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Abstract Sedimentation velocity analytical ultracentri-

fugation has become a very popular technique to study

size distributions and interactions of macromolecules.

Recently, a method termed two-dimensional spectrum

analysis (2DSA) for the determination of size-and-shape

distributions was described by Demeler and colleagues

(Eur Biophys J 2009). It is based on novel ideas con-

ceived for fitting the integral equations of the size-and-

shape distribution to experimental data, illustrated with

an example but provided without proof of the principle

of the algorithm. In the present work, we examine the

2DSA algorithm by comparison with the mathematical

reference frame and simple well-known numerical con-

cepts for solving Fredholm integral equations, and test

the key assumptions underlying the 2DSA method in an

example application. While the 2DSA appears computa-

tionally excessively wasteful, key elements also appear to

be in conflict with mathematical results. This raises

doubts about the correctness of the results from 2DSA

analysis.
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Introduction

The use of sedimentation velocity analytical ultracentrifu-

gation (SV) has significantly expanded in the last decade

(Howlett et al. 2006; Scott and Schuck 2006; Cole et al.

2008), and new computational methods for SV analysis are

being actively developed by several groups (Balbo et al.

2005; Philo 2006; Brown et al. 2007, 2009; Behlke and

Ristau 2009; Brookes et al. 2009; Correia and Stafford

2009). In particular, diffusion-deconvoluted sedimentation

coefficient distributions calculated from direct boundary

modeling of experimental data (Schuck 2000; Schuck et al.

2002) have proven to be very useful tools in many bio-

physical applications (for a list of references see Schuck

2007). They can achieve relatively high hydrodynamic

resolution of pauci- and polydisperse macromolecular

mixtures, exhibit exquisite sensitivity for trace components

(Berkowitz 2006; Liu et al. 2006; Brown et al. 2008a, b;

Gabrielson et al. 2009), and can be related to sedimentation

coefficient isotherms and Gilbert–Jenkins theory for the

analysis of slowly or rapidly interacting systems (Dam and

Schuck 2005; Dam et al. 2005). The extension of sedi-

mentation coefficient distributions to two-dimensional size-

and-shape distributions was introduced (Schuck 2002;

Brown and Schuck 2006) and applied in numerous studies

(Markossian et al. 2006; Chang et al. 2007; Deng et al.

2007; Race et al. 2007; Broomell et al. 2008; Brown et al.

2008; Chebotareva et al. 2008; Iseli et al. 2008; Mon-

crieffe et al. 2008; Paz et al. 2008; Sivakolundu et al.

2008; Wang et al. 2008; Eronina et al. 2009; Mortuza et al.

2009). More recently, the Demeler laboratory has descri-

bed the concept of a novel algorithm (‘‘2DSA’’) for

determining size-and-shape distributions, as implemented

in the software ULTRASCAN (Brookes et al. 2006, 2009;

Demeler et al. 2009). In the present work, we critically
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compare the background of the different algorithms and

assess their performance.

Methods

The SV experiment was carried out with a Beckman-

Coulter XL-I analytical ultracentrifuge, following standard

protocols as described by Brown et al. (2008a, b).

A monoclonal immunoglobulin G (IgG) preparation in

phosphate-buffered saline (PBS) buffer was inserted in 12-

mm Epon centerpieces, temperature equilibrated at 18�C,

and then accelerated to 45,000 rpm and scanned with

absorbance optics at 280 nm. Data analysis was performed

with SEDFIT 11.8 using c(s) models as described by

Schuck et al. (2002), the two-dimensional size-and-shape

model c(s, fr) as described by Brown and Schuck (2006),

and applying Bayesian prior knowledge as described in

detail by Brown et al. (2007). The computer used for these

analyses was a Dell Precision T5400 workstation, with dual

32-bit quadcore 3.16-MHz processors and Windows oper-

ating system.1

Outline of the algorithms

For clarity of the analysis of the algorithms, we first pro-

vide a mathematical outline of the problem. This is fol-

lowed by a more detailed discussion of appropriate

discretization parameters, and from this we derive the

demands on the computational platforms. Then we discuss

algorithmic aspects for calculating Lamm equation solu-

tions and for computing a size-and-shape distribution from

the experimental data, and finally comment on methods for

estimating their true information content.

Mathematical description of the problem

The size-and-shape distribution problem is a Fredholm

integral equation of the form

aðr; tÞ ¼
Zsmax

smin

Zfr;max

fr;min

cðs; frÞ vðs; fr; r; tÞdsdfr; ð1Þ

where the data a(r, t) are the measured evolution of the

radial signal profiles, and c(s, fr) is a differential size-and-

shape distribution, expressed most conveniently for the

modeling of SV data in coordinates of sedimentation

coefficient s and frictional ratio fr (Brown and Schuck

2006). v(s, fr, r, t) are normalized solutions of the Lamm

equation (Lamm 1929)

ov
ot
¼ 1

r

o

or
Dr

ov
or
� sx2r2v

� �
; ð2Þ

which predicts the evolution of the concentration profiles

of an ideally sedimenting species with sedimentation

coefficient s and diffusion coefficient D(s, fr) that is ini-

tially uniformly distributed between the meniscus and

bottom of the solution column at loading concentration

of 1.

Equation (1) can be discretized on a rectangular grid

with (S 9 F) size-and-shape values (si, fr,j) comprising all

combinations of S equidistant sedimentation coefficient

values from s1 = smin to sS = smax (with constant mesh

size Ds ¼ ðsS � s1Þ=ðS� 1Þ ¼ siþ1 � si), and F frictional

ratio values from fr,1 = fr,min to fr,F = fr,max (with constant

mesh size Dfr ¼ ðfr;F � fr;1Þ=ðF � 1Þ ¼ fr;jþ1 � fr;j). With

the data being (N 9 M) discrete signal values at radius rn

and time tm, abbreviated as anm, (1) leads to the linear least-

squares problem

Min
ci;j�0

X
n;m

anm�
XS

i¼1

XF

j¼1

ci;jvðsi; fr;j; rn; tmÞ�bðrnÞ�bðtmÞ
 !2

:

ð3Þ

The ci,j provide an estimate of the size-and-shape distri-

bution with cðs; frÞ � ci;j

�
ðDsDfrÞ. Signal offsets from

systematic time-invariant [b(rn)] and radial-invariant

[b(tm)] noise contributions are indicated in Eq. (3), but their

simultaneous optimization with the method of separation of

linear and nonlinear parameters (Ruhe and Wedin 1980)

poses no significant further complications (Schuck and

Demeler 1999) and therefore they will be dropped from

further consideration in order to make the notation more

transparent in the following.2

We can introduce a new index l that lexicographically

orders all data points (a total of L = N 9 M), and a single

index k that enumerates all size-and-shape grid points (si,

fr,j) from 1 to K = S 9 F, which allows us to write (3) as a

simple sum
1 We also analyzed the data with ULTRASCAN II version 9.9 to

confirm our results as far as possible. Unfortunately, the current lack

of a manual section for the use of the 2DSA analysis and the

excessive computational times involved prevented us from a direct

comparative analysis of the same data with the full 2DSA model as

described by Brookes et al. (2009). Further, a detailed comparison

does not seem possible due to seemingly unavoidable data truncation

steps when loading data in ULTRASCAN II, and due to our inability

to write the entire calculated distribution into a text file.

