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Abstract

Exome sequencing (ES) has revolutionized rare disease management, yet only

~25%–30% of patients receive a molecular diagnosis. A limiting factor is the

quality of available phenotypic data. Here, we describe how deep clinicopatho-

logical phenotyping yielded a molecular diagnosis for a 19-year-old proband

with muscular dystrophy and negative clinical ES. Deep phenotypic analysis

identified two critical data points: (1) the absence of emerin protein in muscle

biopsy and (2) clinical features consistent with Emery-Dreifuss muscular dys-

trophy. Sequencing data analysis uncovered an ultra-rare, intronic variant in

EMD, the gene encoding emerin. The variant, NM_000117.3: c.188-6A > G, is

predicted to impact splicing by in silico tools. This case thus illustrates how bet-

ter integration of clinicopathologic data into ES analysis can enhance diagnostic

yield with implications for clinical practice.
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Introduction

Molecular diagnostic rates have significantly improved

since the widespread implementation of exome sequenc-

ing (ES).1,2 At present, the molecular diagnostic rate of

ES obtained in clinical diagnostic laboratories is approxi-

mately 25%–30%, although higher or lower rates may be

seen in certain disease states and patient populations.3–8

Advances in ES data analyses including copy number

variation (CNV) assessment,9,10 better detection of inser-

tion/deletion (indel) variant alleles,11 and homozygosity

mapping using absence of heterozygosity (AOH) data as a

surrogate measure of identity-by-descent (IBD)10 have

improved diagnostic rates. Nevertheless, the notion of a

“diagnostic ceiling” has been proposed because of similar

diagnostic rates observed in multiple disease cohorts5,12 as

well as known limitations of ES technology (e.g., poor

coverage of noncoding regions, limited detection of struc-

tural variants and repeat expansions).13

While both short read whole-genome sequencing (SR-

WGS) and long-read sequencing (LR-WGS) technologies

will likely improve molecular diagnostic rates by increasing

coverage of noncoding regions, mounting evidence suggests

the “molecular diagnostic gap” can be further narrowed by

better integration of detailed phenotypic data into ES data

analysis.14–16 Here, we provide an illustrative example of

how a detailed analysis of extant clinicopathologic data led

to a molecular diagnosis in a patient with muscular dystro-

phy and negative clinical ES (cES) and reflect on its heuris-

tic implications for clinical practice.

Methods

Participants

All participants in this study provided informed consent

as part of the Baylor-Hopkins Center for Mendelian

Genomics (BHCMG) initiative, including consent to pub-

lish photographs. This study was approved through Bay-

lor College of Medicine Institutional Review Board (IRB)

protocol H-29697.

Histology, immunofluorescence and western
blot analysis of muscle samples

A vastus lateralis muscle biopsy was obtained during the

proband’s clinical care. Hematoxylin and eosin (H&E)

staining, immunostaining, and western blot analysis were

performed by the Texas Children’s Hospital Neuropathol-

ogy and Molecular Neuropathology Laboratory (Houston,

TX) by board-certified neuropathologists (CAM and

AMA). For immunofluorescence, cryosections of skeletal

muscle were stained using the nuclear stain

40,6-diamidino-2-phenylindole (DAPI) and antibodies

against emerin or lamin A/C. Western blots were stained

with antibodies for emerin and alpha-sarcoglycan. Anti-

bodies were obtained from Leica (emerin, cat. no. Emerin

CE; alpha-sarcoglycan, cat. no. A-SARC-L-CE) or Abcam

(lamin A/C, cat. no. AB5090).

Exome sequencing

Research trio ES of genomic DNA obtained from periph-

eral blood was performed in the Baylor College of Medi-

cine Human Genome Sequencing Center (BCM-

HGSC).1,17 Rare variant family-based exome analysis was

performed as previously described.1,17 Identified variants

after computational parsing and filtering were experimen-

tally confirmed and segregated via orthogonal Sanger

dideoxy sequencing.

Results

The proband is a 19-year-old male with muscular dystrophy.

Since early childhood he had frequent falls, easy fatigability,

joint stiffness, and motor difficulties. Weakness and stiffness

gradually progressed with age. On last physical examination

at 18 years of age he had bilateral ankle contractures, elbow

contractures (right greater than left), and weakness of bilat-

eral ankle dorsiflexion, biceps, and hand interossei (Fig. 1A

and B). There was no family history of neuromuscular dis-

ease. His creatine kinase (CK) levels trended upward with

time (588 U/L at 17 years old, normal <245 U/L), suggest-

ing a dystrophic condition. Needle electromyography

showed small amplitude, short duration, polyphasic motor

unit action potentials consistent with a myopathic condition.

Muscle biopsy at age 11 years demonstrated unremarkable

hematoxylin and eosin staining but absent emerin staining

by immunofluorescence and western blot (Fig. 1C–F). Trio
cES was subsequently performed (Baylor Genetics, BG, Lab-

oratories, Houston, TX) and failed to identify any variants in

EMD or other myopathy genes.

