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Abstract
The genetic basis for the fine-tuned regulation of gene expression is complex and ultimately influences the phenotype and
thus the local adaptation of natural populations. Short tandem repeats (STRs) consisting of repetitive DNA motifs have
been shown to regulate gene expression. STRs are variable in length within a population and serve as a heritable, but semi-
reversible, reservoir of standing genetic variation. For sessile organisms, such as plants, STRs could be of major importance
in fine-tuning gene expression as a response to a shifting local environment. Here, we used a transcriptome dataset from
natural accessions of Arabidopsis thaliana to investigate population-wide gene expression patterns in light of genome-wide
STR variation. We empirically modeled gene expression as a response to the STR length within and around the gene and
demonstrated that an association between gene expression and STR length variation is unequivocally present in the sam-
pled population. To support our model, we explored the promoter activity in a transcriptional regulator involved in root
hair formation and provided experimentally determined causality between coding sequence length variation and promoter
activity. Our results support a general link between gene expression variation and STR length variation in A. thaliana.

Introduction

The control of gene expression in plant cells depends on
the dynamic interplay between regulatory molecules. At the
DNA level, gene expression is commonly regulated through
modulation of the access for transcription factors (TFs) to
chromatin, and on the RNA level by the control of RNA
processing and/or degradation. Differential gene expression
driving a vast number of biological processes, from

embryonic morphogenesis to responses to environmental
stimuli, is a result of variations and modifications of TFs, the
DNA template, and the RNA produced by transcription.
Several studies have addressed how gene regulatory net-
works composed of genes, noncoding RNAs, proteins,
metabolites, and signaling components act in a combinato-
rial manner to specify developmental programs during plant
development (Long et al., 2008). The causal relationship be-
tween genome structure and gene regulation is also well
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established (Zheng and Xie, 2019). However, the influence of
DNA sequence variation, such as short tandem repeats
(STRs) consisting of short repetitive stretches of DNA, at the
population level has been less explored.

Analysis of RNA sequencing (RNAseq) data from rosette
leaves of 998 natural Arabidopsis thaliana accessions
revealed that natural variation in gene expression levels is
linked to geography and climate (Dubin et al., 2015;
Kawakatsu et al., 2016). These findings suggest that A. thali-
ana can adapt to its local environment in part by regulating
gene expression. Plants are exposed to changes in the envi-
ronment that could impose a strong selection pressure from
one generation to the next. Genetic variants capable of reg-
ulating gene expression in response to various fluctuating
abiotic and biotic stress factors are likely crucial for individ-
ual fitness. In attempts to understand the causal drivers of
gene expression variation in A. thaliana, both epigenetic
(such as methylation) and genetic mechanisms (such as
transposable elements, point mutations, and short insertions
and deletions) have been explored (Dubin et al., 2015;
Kawakatsu et al., 2016). However, little is known about the
contribution of STRs to gene expression variation.

STRs are present in genomes throughout the Tree of Life
(Srivastava et al., 2019; Tørresen et al., 2019). STRs are de-
fined as repeated units of DNA motifs ranging in size from 1
to 6 bp. Such repeats are highly mutable hotspots, with mu-
tation rates estimated to be in the range of 10�3 to 10�7

per cell division in human genomes, which are 10-fold to a
10,000-fold higher than the estimated rates of point muta-
tions (Legendre et al., 2007; Gemayel et al., 2010). STR muta-
tions occur primarily in multiples of the unit size due to
DNA replication slippage, which either increases or decreases

the number of successive units in the STR. Interestingly, in
recent large-scale human transcriptome analyses, an evi-
dence for STRs as regulators of gene expression has emerged
(Gymrek et al., 2016; Quilez et al., 2016; Fotsing et al., 2019).
Furthermore, the enrichment of certain noncoding STRs in
promoters and coding STRs in transcriptional regulators sug-
gests a common functional relevance across species (Li
et al., 2004; Gemayel et al., 2010; Sawaya et al., 2013;
Gymrek, 2017). Experiments on specific STRs in plant
genomes have provided evidence of functional length varia-
tion in a few STRs, including altered splicing, subcellular lo-
calization, protein–protein interactions, and
thermoregulation (Press and Queitsch, 2017; Bryan et al.,
2018; Press et al., 2018; Jung et al., 2020). A large-scale analy-
sis of gene expression variation and STRs would shed light
on the roles of these structures in regulating gene
expression.