2 They cannot, however, be calculated in a first analysis and then be

subtracted from the experimental data, as described by Demeler and

colleagues (Brookes et al. 2009). Since systematic noise components

are part of the model, and since their estimates can correlate with the

description of the macromolecular sedimentation distribution, they

need to be simultaneously optimized (Schuck and Demeler 1999;

Dam and Schuck 2004).
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This highlights the nature of the problem being a

standard nonnegative linear least-squares problem. The

unconstrained problem can be solved with the method of

normal equations (Lawson and Hanson 1974; Golub and

VanLoan 1989)

Pc~¼ d~; ð5Þ

with the K 9 K matrix P (sometimes referred to as the

Gram matrix) with elements Pjk ¼
P

l

vjlvkl, the K 9 1

vector d~with elements dk ¼
P

l

alvkl, and the K 9 1 vector

c~ representing the unknown distribution.

The unique best-fit solution with the nonnegativity con-

straint ck C 0 can be found unambiguously with the alge-

braic algorithm NNLS, which was introduced and proven by

Lawson and Hanson (1974). We first used the NNLS algo-

rithm in the context of SV distribution analysis, in a form

where we expressed all requisite quantities with elements of

the normal equations (Schuck 2000). NNLS is an active

set algorithm that divides the unknowns into sets with active

(ck = 0) and inactive (ck [ 0) inequalities, and iteratively

establishes the active set producing the best-fit solution. For

the inactive set, the problem takes the same form as (5), but

with all matrix and vector elements from components with

active constraints deleted (Gill et al. 1986).

Frequently the problem of fitting distributions of the

form (1) is ill posed, meaning that many different solutions

will fit the data statistically indistinguishably well (Louis

1989; Hansen 1998; Engl et al. 2000). For example,

Provencher (1982) has illustrated this point via the Lemma

of Riemann–Lebesgue, showing that one should expect a

large set of very different solutions to fit the data equally

well within the experimental error. In practice, noise of the

data can amplify to determine even the overall features of

the best-fit solution c~; and often the strictly best-fit solution

consists of a series of spikes whose number, location, and

height may not reflect the presence of such species in the

physical experiment, but are governed by the details of the

noise and other imperfections in the data.

It is therefore desirable to suppress, among all possible

solutions, those that contain a potentially misleading amount

of detail arising from noise amplification. Towards this goal,

regularization is a standard approach that determines the

most parsimonious solution of all that fit the data statistically

indistinguishably well. It minimizes a measure of the infor-

mation content of the solution while optimizing the quality of

fit. A well-known and widely applied strategy to suppress

artificial spikes is Tikhonov–Phillips regularization (Phillips

1962; Provencher 1982; Louis 1989; Hansen 1992; Press

et al. 1992), which uses, for example, the square of the

second-derivative matrix (Hkj) to stabilize the solution of

(4):

Min
ck � 0

X
l

al �
XK

k¼1

ckvkl

 !2

þ a
X
k;j

ckHkjcj

2
4

3
5 ð6Þ

or, formulated with normal equations,

Pþ aHð Þc~¼ d~; ð7Þ

where a is a parameter that scales the regularization con-

straint (Louis 1989; Press et al. 1992). Again, (7) has an

unambiguous best-fit solution that can be determined

algebraically with NNLS for any value of a, and the latter

can be adjusted in a simple one-dimensional search such

that the least-squares fit remains at a statistically indistin-

guishable quality compared with the initial best fit in the

absence of regularization (Bevington and Robinson 1992).

A Bayesian variation of this approach is possible that

modulates the regularization matrix to enhance the infor-

mation content of the solution in view of existing (or

hypothesized) prior knowledge (Sivia 1996; Brown et al.

2007; Patel et al. 2008).

We will refer to this approach as the ‘‘standard algo-

rithm,’’ because it is firmly rooted in textbook linear algebra

and basic linear least-squares optimization, and utilized in

many applications throughout the biophysical literature and

physical sciences. We have introduced this approach pre-

viously into the SV analysis, and it underlies all size-dis-

tribution analyses in SEDFIT and SEDPHAT. If used

without regularization, it provides exact solutions (within

numerical precision) to the least-squares problem (3), and

when used with regularization, the algorithms ensure that

fits with statistically indistinguishable quality are obtained.

The 2DSA method by Demeler and colleagues aims to

solve the same Eqs. (1), (3), and (4), respectively. This is

described by Brookes et al. (2009), and with less mathe-

matical detail by Demeler et al. (2009). The Demeler

approach deviates in key aspects from the strategies

described above. Apparently in order to circumvent per-

ceived computational limitations, a novel multigrid scheme

is conceived that would allow a sequence of fits with low-

resolution 10 9 10 (S 9 F) grids to approximate the

solution of (1) and (3) with high-resolution S � 10 and

F � 10. For achieving parsimonious results Monte Carlo

iterations are applied (Brookes et al. 2009). Some of the

key ideas will be discussed in the following.

Appropriate mesh sizes for the two-dimensional

problem

First, in order to assess the size of the problem and com-

putational requirements, we need to clarify how fine the
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grid of s-values and fr-values needs to be in order to fully

extract all information from a typical set of sedimentation

velocity data. Let us consider as an example the experi-

mental data from a preparation of IgG molecules sedi-

menting at 45,000 rpm, as shown in Fig. 1a. It is useful to

start the analysis with a one-dimensional sedimentation

coefficient distribution analysis c(s), since the sedimenta-

tion coefficients are the experimentally best determined

quantities. c(s) eliminates the shape dimension by using

hydrodynamic scaling laws such as the traditional s * M2/3

law for globular particles (Schuck 2000), theoretical

models for wormlike chains (Yamakawa and Fujii 1973) or

any user-defined exponential scaling laws for polymers

(Pavlov et al. 2009). For the given data we can determine

from the c(s) analysis (not shown) that s-values from 0.1 to

15 S will be sufficient to describe all sedimenting species.

Equidistant discretizations with S = 100 or S = 200 lead

to statistically indistinguishable quality of fit, as measured

by F-statistics (Bevington and Robinson 1992; Straume

and Johnson 1992), and therefore we preliminarily con-

clude that S = 100 will be a reasonable choice.