The proband and his family were subsequently enrolled

in a “molecularly undiagnosed” neuromuscular disease

cohort in the BHCMG and underwent research ES. Anal-

ysis began with an extensive review of the proband’s med-

ical history, laboratory findings, electrodiagnostic studies,

and muscle biopsy pathology. Due to negative emerin

staining of muscle biopsy as well as phenotypic features

consistent with Emery-Dreifuss muscular dystrophy, the

proband’s BAM file, a data file containing aligned

sequencing data in a format which facilitates visualization,

was inspected, leading to the identification of a hemizy-

gous variant in EMD intron 2 (Fig. 2A). The variant,

EMD (NM_000117.3):c.188-6A > G, has a high CADD-

v1.6 score (20.6) and is predicted to impact splicing by
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Figure 1. Clinicopathological features of proband with X-linked Emery-Dreifuss muscular dystrophy (A) Photograph of proband’s fully extended

arms demonstrating limited active range of motion due to elbow contractures (right greater than left, red arrow). (B) Photograph of proband’s

fully dorsiflexed foot demonstrating limited active range of motion due to ankle contractures. (C) Hematoxylin and eosin staining of left vastus

lateralis muscle biopsy taken at 11 years old. (D) Immunofluorescence staining of lamin A-C in the proband. Lamin A-C is a nuclear protein

involved in autosomal dominant Emery-Dreifuss muscular dystrophy 1 (MIM #310300). Lamin A-C (green) is widely expressed and co-localizes

with the nuclear stain DAPI (blue). (E) Immunofluorescence staining of emerin in the proband. Note the absence of emerin staining (green). Nuclei

were counterstained with DAPI (blue). (F) Western blot of muscle biopsy protein lysates from proband and two control patients using antibodies

for alpha-sarcoglycan (aSG) and emerin (EMD). All samples were run in duplicate. Molecular weights are provided in kilodaltons (kDa). A 50 kDa

band is seen in all samples corresponding to aSG. A 34 kDa band corresponding to EMD can be seen in the control samples but not in the

proband.

Figure 2. Research ES identifies a previously unrecognized EMD splice variant. (A) Screenshots of the proband’s BAM file data from Integrated

Genomics Viewer (https://software.broadinstitute.org/software/igv/) showing a hemizygous intronic variant in intron 2 of EMD. (B) Heat map

showing predicted impact on splicing from SpliceAI and MMSplice of all possible single-nucleotide variants near c.188-6A > G. Values in heat

map were obtained from CADD v1.6 (https://cadd.gs.washington.edu/snv) and reflect the SpliceAI acceptor gain and MMSplice acceptor

submodules, respectively. Darker shades of red indicate a greater predicted splicing impact. c.188-6A > G and the consensus splice acceptor sites

(�1, �2) are highlighted in black. (C) Sanger sequencing of the proband’s parents and unaffected brothers confirms the variant and

demonstrates it is only found in the proband and his mother.
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multiple in silico algorithms (SpliceAI acceptor gain score

0.99; MMSp acceptor score �2.996; Human Splice Finder,

alteration of the wild-type acceptor site)18–21 (Fig. 2B).

The variant is absent from gnomAD v2.1.1.22 Segregation

analysis within the family demonstrated that the variant

was maternally inherited and absent from the proband’s

unaffected brothers (Fig. 2C).

Discussion

While diagnostic rates have improved since the advent

of ES, many patients with presumed Mendelian disor-

ders still lack a definitive molecular diagnosis. This diag-

nostic gap is often attributed to: (1) yet unidentified

“disease-contributing genes” and variant alleles and (2)

the limited ability of ES to detect non-coding and struc-

tural variants.13 By providing a complete sequence of all

genic and intergenic regions, whole-genome sequencing

(WGS) has been regarded as a potential “panacea” and

solution for the latter issue. However, WGS results to

date have been underwhelming, with many additional

diagnoses resulting from variants previously captured on

ES and interim gene discoveries.23 Future hopes for

resolving the diagnostic gap include LR-WGS and RNA-

seq.24–27 Although these approaches are promising, they

will remain inaccessible in the clinic for the foreseeable

future due to unavailability, high cost, and/or lack of

appropriate tissue specimens.

