This restriction stems from the fact that as opposed to

bacteria, there is a paucity of available fungal adhesin sequences.

The reason for the successful performance of the models on

sequences of species not included in training, as seen for both

Candida species and S. pombe is that SVMs gather sufficient

information to create classification model based on only a small set

of the training examples. Though we have tested the sensitivity of

the approach on species not represented in training sequences, the

true sensitivity towards extremely divergent species may only be

tested when such sequences are available in future. The prediction

method developed in the study can expedite the discovery of

adhesins in fungi and needs to be judiciously used, keeping the

SVM scores as well as other complementary evidence into

consideration. Thus FaaPred has the potential to be used for

scanning of adhesin-like properties in fungal proteomes. In future,

availability of additional adhesin sequences with a better

representation of different fungal species and inclusion of more

properties would further enhance the accuracy of the program.

Methods

Figure 1 provides an overview of our experimental strategy and

is described below in detail.

Generation of datasets for SVM training
Different keywords like ‘adhesin’, ‘flocculin’, ‘agglutinin’, with

the limiting filter of taxonomy as fungi were used to compile a raw

pool of fungal adhesin sequences from sequence (Genbank and

UniProt) and bibliographic databases (PubMed). Proteins with

known intracellular locations, such as nucleus, cytoplasm,

mitochondria, endoplasmic reticulum etc. were collected and

assigned to the non-adhesin set. Both the sets were filtered for

hypothetical proteins and protein fragments.

The redundancy in both the sets was scaled down to 50% using

the CD-HIT program [30]. Hereupon, we had two sets containing

full-length and well-annotated sequences of 75 adhesins and 341

non-adhesins from fungi (Datasets S1 and S2 respectively).

Benchmark dataset for testing
In order to examine the unbiased prediction efficiency of our best

SVM models, we tested their performance on independent datasets

not used in training or testing cycles. While one test dataset

consisted of 32 fungal adhesins, the other had 310 non-adhesins

from different fungi species (Datasets S3 and S4 respectively).

SVMs and SVMlight

First pioneered by Vapnik in 1995, SVM is a supervised

machine learning method which delivers state-of-the-art perfor-

mance in recognition and discrimination of cryptic patterns in

complex datasets [31]. SVM is used in conjunction with kernel

functions which implicitly map input data to high dimensional

non-linear feature space. SVM then constructs a hyperplane

separating the positive examples from the negative ones in the new

space representation. To avoid over fitting, SVM chooses the

Optimal Separating Hyperplane (OSH) that maximizes the

margin i.e. the minimal distance between the hyperplane and

the training examples [32]. The selected data points supporting

the hyperplane are called support vectors.

We implemented SVM using SVMlight package (http://svmlight.

joachims.org) which allows us to choose a number of parameters

and kernels (e.g. linear, polynomial, radial basis function, sigmoid or

any user-defined kernel). In this study we used the RBF kernel. For

detailed descriptions of SVM please refer [33].

The positive class for building SVM models in this work implies

adhesins (from fungi) while the negative class signifies non-

adhesins (from fungi). We performed training testing cycles using

in-house shell and PERL scripts. We used RBF kernel to train and

test our SVM models. The values of l and regularization

parameter C were optimized on the training datasets by cross-

validation. The overall strategy was to choose the best parameters

in a way so as to maximize accuracy along with nearly equal

sensitivity and specificity, wherever possible.

Leave-one-out cross validation
This is deemed as the most objective and rigorous mode of

evaluation wherein one dataset sequence is singled out for testing,

while the rest are used to generate the model. This iterates on each

sequence till each sequence becomes the testing data exactly once.

This is a stringent case of n-fold cross-validation where n equals the

total number of sequences. The best parameters (l and C) as

measured by the various performance measures (explained below)

are taken and then averaged to get overall assessment of the model.

Classifier performance metrics
To evaluate the accuracy of SVM classifiers developed in cross-

validation cycles, we used the following four measures:

1) Sensitivity: percentage of adhesin protein sequences that are

correctly predicted as adhesins.

2) Specificity: percentage of non-adhesin protein sequences

that are correctly predicted as non-adhesins.

3) Accuracy: percentage of correct predictions out of total

number of predictions.

4) Matthews correlation coefficient (MCC): a measure of both

sensitivity and specificity, MCC = 0 indicates completely

random prediction, while MCC = 1 indicates perfect

prediction.

Sensitivity~
TP

TPzFN
|100

Specificity~
TN

TNzFP
|100

Accuracy~
TPzTN

TPzFPzTNzFN
|100

MCC~
TP|TNð Þ{ FN|FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ| TNzFPð Þ| TPzFPð Þ| TNzFNð Þ
p

Feature extraction
Amino acid composition (AAC): It is the fraction of each of the 20

amino acids present in a protein sequence. This generates an input

vector of 20 dimensions.
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Dipeptide composition (DPC): It is the fraction of a dipeptide

divided by the total number of possible dipeptides. This yields a

training vector of 400 dimensions.