Typically, the resolution in the frictional ratio dimension

cannot be expected to be very high, even in combination

with data from SV experiments at a range of rotor speeds

(Schuck 2002). Therefore, a discretization providing

F = 10 values between 1.0 and 2.5 (ranging from extre-

mely compact to very extended protein structures) should

be a sufficiently flexible basis to describe the actual fric-

tional ratio for each species (knowing that we have inserted

folded proteins into the sample solution, and keeping in

mind the average frictional ratio of 1.68 estimated from the

c(s) analysis). The resulting 10 9 100 grid with a total of

K = 1,000 species was fitted with the standard algorithm to

the data in Fig. 1a, leading to virtually random distribution

of residuals (1b), with a root-mean-square deviation (rmsd)

of 0.00672, consistent with the noise in the data acquisi-

tion. The resulting distribution is shown with and without

regularization in Fig. 1d and c, respectively. As expected,

while the s-values of the species are well defined, the shape

dimension is highly underdetermined, resulting in the

Fig. 1 Illustration of the standard algorithm for size-and-shape

distributions applied to the experimental data of an immunoglobu-

lin G sample, sedimenting at 45,000 rpm. a Experimental data

acquired with the absorbance optical system (solid lines). The color

temperature indicates the temporal order of the scans, with blue for

the early and red for the late scans. The dotted lines, virtually

overlapping the experimental data, are the best-fit distribution from

modeling with Eq. (3) for a grid of K = 10 9 100 (fr, s)-values

ranging from fr-values of 1.0 to 2.5 in 10 equidistant steps, and from

s-values of 0.1 to 15.0 S in 100 equidistant steps. b Residuals of the

fit, presented as a bitmap (Dam and Schuck 2004) and as an overlay

plot for all traces. The root-mean-square deviation is 0.00672 OD.

c Raw size-and-shape distribution without regularization. As in

(Brown and Schuck 2006), the 2D grid of (fr, s)-values is indicated by

solid lines, combined with a color temperature contour map in the

plane below. The solution is a series of spikes in fr-dimension, with a

comparatively well-defined s-value of *5.8 S for the main species.

An observation familiar in the study of IgG (and many other protein)

samples is the low-level population of dimeric species at *9 S, as

well as trimeric traces at *11–12 S. d Tikhonov–Phillips regular-

ization applied to produce the most parsimonious size-and-shape

distribution of all that fit the data statistically indistinguishably well at

a P = 0.95 confidence level (i.e., that produce a rmsd value of

0.00677 OD or better)

c
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typical series of peaks in 1c, and in a smooth relatively

uniform distribution after regularization in 1d. (This justi-

fies, in retrospect, the choice of F = 10 values as a suffi-

ciently detailed discretization of the frictional ratio

dimension.)

We can compare the rmsd achieved with this 10 9 100

grid (0.00672) with a fit under otherwise identical condi-

tions but different grids: a coarser 10 9 50 grid leads to an

rmsd of 0.00678, which is barely statistically worse (on a

one standard deviation confidence level), and a finer grid

with 20 9 200 grid leads to an rmsd of 0.00670, which is

statistically indistinguishable. Thus, a 10 9 100 grid is of

sufficiently high resolution to extract the entire information

content of the experimental data.

Memory requirements and computational platforms

After outlining the structure of the problem and the dis-

cretization parameters typically required for a size-and-

shape analysis of SV data, it is possible to discuss the

computational requirements. Demeler’s 2DSA method was

implemented with the goal of accessing a high-perfor-

mance computing environment (TeraGrid) in order to

avoid prohibitive memory limitations that Demeler and

colleagues perceive to occur when using ubiquitous

ordinary laboratory workstations. Specifically, the authors

(Brookes et al. 2009) estimate the memory needs for

modeling a set of M = 50–100 sedimentation velocity

scans with typically N = 500–800 data points each by only

a low-resolution 10 9 10 (S 9 F) grid. They conclude that

‘‘Performing just a 10 9 10 grid search on such an array

would require close to half a gigabyte of memory just for

data storage of a single experiment.’’ (Brookes et al. 2009).

We will examine this estimate in more detail.

In practice, when using the absorbance optics with the

recommended and widely applied setting of 0.003 cm

(Brown et al. 2008a, b) for the radial intervals, in order to

diminish errors from sample migration during the scan

(Brown et al. 2009), we obtain only on the order of *200–

250 points per scan in a long-column SV experiment. In

typical high-speed SV experiments with eight-hole rotors,

we can acquire usually only 50 scans or fewer before

depletion occurs and/or migration and backdiffusion

approach steady state, even with small solutes. This is

sufficient for a highly detailed analysis of multicomponent

systems, as discussed by Balbo et al. (2005). Predicted

values v(si, fr, j, rn, tm) need to be calculated for each

species (si, fr, j) with arrays of the same size as the data

a(rn, tm). Since the experimental data have a precision not

better than four decimal places, their representation as a

standard 32-bit floating-point data type with eight signifi-

cant figures is already wasteful. Nevertheless, calculating

conservatively with 32-bit floats we arrive at a memory

requirement of only *4.8 MB for storage of model data,

rather than 0.5 GB [250 9 50 9 10 9 10 9 4 bytes 9

(1,048,576 bytes/MB)-1 = 4.76 MB]. With interference

optical (IF) data, the native radial density of points is higher

(*1,500 per scan). Since the radial density of points of

interference scans is not exploited experimentally, it could

be safely reduced to the level of absorbance data by pre-

averaging, which reduces the statistical noise approximately

by a factor of 2. However, again calculating conservatively

and using the native resolution of IF data, this would lead to

*28 MB storage space, or *57 MB if 100 scans were used

to represent the evolution in a SV experiment.

We find that the *5–50 MB actually required for cal-

culating size-and-shape distributions with 10 9 10 grids is

compatible with the available memory on many different

platforms, ranging from [200,000 MB available on Tera-

Grid systems, to *2,000–3,000 MB typically available on

32-bit Windows, and even the *50–90 MB available on

current smartphones.

Consistent with this result, we and others (Markossian

et al. 2006; Chang et al. 2007; Deng et al. 2007; Race

et al. 2007; Broomell et al. 2008; Brown et al. 2008;

Chebotareva et al. 2008; Iseli et al. 2008; Moncrieffe et al.

2008; Paz et al. 2008; Sivakolundu et al. 2008; Wang et al.