In this work, we scored genome-wide STR length variation
in a subset of sequenced accessions provided by the 1001
Arabidopsis genome project (1001 Genomes Consortium,
2016). Whole genome sequences from 472 natural acces-
sions of A. thaliana sampled primarily from Europe and Asia
were analyzed by applying a bioinformatic tool previously
demonstrated to be applicable for profiling STRs from short
read sequencing data (Gymrek et al., 2017; Tang et al., 2017;
Willems et al., 2017). We reanalyzed available genome-wide
rosette leaf RNAseq data from Kawakatsu et al. (2016) and
used statistical modeling to investigate to what extent natu-
ral allelic STR variation can explain the gene expression pat-
terns. The natural accessions in the gene expression dataset
were grown in growth chambers under identical conditions,
ensuring that variation in gene expression was primarily
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driven by genetic composition. First, we describe the distri-
bution of the STRs included in our models in relation to an-
notated genes in the A. thaliana genome. Next, we describe
the statistical model utilizing natural allelic variation in these
STRs and empirical gene expression data. Furthermore, we
present the results of modeling along with control groups
and present candidate genes whose expression is affected by
STR length variation. Finally, we experimentally verify the
importance of length variation in an STR within the protein
coding region of one candidate gene, ALFIN-LIKE 6 (AL6), for
the regulation of gene expression. Most importantly, and as
stated by our empirical modeling results, the STR length var-
iant in AL6 was experimentally found to regulate the activity
of the AL6 promoter in vivo, possibly by modulating the
chromatin state of the promoter.

Results

Distribution of STRs in the A. thaliana genome
To investigate the relationship between STRs and gene ex-
pression, we quantified genome-wide natural allelic variation
in the global A. thaliana population. For this purpose, we
employed HipSTR, a polymerase chain reaction (PCR)-stutter
aware STR profiler, to examine sequenced genomes from
1,135 A. thaliana accessions (1001 Genomes Consortium,
2016; Willems et al., 2017). After quality control and valida-
tion of the variant calling results (see “Methods”), the sam-
ple set was reduced to 770 high-quality accessions. Of these
770 accessions, 472 overlapped with accessions where ro-
sette leaf RNAseq data from Kawakatsu et al. (2016) were
available. Our initial scan for STRs in the A. thaliana refer-
ence (TAIR10) genome located 37,462 STR sites. However,
this set was reduced to 14,195 sites after (1) omitting sites
without reliable variant calling data, (2) omitting sites not
within 100 kb of genes with available expression level data,
and (3) omitting sites without at least two common variants
in the natural accessions (see “Methods”). To explore if the
distributions of these 14,195 STRs were indicative of a regu-
latory role in gene expression, we examined how these STRs
were distributed in relation to annotated genes in the A.
thaliana reference genome. In general, the STR sites show
distinct clustering upstream of the transcription start site
(TSS) (Figure 1A; Supplemental Figure S1). There are, how-
ever, some notable differences: Dimer STR motifs (unit size:
2) cluster more closely to the TSS than homopolymer, tetra-
mer, and pentamer STR motifs (unit sizes: 1, 4, and 5).
Trimer STR motifs (unit size: 3) are found primarily within
genes, as expected due to conservation of the reading frame.
Of the trimer STR motifs, we found TTCn and GAAn to be
the most common (Figure 1B). The most recurrent STR
motifs are the homopolymer STRs An and Tn, followed by
the dimer STRs motifs TAn, GAn, and TCn. Interestingly, STR
sites did not display a uniform localization within gene fea-
tures, except for sites in protein coding sequences
(Figure 1C). In promoters, sites were skewed toward the
TSS, and in 50 untranslated regions (UTRs) toward the trans-
lation start site. In introns, site localization was skewed

toward splice junctions, and in 30-UTRs toward the transla-
tion termination site.