Charge composition (CC): It is the fraction of charged amino acids

divided by the length of the protein. Moments (Mr) of the positions

of charged amino acids (R, K, D and E) from order 2–19 are

calculated using the expression:

Mr ~
X Xi{Xmð Þr

N

where Xm is the mean of all positions of charged amino acids,

Xm =
PN

i~1 Xi/N; Xi is the position of i-th charged amino acid

while N is the total number of charged amino acids in the

sequence. The fractions of positively and negatively charged

amino acids together with 18 moments yield a fixed length input

vector of 20 dimensions.

Hydrophobicity composition (HC): The amino acids may be classified

into five groups on the basis of their hydrophobicity properties

[34]. Moments of the positions of the five groups were calculated

using the same formula as above with r varying from 2 to 5. The

fractions of five groups together with 20 moments provide a fixed

length input vector of 25 dimensions.

Multiplet composition (MPC): Multiplets are homopolymers (X)n,

where X is any amino acid repeated n times with n$2. This

generates a 20-dimensional input vector.

Position specific scoring matrix (PSSM) profile: This was obtained by

performing PSI-BLAST against SwissProt database (release 57.3)

at the default E-value (-h option of blastpgp) of 0.001 with three

iterations. The matrix contains 206N elements, N being the

length of the query sequence, and each element represents the

frequency of a particular residue substitution at a specific position

in the alignment. To generate input vectors of fixed length for

SVM training, this was transformed in two ways. First, where the

PSSM matrix was normalized between 0 and 1 using the following

logistic function:

g xð Þ~ 1

1z exp {xð Þ

Where x is the raw value in PSSM profile and g(x) is the

normalized value of x. Following this, the normalized matrix is

organized into a composition matrix of fixed length pattern of 400

(20620, for each amino acid, there are 20 substitution scores from

normalized matrix).

Second, where the PSSM matrix was subjected to auto-cross

covariance (ACC) transformation (for details consult Dong et al.

[35]) at different lags lg varying from 5 to 40. This generates input

vectors of fixed dimensions, i.e. 400*lg, where 20*lg are auto-

covariance (AC) variables while 380*lg are CC (cross-covariance)

variables.

ROC plot
Statistical Package for Social Sciences (SPSS) software for

Windows version 11.5.0 was used to obtain the ROC plot [36] for

the SVM classifiers developed in the study.

Tandem amino acid repeats analysis
Tandem amino acid repeats are stretches of a single amino acid

repeated consecutively. All such repeats longer than four amino

acids were discovered in the ‘misses’ and ‘hits’, with a PERL script

using the regular expression ‘‘[ACDEFGHIKLMNPQRSTV-

WY]{4,}’’.

Supporting Information

Figure S1 The composition of low-complexity regions (LCRs) in

‘hits’ and misses’. This is a tiff file.

Found at: doi:10.1371/journal.pone.0009695.s001 (0.05 MB

TIF)

Figure S2 Amino acid compositions of ‘hits’ and ‘misses’ after

removing LCRs and TRs. This is a tiff file.

Found at: doi:10.1371/journal.pone.0009695.s002 (0.06 MB

TIF)

Figure S3 The taxonomic positions of the fungal species

included in training sets. This is a tiff file.

Found at: doi:10.1371/journal.pone.0009695.s003 (0.20 MB

TIF)

Table S1 The 16 common positives predicted as adhesins and

adhesin-like proteins during whole genome scan of S. pombe. This

is a ms excel file.

Found at: doi:10.1371/journal.pone.0009695.s004 (0.01 MB

XLS)

Dataset S1 Positive dataset. This consists of 75 sequences of

fungal adhesins used for training the SVMs. This can be viewed

using any text editor like wordpad.

Found at: doi:10.1371/journal.pone.0009695.s005 (0.07 MB

TXT)

Dataset S2 Negative dataset. This consists of 341 sequences of

fungal non-adhesins used for training the SVMs. This can be

viewed using any text editor like wordpad.

Found at: doi:10.1371/journal.pone.0009695.s006 (0.22 MB

TXT)

Dataset S3 Blind test dataset for positives. This consists of 32

fungal adhesin sequences not used in training or testing. This can

be viewed using any text editor like wordpad.

Found at: doi:10.1371/journal.pone.0009695.s007 (0.04 MB

TXT)

Dataset S4 Blind test dataset for negatives. This consists of 310

non-adhesin sequences from fungi. This can be viewed using any

text editor like wordpad.

Found at: doi:10.1371/journal.pone.0009695.s008 (0.17 MB

TXT)
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