2008; Eronina et al. 2009; Mortuza et al. 2009) have reg-

ularly used full high-resolution grids (such as 10 9 50,

10 9 100, or higher) in SEDFIT on ordinary personal

computers or laptops, an exercise that is a regular part of

the Workshop on Hydrodynamic and Thermodynamic

Analysis of Macromolecules with SEDFIT and SEDPHAT

at the National Institutes of Health (Schuck 2009). This is

possible due to the fact that the memory requirement for

the high-resolution grid would be 48–286 MB to store the

model data (assuming 50 scans for data absorbance or

native interference data modeled with a 10 9 100 grid). It

is readily verified that, even for the complete high-resolu-

tion grid and when globally analyzing many experimental

data sets, this is well below the memory limit of currently

common 32-bit Windows operating systems.

Further, all computations can be condensed to the normal

Eq. (5), requiring essentially only a matrix P of

1,000 9 1,000 numbers to be operated on, which even as

double-precision data type requires less than 8 MB, trivial by

current standards on any platform. Once condensed to the

form of Eq. (5), our SV problem is far smaller (often several

orders of magnitude) than common problems of analogous

mathematical structure, for example, in astronomical image

analysis (Narayan and Nityananda 1986). For the data shown

in Fig. 1, in the implementation in SEDFIT (which does not

optimize memory allocation), *20 MB of RAM are used.

The necessary computational power will strongly

depend on the implementation of the algorithms, of course.

Parallelization can be readily achieved in the standard
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algorithm, which can in many places decrease the compu-

tation time by a factor virtually proportional to the number

of threads. This is true, for example, for solving the Lamm

equations, and for the most time-consuming step of building

the normal equations matrix. The time for a complete cal-

culation with a full high-resolution grid (10 9 100) for the

data shown in Fig. 1, on a current dual-processor quadcore

3.16-MHz PC (Dell Precision T5400), is only 42 s.3 The

time required for a 10 9 50 grid, which we have already

seen leads to an adequate fit within the noise of data

acquisition, is 10 s. Finally, it is *15 min for a 20 9 200

grid. In the standard algorithm a Monte Carlo statistical

analysis may be desired, for example, in order to examine

the statistical accuracy of a particular species population as

determined from the integration of the distribution in a

certain range. In the standard algorithm, each iteration

requires only updating the vector d~ of the normal Eq. (5)

and solving these equations. For the data shown in Fig. 1,

one iteration takes *3 s on a single thread on our PC.

We conclude that ordinary current workstations do not

pose a limitation for rigorously determining the size-and-

shape distributions, neither with regard to available mem-

ory, nor with regard to processor capabilities.

Lamm equation solutions

Modeling a distribution of species with different size and

shape to the data depends critically on the accuracy of the

Lamm equation solutions (2) that predict the sedimentation

profiles for all species. For calculating Lamm equation

solutions, Demeler and colleagues apply the ASTFEM

algorithm that was recently introduced by Cao and Dem-

eler (2005). In that work, the authors report two criteria for

the performance of their ASTFEM algorithm in compari-

son with the reference (true) solution: (1) the overall rmsd

(referred to by Cao and Demeler as ‘‘L2 error,’’ in a non-

standard definition), and (2) the maximum error in the

evolution of concentration profiles.

That the rmsd is small (compared with the noise of data

acquisition) is a necessary but not sufficient condition for

the algorithm to be useful in modeling experimental data.

In fact, the majority of points of the predicted concentra-

tion profiles typically fall into the plateau regions, which

are trivial to predict (those in the solvent plateau are con-

stant zero) but have limited or no information about the

sedimentation process. These plateau points can keep the

overall rmsd error of the solution below the statistical

errors of the data acquisition, even though the maximum

errors in the sedimentation boundaries may be much larger.

The accuracy of the description of the shape of the

sedimentation boundary (rather than the plateaus) is critical

for modeling the size-and-shape distributions. Therefore, a

sufficient condition is that the maximum error is smaller

than the noise of the data acquisition. For example, in order

to model experimental data with signal-to-noise ratio of up

to *1000:1, the maximum errors of the Lamm equation

solutions at unit concentration should be less than 0.001.

For numerically solving the Lamm equation, an over-

riding question is the discretization of the radial coordinate.

Solutions with fine radial mesh are generally more accurate

but computationally more expensive, and conversely,

coarsely discretized Lamm equation solutions are quicker to

calculate. Even though it has not been explicitly mentioned

in the SV literature until recently (Brown and Schuck 2008),

it is easy to see that a fundamental limitation for any finite-

element algorithm with linear elements is the obligate error

that occurs when approximating a smooth, curved function

with piecewise linear segments. This is illustrated in Fig. 2

for a system chosen by Cao and Demeler (2005) as a

benchmark in the introduction of their ASTFEM algorithm.

Figure 2 shows the deviations of the curved, accurate solu-

tion from a series of linear segments with a total of only 100

(red) or 200 (blue) radius values from meniscus to bottom.

For the determination of suitable radial mesh sizes for

calculating the Lamm equation solution, Cao and Demeler

applied the L2 error criterion. This led to the recommen-

dation of very coarse grids with *100 points, and indeed

the main benefit of the ASTFEM algorithm perceived by

Cao and Demeler (2005) is numerical stability even for

such very coarse radial grids.

Unfortunately, large maximum errors in the approxi-

mation of the sedimentation boundaries are an unavoidable

consequence of coarse radial discretization. In fact, the

errors in the sedimentation boundaries shown in Fig. 2 are

similar in magnitude to those of Figs. 8b and 9b in Cao and

Demeler (2005). Remarkably, none of the examples pro-

vided by Cao and Demeler (2005) led to maximum errors

below 0.001, and in most cases it was a factor of 10 or

more above this mark. Such errors can be expected to

significantly impact the result of the size-and-shape dis-

tribution analysis.

We have recently derived a new finite-element algo-

rithm (Brown and Schuck 2008) based on the recognition

that the approximation of the concentration profiles as

linear segments does not only generate an obligate error

(independent of the algorithm), but that this also represents

the dominant source of error in the finite-element approach

as described by Claverie et al. (1975). Accordingly, we

generate a set of nonequidistant radial grid points with

optimal spacing to achieve Lamm equation solutions with

constant, predetermined accuracy (as measured by the

maximum error for the radial data range to be analyzed).

3 Scaling this to the processor clock rate of a G1 smartphone, we

expect this calculation should take less than 1 h, which would still

compare well with the experimental time of several hours.
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To optimize the efficiency, all points in the solvent and

solution plateaus are calculated with the trivial analytical

expressions (Brown and Schuck 2008). We note that, for

the 10 9 100 grid shown in Fig. 1, the calculation of the

Lamm equation solutions for all 1,000 species with an

accuracy of better than 0.001 (maximum error) requires a

total of less than 2 s on our PC. Thus, computational

expense for achieving high-accuracy Lamm equations

should not be limiting the size-and-shape distribution

analysis of SV data.