Functional classification of genes with STRs near
TSSs
A total of 7,692 genes were found to have common STR
sites 500-bp upstream of or in the transcribed region, with
at least two common STR variants in the natural popula-
tion. We tested whether specific Gene Ontology (GO) terms
were enriched for these genes compared with what is
expected by chance. For this purpose, we performed func-
tional enrichment analysis using plant-specific GO terms
from the PANTHER database (Thomas et al., 2003). All
enriched and depleted biological process GO terms are avail-
able in Supplemental Data Set S1. We found three broad
categories that were enriched: Developmental processes,
hormone pathways, and responses to stimuli. A high num-
ber of genes were linked to more than one of the categories
(Figure 1D). More specifically, the developmental processes
included the development of flowers, seeds, gametophytes,
leaves, the shoot system, the meristem, the xylem tissue,
roots, and root hairs. Of genes responsive to stimuli, we
enriched for terms related to abscisic acid and auxin hor-
mone pathways and terms, such as the response to water
deprivation, osmotic stress, radiation, and biotic interactions
(including defense responses). Statistically, our enrichment
tests support the notion that the 7,692 genes are not a ran-
dom subset of A. thaliana genes but instead seem to be par-
ticularly responsive to environmental stimulus and heavily
involved in directing aspects of plant organ development.

Modeling of STR variation and gene expression
Next, we constructed models to test whether natural allelic
variation in STRs could explain gene expression pattern vari-
ation in the 472 accessions. The geographic distribution of
the accessions is shown in Figure 2A. STR variant calling
results employed in modeling are available in Supplemental
Data Set S2. More specifically, we modeled gene expression
(y) as a function of the number of units present in the STR
(G). In addition to a term capturing random noise (e), we
included a genetic covariance matrix (X) as a random effect
in the model (Figure 2B). As such, we controlled for related-
ness between samples through the genetic covariance
(Supplemental Data Set S3). Further descriptions and discus-
sion of our model choice can be found in “Methods”;
Supplemental Methods. After filtering and validating the
STR calls (see “Methods”; Supplemental Figure S2 and
Supplemental Data Set S4), we evaluated the significance of
the STR for every STR within 100 kb of a gene by comparing
models with and without the STR as an explanatory vari-
able. In total, we performed 665,364 tests, 99.6% of which
had a sample size more than 100 (Supplemental Figure S3).
The mean number of STR sites tested for each gene was 29
(Supplemental Figure S4).

Given the scenario that STR length variation influences
the expression of genes in the A. thaliana genome, an intui-
tive expectation is that a STR in close proximity to a gene is
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more likely to be a significant explanatory variable than a
STR far away from a gene. If the STRs in general have no ef-
fect, we would not expect any systematic relationship be-
tween the significance of STRs and the distance between
the gene and the STR. To evaluate the pattern, we plotted
the resulting P-values as a function of the distance between
STR-gene pairs (Figure 2C). From the patterns in Figure 2C,
it is evident that our modeling resulted in an effect that in-
creased with proximity, that is, that we find higher signifi-
cance when the STR is in closer proximity to a gene or
within the gene. Effect size shows the same pattern, with
higher mean effect sizes when STRs are closer to genes. We
repeated the modeling with “mock” STR genotypes, that is,
STR genotypes that were shuffled among natural samples.
None of these 665,330 tests reached the Bonferroni signifi-
cance threshold, and there was no sign of increasing effect
by proximity to the TSS (Figure 2C; Supplemental Data

Set S5). To quantify the percentage of significant STRs as a
function of distance, we binned our modeling results in
2,000-bp windows (100,000 bp: 98,000 bp, . . ., 2,000 bp: 0
bp) and calculated the percentage of total tests in each bin
that was below the global Bonferroni threshold (7.5e�8).
The highest percentage of significant tests were found when
STRs were located from 0 to þ2,000 bp from the gene TSS.
Complete results of all STR-gene expression modeling can
be found in Supplemental Data Set S6.