An alternative hypothesis to explain the diagnostic

gap is the under-utilization of extant ES data. For exam-

ple, expansion from proband-only to trio ES improves

diagnostic yield by permitting detection of de novo

mutations and phasing (i.e., cis or trans configura-

tion).1,28 Copy number analysis of ES data, a practice

not routinely performed by clinical diagnostic laborato-

ries, may identify large deletions or duplications

(>100 Kb) or even smaller homozygous exonic dele-

tions.9,10 The absence of heterozygosity (AOH) analysis,

as a surrogate measure of runs-of-homozygosity (ROH),

recognizes genomic intervals of identity-by-descent in

families with or without a known history of consanguin-

ity which prompts a thorough investigation of those

regions for a potentially causative homozygous vari-

ant.1,28,29 Greater integration of clinicians and deep clin-

ical phenotyping also improves diagnostic rates by

enhancing variant prioritization and drawing increased

scrutiny of extant single gene or gene families’ ES

data.14–16 Deep phenotyping, the process of comprehen-

sively assessing and categorizing individual phenotypic

features often through Human Phenotype Ontology

(HPO) terms, is routinely performed by medical geneti-

cists and neurologists, yet the requisition forms for

clinical genetic and genomic testing often fail to capture

the depth of phenotyping performed by clinicians.14,30

Finally, large amounts of “off-target” sequencing data,

for example intronic and 30/50 untranslated regions, are

generated by ES yet are often filtered by cES bioinfor-

matic pipelines despite increasing evidence of their sig-

nificance in Mendelian disorders and improved in silico

tools for evaluating their pathogenicity.19,21,31

Here we provide an illustrative example of how the

incorporation of deep phenotyping into ES analysis

improves molecular diagnostic yield. The proband carried

a clinical diagnosis of muscular dystrophy with supporting

laboratory and electrophysiologic data. The absence of

emerin protein in his muscle biopsy strongly supported the

clinical diagnosis of X-linked Emery-Dreifuss muscular

dystrophy 1 (MIM #310300), and retrospective review of

his clinical presentation identified compatible features

including childhood-onset joint contractures and slowly

progressive muscle weakness. However, trio cES failed to

identify pathogenic variants in EMD or other myopathy

genes. Considering his clinical history and biopsy results,

EMD sequencing data were reanalyzed, identifying a patho-

genic hemizygous variant in EMD, c.188-6A > G. The vari-

ant results in the substitution of a guanine for an adenine

six nucleotides from the intron 2-exon 3 boundary

(Fig. 2B) which is predicted to create a new splice acceptor

site by multiple in silico prediction tools. While the precise

impact of the variant on splicing was not determined, the

convergence of in silico algorithms predicting alteration of

the splice acceptor site and the in vivo readout provided by

western blot and immunofluorescence strongly suggests the

mutant transcript either has a premature termination

codon (PTC) resulting in nonsense-mediated decay or

encodes an unstable protein subject to rapid decay.

Identification of the variant had immediate clinical

impact and management implications for the patient

and his family. Gene therapy trials increasingly require

a definitive genetic diagnosis for enrollment, and identi-

fication of a specific pathogenic intronic variant offers

the opportunity for bespoke therapies like personalized

antisense oligonucleotides (ASO). While personalized

gene therapies may seem impractical, the recent story

of milasen, an ASO customized and administered to a

single patient with neuronal ceroid lipofuscinosis 7

(MIM # 610951), has demonstrated their feasibility and

provide a pathway forward for rare disease.32 Addition-

ally, these studies identified the carrier status of the

proband’s mother, a finding of considerable significance

as female carriers can develop cardiac conduction

defects and are at risk of sudden death.33 Therefore,

cardiology follow-up and screening of the extended

family was recommended.
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The importance of intronic variants such as EMD

c.188-6A > G which impact cis-acting elements in human

disease is well-recognized.34–36 The proportion of human

pathogenic variants disrupting cis-acting elements has

been estimated between 15% to 60%.34,35 Prior to this

report, only a single non-consensus splice variant, EMD:

c.449 + 23_450�35del, was recognized.37 Located within

intron 5, the variant was detected on a neuromuscular

gene panel and would have been well-covered in the

BCM-HGSC ES platform (Fig. 2A). Studies of EMD con-

structs with variably sized intron 5 deletions demon-

strated the 23-nucleotide deletion does not impact the

major branchpoint c.450-24A but rather causes splicing

abnormalities due to excessive intronic shortening.37 Such

an intron size constraint mutational mechanism may dis-

proportionately affect genes with small size introns and

remains underappreciated despite the fact that it was

described over a decade ago.38 Additional pathogenic

intronic EMD variants will undoubtedly be identified with

increased implementation of WGS and closer scrutiny of

extant ES data. Further identification and study of patho-

genic intronic variants through ES/GS, mini-gene assays,

and RNA-seq will clarify the mechanisms involved in

splicing and in turn improve in silico predictive models.

In summary, this report illustrates how the integration

of deep clinicopathological phenotypic data into ES analy-

sis improves molecular diagnostic yield. Clinicians play a

critical role in this process by providing accurate and

detailed clinical data to clinical diagnostic laboratories

and following up on all exome negative studies. Addition-

ally, an active dialogue between clinicians and laboratories

is essential to maximize diagnostic yield.
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