The 2DSA ‘‘divide-and-conquer’’ algorithm

by Brookes et al.

The 2DSA algorithm applied by the Demeler laboratory

consists of a large number of repeated applications of

Eq. (4) with K & 10 9 10 and similarly low-resolution

grids. Figure 3 shows the results of fitting the same data

as shown in Fig. 1 with a 10 9 10 grid under otherwise

identical conditions. The deviations are ±10% of the

maximum signal, and clearly this model does not even

qualitatively describe the data well. As a consequence,

we cannot assume that the distribution obtained from this

model reflects in any way the species present in the

experiment. (It is grossly different, for example, from the

distribution shown in Fig. 1c, d.)

Brookes et al. (2009) recognize that such a fit is insuf-

ficient and consistently attribute the idea of using 10 9 10

grids to Brown and Schuck. For example, the authors state

‘‘…a 10 9 10 grid as proposed by Brown and Schuck

Fig. 3 Analysis of the same data shown in Fig. 1, using a coarse grid

of only K = 10 9 10 (fr, s)-values as introduced by Brookes et al.

a Experimental data, with the color temperature blue to red indicating

the temporal evolution of the sedimentation, as in Fig. 1. Shown as

black lines are the best-fit distributions with the 10 9 10 grid

distribution model, ranging from fr-values of 1.0 to 2.5 in ten

equidistant steps, and from s-values of 0.1 to 15.0 S in ten equidistant

steps. b Residuals bitmap and overlay. The rmsd of the fit is 0.03088

OD. c Best-fit size-and-shape distribution with the 10 9 10 model, in

the same presentation as the 10 9 100 model in Fig. 1c

Fig. 2 Accuracy of the solution of the Lamm equation. Whenever

using linear elements for the finite-element solution, an obligatory

error is the approximation of the true boundary shape by piecewise

linear segments. This is illustrated here for a system chosen as model

system by Cao and Demeler (2005, compare Fig. 8b), with s = 10 S
and D = 2 9 10-7 cm2/s, for which very accurate Lamm equation

solutions were calculated with a very fine discretization (black thin
line). If the radial range from meniscus to bottom is divided evenly in

a set of only 100 radial points and the boundary shape is

approximated by piecewise linear segments (red line, residuals

shown in enhanced scale in the graph below), very large deviations

occur, even if at these points the correct Lamm equation solutions

were calculated. For an even division with 200 radial points (blue) the

obligatory errors are smaller but still approximately ten times the

experimental noise. Grids with 100 radial points were proposed by

Cao and Demeler (2005), leading for samples at unit concentration to

maximum errors far exceeding the experimental noise. As shown by

Brown and Schuck (2008), the minimum number of radial points that

for this system allow for this obligate error to be \0.001 is *300,

based on an optimized nonequidistant spacing of radial points (using

high density where boundaries are steep)
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(2006) is insufficient to reliably describe the experimental

parameter space. If the actual solute is not aligned with a

grid point, false positives are produced,’’ and even declare

the second major point in their results as ‘‘A 10 9 10 grid

suggested by Brown and Schuck (2006) is clearly insuffi-

cient…,’’ and state in the summary ‘‘We have shown that

low resolution grids as proposed by Brown and Schuck

(2006) are insufficient to obtain reliable information.’’ This

attribution is not based on reality. Unmistakably, we have

used in the referenced work (Brown and Schuck 2006)

exclusively high-resolution grids (11 9 100 in Fig. 1 and

2, 12 9 60 in Fig. 3, 15 9 50 in Fig. 4, 13 9 100 in

Fig. 5, 11 9 100 in Fig. 6, and finally 13 9 50 in Fig. 7),

all of which are shown to describe the data well to within

the noise of data acquisition (Brown and Schuck 2006), and

similar is true for other published applications of the

method by other laboratories and by us. Thus, the idea of

using 10 9 10 grids is entirely a product of the Demeler

laboratory, and, to our knowledge, first described in the

Brookes et al. (2009) paper.

Despite the failure of overly coarse grids, remarkably,

Demeler’s 2DSA algorithm consists exclusively of repeat

applications of such coarse grids: They are considered

‘‘subgrids’’ of a hypothetical grid with much higher reso-

lution, which is never actually completely fitted to the data,

but nevertheless suggested to reflect the final resolution of

the distribution. The details are not entirely clear, but there

are two key ideas: (I) The coarse grids are translated rel-

ative to each other multiple times by increments D2s and

D2fr, and their results are joined. (II) The joined set of grid

points with inactive nonnegativity constraints from (I) is

used to form a new, second-stage irregular grid of similarly

low number of grid points as the initial grid.4 The Demeler

scheme of repeat application of different coarse subgrids,

storage, and combination of their results, is termed a

‘‘divide-and-conquer’’ strategy. Divide-and-conquer algo-

rithms are well-known tools in numerical mathematics that

facilitate the use of parallel computation to solve problems,

such as singular value decomposition (Arbenz and Golub

1988; Gu and Eisenstat 1995; Xu and Qiao 2008). Gener-

ally, such algorithms are established by proof of their

correctness. This criterion has not been attempted for the

2DSA algorithm. Concerns arise from the following

arguments:

(I) Combination of subgrids

The premise underlying (I) is that the results from inde-

pendent application of different grids can be meaningfully

combined. Following the idea of the Demeler laboratory that

low-resolution subgrids can be ‘‘refined into a grid of any

desired resolution’’ through their combination scheme, let us

consider that putative final regular high-resolution grid,

which would have mesh size Ds = D2s and Dfr = D2fr. As

shown above, one can actually solve the size-and-shape

distribution problem directly using the standard algorithm

with this full-sized high-resolution grid with even mesh size,

via the normal equation (5) with the K 9 K matrix P and

K 9 1 vector d~, where K is the total number of species of the

two-dimensional grid. In our example of Fig. 1, K = 1,000

for the 10 9 100 grid that is of sufficient resolution to

describe all aspects of the experiment. Now going back-

wards, one may consider our high-resolution grid to be

represented by a total of C different equal-sized subgrids,

each referenced with index c (e.g., ten grids of 10 9 10

resolution), such that merging all grid points of the subgrids

produces the high-resolution grid. For each subgrid, one can

solve the distribution with the normal matrix method, and it

is easy to show that the relevant matrix equations are

PðcÞc~ðcÞ ¼ d~
ðcÞ
; where PðcÞ are square submatrices of P of

size (K/C) 9 (K/C) and d~
ðcÞ

are subvectors of d~ of size

1 9 (K/C). One can use a nomenclature for the elements of

the high-resolution grid such that the points are ordered in

sequence of the low-resolution subgrids.