To investigate if a similar pattern would emerge when
modeling single nucleotide polymorphisms (SNPs), we re-
peated our modeling with gene expression as a response to
SNPs (Supplemental Data Set S7). For the same genes tested
in the STR analysis, we tested on average approximately 39
close and common SNPs (a total of 893,372 tests). None of
the tests with SNP variation as an explanatory variable pro-
duced P-values below the Bonferroni multiple testing

Figure 1 Description of the STRs and the genes included in gene expression modeling. A, The lines show densities of STRs in relation to gene
TSSs. Peaks are present upstream and within the gene space. Densities were smoothed using kernel density estimation. Different line colors denote
different STR unit sizes (see legend). The average gene size in A. thaliana (2,500 bp) is indicated by the pink rectangle. B, Top ten genotyped STR
motifs included in gene expression modeling. C, The bar charts show the distribution of STRs in relation to the gene features (linked to the gene
cartoon). Here, a value of 0.5 denotes the middle of the feature, read from 50 to 30 . D, GO enrichment of biological processes linked to genes with
STRs in the gene space or up to 500-bp upstream of the TSS. The Venn diagram shows the overlap of genes in GO terms related to development
(purple), hormone pathways (blue), and stress (yellow). The bar charts show the number of genes in subcategories related to the three primary
categories. The bars are colored by fold enrichment of the GO term, ranging from 1.25 to 2.75 (see colorbar).
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Figure 2 Results of modeling gene expression as a response to STR unit number variation. A, Distribution of A. thaliana accessions included in
our modeling. B, Description of the model employed to test whether natural allelic variation in STRs could explain gene expression patterns.
Quantile-normalized and loge-transformed gene expression values served as a response (y) in a linear model with unit number variation in STRs
(G, with effect size b) as an explanatory variable. Models with and without G were compared using log-likelihood tests. In addition to e, which
captures noise, we also included a genetic covariance matrix based on intergenic, pruned SNPs (X), which captures expected variation in gene ex-
pression given the genetic covariance between individuals. See Supplemental Methods for further elaboration on the model and model validation.
C, Results of modeling gene expression as a function of the number of units in STRs within 100 kb of the gene. Both the statistical significance
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threshold and did not display an increase in effect with in-
creasing proximity to gene TSSs (Supplemental Figure S5).
This does not rule out the possibility that SNPs influence
gene expression. However, it shows that potential true asso-
ciations between SNPs and gene expression do not reach a
sufficiently high effect size to obtain Bonferroni adjusted sig-
nificance (adjusted P< 5.6e�8) under this particular model-
ing framework and that large effects on gene expression by
point mutations are too rare in comparison with STRs to
display an effect that consistently increases with increasing
proximity to the TSS. Henceforth, we define STRs with a
predicted effect on gene expression as expression STRs
(eSTRs). For every eSTR–gene association, we tested if com-
mon SNPs close to the eSTR could explain the correlation.
Of the 2,306 eSTR–gene tests, 120 (5.2%) eSTRs had a
nearby SNP that produced a P < 0.05 not corrected for
multiple testing (Supplemental Data Set S8). This result indi-
cates that only a small minority of eSTR–gene expression
relationships can be attributed to nearby SNPs.