In general, it is not true that the individual results c~ðcÞ

from the individual problems PðcÞc~ðcÞ ¼ d~
ðcÞ

can be com-

bined to a concatenated vector c~ð1Þ; . . .; c~ðCÞ
� �

that would

represent the result c~ of the full solution (with or without

nonnegativity). This would require the cross-correlation

between points from the different grids to vanish, and the

high-resolution K 9 K matrix P to have a structure

P ¼

Pð1Þ 0

Pð2Þ

. .
.

0 PðCÞ

0
BBB@

1
CCCA: ð8Þ

This is not the case, as illustrated in Fig. 4 for our example

data. As can be discerned clearly, the structure of P when

sorted along subgrids (Fig. 4b) is different from merging

the submatrices P(c) (Fig. 4c), which neglects very sub-

stantial features of the model. If we ignore this problem

and calculate the distribution with the matrix of Fig. 4c (or,

equivalently, if we simply merge all solutions from con-

secutively fitting the distribution data with all ten 10 9 10

grids and plot them at their appropriate points in the high-

4 As described, for example, by Demeler et al. (2009): ‘‘Typically,

we apply 100–300 grid movings of a 10 9 10 grid to obtain a

resolution that is commensurate with the resolution of the analytical

ultracentrifuge.’’ and ‘‘Solutes with positive amplitudes from different

grids are then unioned with each other to form new grids with a

maximum number of solutes equivalent to that of a single initial grid

(generally less than 100 solutes).’’
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resolution grid), we arrive at a size-and-shape distribution

as shown in Fig. 5b. This is very different from the known

exact solution shown in Fig. 1, which is reproduced for

convenience in Fig. 5a.

(II) Formation of new, irregular coarse subgrids

Apparently to address this problem, the 2DSA method

takes from the concatenated solution of the subgrids only

the pattern of active/inactive nonnegativity constraints.

Demeler and colleagues construct from the points with

nonzero concentration values in the concatenated partial

solutions (or a subset thereof) a new grid, conceived to be

equal in size to the original low-resolution grids, but now

with uneven spacing of the grid points.

Again, we can analyze this approach best by comparison

with the full, high-resolution grid with the full matrix P,

where the unambiguous best-fit nonnegative solution is

found exactly with the proven NNLS algorithm (Lawson

and Hanson 1974). The ad hoc exclusion of grid points that

did not produce positive concentration values in any of the

subgrids is in direct conflict with NNLS. Nothing guaran-

tees that the (s, fr)-values populated in the exact solution

will be correctly recognized as populated species (be

assigned nonzero values) in the fit with the low-resolution

grid of which they are a part. The points populated in the

exact solution may therefore simply not be part of the

second-stage grid.

Illustrating this problem, the crosses in Fig. 5d represent

all the grid points that made positive contributions in any of

the preliminary sequence of low-resolution fits (which

covers all grid points of the high-resolution grid, as

described above). All the dots (red and blue) are the

positive solution components of the exact high-resolution

solution. They are colored blue if they coincide with a

cross, i.e., have been correctly identified in the first stage as

being part of the solution, and they are colored red if they

were never part of any low-resolution fit and were therefore

excluded from the second-stage grid. If the analysis pro-

ceeds with the second-stage grid (i.e., preconstraining the

analysis to the values indicated by crosses in Fig. 5d), we

arrive at the solution shown in Fig. 5c. This is very dif-

ferent from the true high-resolution solution shown in

Fig. 5a. Thus, the second stage cannot correct for the errors

that occur from a naı̈ve subdivision of grids in (I).

Fig. 4 Magnitude of the elements of the normal matrix P calculated

for the 10 9 100 model shown in Fig. 1. P is symmetrical and has

1,000 9 1,000 values, plotted here by row and column numbers as

indicated in the abscissa and ordinate of the picture, and the values

Pklj j are plotted using the color scale. In principle, the nomenclature

indexing the 10 9 100 grid points for the fr 9 s grid to form the

vector of 1,000 parameters is arbitrary. a Here, all grid points are

sorted by increasing s-value, i.e., (s1, fr,1), (s1, fr,2),…(s1, fr,10),

(s2, fr,1),…(s2, fr,10),…(s100, fr,10). As can be discerned from the

smooth appearance, the matrix elements are not strongly dependent

on the fr-value. b The same matrix can be reordered to reflect

subdivision along ten regular subgrids c, each of the form (s10(c-1)?1,

fr,1), (s10(c-1)?1, fr,2),…(s10(c-1)?1, fr,10), (s10(c-1)?2, fr,1), (s10(c-1)?2,

fr,2),…(s10(c-1)?2, fr,10),…(s10(c-1)?10, fr,1), (s10(c-1)?10, fr,2),…
(s10(c-1)?10, fr,10) with c = 1…10. Each of the subgrids represents

an evenly spaced 10 9 10 grid with origin shifted by D2s = 0.1505 S.

c The idea that one could determine a high-resolution size-and-shape

distribution from merging the results obtained separately in fits with

subgrids corresponds to the assumption that there be no correlation

between points from the different grids, i.e., that P can be subdivided

into the ten submatrices P(c). For the present data, this corresponds

to the solution of the problem with a normal matrix as shown in

c. Clearly, this is very different from the true matrix shown in b

b
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Brookes mentions multiple stages of the sequence (I)

and (II) with different mesh sizes D2s and D2fr, and an

‘‘iterative refinement’’ of the procedure that utilizes in

stage (I) the coarse starting grids that have been extended

with populated points from the results of stage (II) of the

previous iteration (Brookes et al. 2009). The same funda-

mental concerns apply to this iteration. To the extent that

the results from (II) may not contain the grid points of the

exact solution, it is unclear how the inclusion of these

additional grid points would aid in the recognition of the

correct solution. Even if the added grid points in (I) do

represent part of the correct solution, it is not certain that

they would be correctly maintained as part of the solution

after (II). Empirically, the Demeler laboratory reports

convergence of this iteration series in the absence, but not

in the presence, of systematic noise corrections to the data

(Brookes et al. 2006). Even if the iteration does converge,

it is unclear whether it is convergent to the correct solution.