Characteristics of STRs regulating gene expression
Overall, 0.34% of all tests we performed between natural al-
lelic variation in STR length and the expression levels of
genes produced a statistically significant result after
Bonferroni correction. As we modeled all STR-gene pairs
within 100 kb of one another, the low percentage of signifi-
cant tests was not surprising. However, 1,718 unique eSTRs
were involved in a total of 2,306 associations, and 78% of
eSTRs were located in annotated genomic features.
Interestingly, 935 of these were found in exons, 306 of which
were protein coding. In total, 407 were located in introns
and 376 were intergenic. And 2.3% of STRs within 2-kb
regions upstream of genes were eSTRs, indicating that STRs
in promoter sequence are much more likely to affect gene
expression than STRs further away from genes. As evident
from Figure 2A, the strongest effect was observed when the
STR was located within the gene, reaching 4% eSTRs. For
STRs located in the gene or its promoter, we investigated
whether any specific STR motif was more common to eSTRs
than STRs not associated with gene expression. For this pur-
pose, we compared proportions of the DNA motifs in eSTRs
and nonsignificant STRs using two-sided Fisher’s exact test
(Supplemental Data Set S9). GAA(n) and AAG(n) were signifi-
cantly enriched in the protein-coding regions of eSTRs,
which encode amino acid tracts of glutamates (poly-Es) and

lysines. Interestingly, we also found T(n) to be enriched in
protein-coding regions, as six different T(n) sites had associa-
tions with gene expression. On closer inspection, these T(n)

sites were found in alternatively spliced transcripts, being lo-
cated in the protein coding region of one transcript and in
the intron of another. In promoters, we found fewer T(n)

eSTRs than statistically expected, but Ts were enriched
when present in combination with other nucleotides (e.g.
CTTTT(n)). CT(n)-motifs were strongly enriched in introns,
and a few motifs were also enriched or depleted in the
untranslated regions (50- and 30-UTRs). The relative effect
sizes of protein coding STRs (predominantly of unit size
three) were lower compared with STRs with larger unit sizes
but higher compared with homopolymer (unit size: 1) and
dimer (unit size: 2) STRs (Figure 2D).

Next, we tested if the location of the STRs within the
gene were predictive of being an eSTR, again using two-
sided Fisher’s exact test. We found that length variations in
protein-coding STRs were 1.6 times more likely to affect
gene expression than length variation in other STRs (P ¼
0.001), and STRs in 30-UTRs were 0.6 times less likely to af-
fect gene expression (Supplemental Data Set S9). No devia-
tion from the expected ratios was observed for intronic
STRs and STRs in the 50-UTR. Together, these results indi-
cate that protein-coding STRs, and especially protein-coding
STRs with GAA (encoding poly-Es) as the repeated motif,
are prime candidates for experimental verification. For a list
of named genes with associated eSTRs, see Supplemental
Data Set S10. The selected example associations shown in
Figure 2E illustrate that the eSTRs we detected have both
distal and local effects on the expression of genes involved
in a variety of biological processes. These include
RESISTANCE TO P. SYRINGAE PV MACULICOLA 1, which has
an A(n)-eSTR 4,644-bp upstream of the gene TSS and is in-
volved in triggering plant resistance in response to a specific
plant pathogen (Gopalan et al., 1996); METHYL ESTERASE
14, containing a coding GGA(n)-eSTR varying only by one
unit; RESISTANCE TO FUSARIUM OXYSPORUM 1, whose ex-
pression correlates with a T(n)-eSTR 31,289-bp upstream of
the gene TSS and is involved in responses to fungi (Diener
and Ausubel, 2005); and AL6, encoding a TF known to bind
methylated histone H3 and to be involved in regulating vari-
ous plant responses, including root development upon
phosphate (Pi) deficiency and seed germination (Lee et al.,
2009; Chandrika et al., 2013; Molitor et al., 2014). The