Parsimony: suppressing artificial detail

Since the 2DSA algorithm never actually applies a model

with a full regularly spaced high-resolution grid, the tra-

ditional regularization methods, such as Tikhonov or

maximum-entropy regularization described above, do not

seem to be easily applicable. In fact, Brookes et al. (2009)

express the view that the fit of c(s, fr) with a high-resolution

grid in conjunction with regularization suffers from ‘‘lack

of resolution,’’ and ‘‘produces unnecessarily broad molec-

ular weight distributions.’’ We believe that, if prior

Fig. 5 Contour plots of the size-and-shape distributions calculated

with different models for the IgG data shown in Fig. 1. The color

temperature (blue to red) indicates increasing height of the peaks. (a)

For comparison, this panel shows the same distribution as shown in

Fig. 1c, calculated with the high-resolution grid of 10 9 100 (fr, s)-

values. b Distribution obtained in stage (I) by merging the distribu-

tions calculated sequentially and independently with different low-

resolution grid of 10 9 10 (fr, s)-values, each translated by D2s =

0.1505 S. One example for the low-resolution grid analysis is shown

in Fig. 3. All low-resolution grids are chosen such that they are

evenly spaced subgrids of the high-resolution grid, and such that, by

joining the grid points of (fr, s)-values of all the low-resolution grids,

the high-resolution grid of a is obtained. c A new grid is defined in

stage (II) by joining all grid points from the entire sequence of low-

resolution grids that yielded positive contributions to the fit. This is

the set of grid points for which b displays nonzero populations of the

distribution. In a secondary analysis, a fit to this irregular grid is

performed, and the results are shown as a contour plot. Although the

smallest differences Ds and Dfr in this secondary grid are the same as

those of the high-resolution grid, it considers only a small subset of

the points from the high-resolution grid. This causes the deviations

from the exact results in a and those in c. d Illustration of the grid

points used in c, showing as black crosses all points that yielded

positive contributions in any of the first-stage low-resolution fits. For

comparison, solid circles are the grid points that make positive

contributions in the exact direct high-resolution analysis of a. Blue
circles indicate those that coincide with grid points in the Demeler

scheme, and red circles indicate those that are populated in the exact

solution but not found in the grid of the Demeler scheme
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knowledge about the sharpness of the expected c(s, fr)

peaks is available, this can be inserted with a Bayesian

refinement of the Tikhonov regularization as we have

reported for SV analysis (Brown et al. 2007) and imple-

mented in SEDFIT.

In the absence of such prior knowledge, however, the

resolution of the regularized solution is limited not by the

analysis (assuming reasonable discretization), but rather by

the information content of the experiment. It is important to

recognize the nature of this limit, in order not to overin-

terpret the data. Of course, it also would be trivial, although

usually misguided, to perform a distribution analysis sim-

ply not applying this regularization step at all, and to rely

on the exact solution of the fit with the high-resolution

model, which usually produces artifactual detail that is the

result of noise amplification due to the ill-conditioned

nature of the basic Eq. (3).

In our example, these aspects can be discerned when

comparing the most parsimonious solution in Fig. 1d from

Tikhonov regularization with the spiky exact solution in

Fig. 1c, or with the incorrect solution in Fig. 5c from one

iteration adapted from the Demeler scheme. Even though

the spiky solutions suggest very few and discrete species to

be in solution, the smooth Tikhonov solution fits the data

indistinguishably well from the exact best-fit solution. Its

nearly featureless appearance in the fr-dimension highlights

simply the lack of sufficient information in the raw data in

order to determine the fr-values well.

In order to address the impact of noise and error

amplification on the results of the 2DSA algorithm, it was

combined by Brookes et al. (2009) with a Monte Carlo

analysis. Fifty iterations were performed by the Demeler

laboratory in order to determine 95% confidence intervals.

This seems to be an unusually low number of iterations, in

particular since the high confidence limits require esti-

mating the quantiles of rare events, in this case the 2.5 and

97.5 percentiles. With 50 iterations, they are determined by

the extreme 1.25 occurrences of parameter values, which

makes these estimates of the confidence intervals quite

variable statistical quantities themselves. As is well known,

usually the number of Monte Carlo iterations required to

produce meaningful results is typically on the order of

1,000–10,000. However, it seems this would lead to

excessive computational effort, several orders of magni-

tude more costly than the Tikhonov regularization in the

standard approach with the full high-resolution grid, which

requires for our standard example only a few seconds on

our PC.

The authors report confidence intervals for molecular

parameters of the identified solutes, but it is not clear

whether these were determined (1) by statistical analysis of

the results obtained in each Monte Carlo iteration after the

integration of putative solute peaks, or (2) if these

confidence intervals reflect the uncertainties of the putative

solute peaks in a distribution that, as a whole, has gained

error bars at each grid point from the statistics of the Monte

Carlo iterations. For method (1), the problem arises of how

to identify the group peaks representing a putative solute

species. For method (2), the question arises of whether the

Monte Carlo approach is effective in providing parsimo-

nious ‘‘average’’ distributions.

Generally, Monte Carlo simulations are not part of the

diverse set of regularization methods explored in the

standard literature (Louis 1989; Hansen 1992, 1998; Kress

1999; Engl et al. 2000), although Monte Carlo methods

have been used for estimating the regularization parameters

of standard regularization functionals (Ramani et al. 2008).

The concept of a statistical distribution of parameter values

should be confused neither with the real population dis-

tribution of coexisting species in the sample mixture nor

the estimate of the latter in the form of a calculated size-

and-shape distribution. Nevertheless, one could ask to what

extent one can rely on the statistical nature of the noise in

the data, in combination with noise amplification, to pro-

duce a parsimonious two-dimensional histogram of (s, fr)-

species populations. As an example, we compare in Fig. 6

the standard analysis of our model data with the 10 9 100

grid and Tikhonov regularization (6a) with the histogram

of all distributions from 50 Monte Carlo iterations (each

based on an exact standard fit with the 10 9 100 grid; 6b).

After 50 iterations the histogram clearly shows multimodal

and spiky behavior suggesting the presence of multiple

species, in contrast to the single broad peak representing

the smoothest solution of all that fit the originally measured

data. Thus, the 50 Monte Carlo iterations do not provide an

effective means to correctly identify the information con-

tent of the data. If, on the other hand, we are independently

knowledgeable about the monodisperse nature of the

sample, we can use the Bayesian approach (Brown et al.

2007) to calculate the size-and-shape distribution that is

closest to a single peak, and these results are shown, for

comparison, in Fig. 6c.

Summary and conclusions

In the present letter, we have examined the different

algorithmic elements that were conceived and applied in

the recently suggested ‘‘2DSA’’ size-and-shape distribution

by Brookes et al. (2009). We have compared this with the

standard approach that is well established for solving ill-

posed integral equations problems in many fields, which

rests on well-established linear algebra and related

numerical tools of linear least-squares analysis. Contrary to

the assertion of Brookes, Cao, and Demeler, the application

of the standard approach to the size-and-shape distribution
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problem is quite feasible on ordinary laboratory computers

within only a few minutes of computation time, even when

using high-resolution grids suitable to fully extract the

experimental information content. As implemented in

SEDFIT, this approach is being applied in many labora-

tories (Markossian et al. 2006; Chang et al. 2007; Deng

et al. 2007; Race et al. 2007; Broomell et al. 2008; Brown

et al. 2008; Chebotareva et al. 2008; Iseli et al. 2008;

Moncrieffe et al. 2008; Paz et al. 2008; Sivakolundu et al.

2008; Wang et al. 2008; Eronina et al. 2009; Mortuza et al.

2009). Since this can supply exact (up to numerical pre-

cision) best-fit solutions, we have applied it to a data

analysis example to serve as a reference solution in a study

of the performance of different computational strategies on

which 2DSA relies. This illustrates the consequences of the

deviations from the established mathematical reference

frame that should be expected to arise in Demeler’s 2DSA

approach.

First, there are concerns about the accuracy of the

evaluated Lamm equation solutions serving as kernel to the

size-and-shape distribution integral. This could likely be

addressed by deviating from the discretization parameters

advocated by Cao and Demeler (2005).

Second, a more fundamental problem is the use of grids

with extremely small number of points, far below the

resolution required to describe the data. If, as illustrated in

Fig. 3, the predicted concentration profiles from these

coarse models do not even qualitatively follow the exper-

imental data, we question whether there are any mean-

ingful conclusions that can be drawn from these results.

Brookes et al. (2009) distract from this problem by incor-

rectly stating that such grids were the basis of the imple-

mentation of c(s, fr) models in SEDFIT, which is well

described in the literature to achieve excellent fits of the

data to within their statistical noise. To the best of our

knowledge the attempt to utilize coarse grids is without

precedent prior to the Brookes et al. paper.

Despite the inability of these grids to describe the data,

Demeler and colleagues suggest that the combination of

results from the application of a large number of different,

but similarly coarse, grids (all with 10 9 10 or lower res-

olution; Demeler et al. 2009) can be used in some way to

achieve an analysis equivalent to that of a high-resolution

grid. In the simplest form, this argument would be

incompatible with basic matrix algebra, because it neglects

cross-correlation between points from different grids.

Discarding the magnitude of species’ populations in this

concatenated distribution, and using only the pattern of

b Fig. 6 Comparison of strategies to compute parsimonious distribu-

tions that display the information content of the IgG data shown in

Fig. 1. a Contour plot of the size-and-shape distribution obtained with

the high-resolution grid of 10 9 100 (fr, s)-values, after application of

Tikhonov regularization, as shown in Fig. 1d. b The sum of 50 size-

and-shape distributions calculated with the exact standard method

using the same high-resolution grid, but each based on synthetic data

sets generated from the best-fit distribution of Fig. 1 with added

normally distributed noise at the same magnitude as exhibited by the

experimental data. c Integration of the main 6 S peak of the size-and-

shape distribution as calculated in Fig. 1 allows to determine the

weighted-average s-value and fr-value, which can be used in the

Bayesian framework to calculate the size-and-shape distribution cd(s,

fr) (Brown et al. 2007) that is closest to that of a single species, within

the limits imposed by the requirement to produce a fit of statistically

indistinguishable quality to that shown in a. As can be discerned from

the secondary peak at *6 S with low frictional ratio, a strictly

monodisperse interpretation of the main peak is contradicted by the

experimental data. (Note the different scales on the color bar)
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nonnegativity constraints from such an analysis, is in

conflict with the established Lawson and Hanson algorithm

NNLS. The effect of the empirical extension to multiple

stages is uncertain, and may not converge. Although one

could construe cases where it will certainly work (such as

distributions consisting of a single species), the Demeler

scheme for generating nonequidistant small grids in mul-

tiple stages appears fundamentally flawed for the general

case.

The strategy of sequentially applying different, equally

coarse, grids is in contrast to established multigrid methods

for integral equations, which provide successfully finer

parameter discretization (Kress 1999). The division of the

full problem into separate subproblems to be solved in

parallel, followed by merging their partial solutions, has

been used successfully in some image restoration problems

(Bevilacqua and Piccolomini 2000) where the image

regions are known to be uncorrelated with each other due

to a localized point-spread function. However, this condi-

tion is not fulfilled in the present case. In SV analysis, the

cross-correlation of signals from different species can be

very large. This is reflected by the fact that (1) is ill posed,

and illustrated by the fact that the matrices in Fig. 4b and c

are different. For a correct solution of the SV problem, the

regular high-resolution grid should be considered fully and

unbiased by any scheme of preselection of excluded

parameter regions. The latter is quite feasible with standard

algorithms and commonly available computational

resources, and we note that the problem is fairly small

compared with many image analysis problems of similar

structure.

Finally, the application of the Monte Carlo approach to

achieve greater parsimony of the results (i.e., simplicity of

the distribution in the sense of suppressing artificial detail)

is equally novel, but not very successful when we applied

this idea to our example data analysis. An example of the

lack of regularization in the 2DSA method resulting in

artificial detail can be found in the data shown by Planken

et al. (2008), where a standard c(s) analysis of SV data

with maximum-entropy regularization exhibits only a sin-

gle broad skewed distribution [Fig. 3c in Planken et al.

(2008)], consistent with the expected continuous size dis-

tribution of the material studied, yet the 2DSA analysis of

the same data suggests the presence of more than 14 dis-

crete peaks (at different s-values and all at similar frictional

ratio) [Fig. 4 in Planken et al. (2008)]. The Monte Carlo

approach is certainly an extremely computationally costly

step, in particular if one would carry it out with statistically

meaningful iteration numbers. In contrast, application of

the standard Tikhonov regularization to the full high-

resolution problem, with or without Bayesian modulation,

takes a small fraction of the computational effort of the

original problem, i.e., on the order of seconds on a PC.

In conclusion, we would regard the computational effort

to be a secondary problem, and the choice of computational

platform rather inconsequential, relative to the main con-

cern arising from simple mathematical arguments that

Demeler’s algorithm may not give correct results. The

authors do qualify their algorithm to be empirical, and that

‘‘the results are not generally in exact correspondence with

the original problem’’ (Brookes et al. 2006). They argue

that ‘‘[the results] can be made sufficiently close through

careful use of the given heuristics’’ (Brookes et al. 2006).

We are uncertain of the process referred to here, and how

closeness to the exact solution would possibly be assessed

without explicitly calculating the exact best-fit solution. So

far Demeler and colleagues have not brought forward any

proof that the distributions returned by the 2DSA method

are at least close in the major attributes to the correct

solution. We believe that the question of correctness of the

algorithm is critical, especially since the authors invite

the general application of this method, as implemented

in the ULTRASCAN software, to address data analysis

problems in novel biophysical and biochemical studies,

rather than simple model problems with known solutions.
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