and the effect size peak when STRs are in close proximity to the TSS. Note that P-values are �log10-transformed for clarity. Each blue dot shows
the P-value resulting from a log-likelihood ratio test between models with and without STRs as an explanatory variable (665,364 tests). Orange
dots show the p-values when modeling mock STR genotypes (665,330 tests), none of which reaches the Bonferroni threshold. The x-axis shows
the distance in base pairs (bp) between the STR and the gene TSS. In 2,000-bp windows, the centered and standardized percentage of tests below
the global Bonferroni threshold are shown as a dark blue line, and the centered and standardized mean effect size is shown as an orange dashed
line. D, Effect sizes conditioned on unit sizes. The higher the unit size, the larger the effect observed. Average A. thaliana gene size is denoted as a
pink rectangle. E, Example associations between the number of units in STRs and the expression of genes. The examples illustrate local effects of
eSTRs, such as A(n)-eSTR 4,644 bp upstream of RPM1. They also show that just a single unit increase in a protein coding eSTR can significantly in-
fluence expression levels, such as the GGA(n)-eSTR in METHYL ESTERASE 14 (MES14). Distal effects of eSTRs are also present, such as a T(n)-eSTR
31,289 bp upstream of the TSS of RFO1. Finally, ALFIN-LIKE 6 (AL6) expression levels are influenced by the most overrepresented protein coding
eSTR motif, GAA(n). A complete list of named genes influenced by eSTRs is available as Supplemental Data Set S10.
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expression of AL6 is associated with a protein-coding
GAA(n)-eSTR 1,827 bp downstream of the TSS.

Functional significance of protein-coding STRs in
regulating gene expression
Evident from our empirical modeling, eSTRs cluster around
the TSS (i.e. in putative promoters and 50-UTR sequences)
and likely exert effects on transcript abundance by altering
promoter activity. Of the 11,426 tested STRs located from
�2,000-bp upstream of a TSS to the start of the protein-
coding sequence, we detected 329 eSTRs (2.8%). However,
of the 2,433 tested protein-coding STRs, we detected 113
eSTRs, which yielded 4.4% significant tests. In other words,
STRs most likely to produce effects are found in protein-
coding sequences. We hypothesized that altered protein
function due to length variation in STR-encoded amino acid
tracts could potentially cause a feedback on promoter activ-
ity. We therefore sought to experimentally test this hypothe-
sis. Given that the GAA(n) motif was the most
overrepresented motif in protein-coding eSTRs
(Supplemental Data Set S9), we focused our attention on
functional investigation of the GAA-eSTR in AL6. The GAA-
repeat encodes a poly-E tract that is located just upstream
of a plant homeodomain (PHD)-type zinc finger domain in
AL6 (Figure 3A). Our statistical modeling based on popula-
tion-wide genome and transcriptome data suggests that the
length variation in this repeat influences the expression of
AL6 itself. Accessions carrying a short poly-E tract have
lower gene expression levels than accessions with a longer
poly-E tract (Figure 2E).

To verify that the activity of the AL6 promoter (pAL6)
was significantly altered by the length of the AL6 poly-E
tract, we performed fluorescent b-glucuronidase (GUS)
assays in Nicotiana benthamiana leaves. We transiently
expressed the GUS enzyme under the control of the AL6
promoter (pAL6:GUS) together with either the AL6 protein
from the Col-0 accession with a poly-E tract of seven gluta-
mates (AL6-7E: GAA(7)/E(7)) coupled to green fluorescent
protein (GFP) or AL6 from accession CS77246 with a poly-E
tract of three glutamates (AL6-3E: GAA(3)/E(3)) coupled to
GFP in N. benthamiana leaves (AL6-En-GFP). No amino acid
changes other than length variation in the poly-E tract were
present in the proteins employed in the experiment
(Supplemental Data Set S11). An estradiol-inducible 35S pro-
moter was used to drive expression of both AL6-En-GFP var-
iants to achieve comparable expression levels for both
fusion proteins. Both AL6-7E-GFP and AL6-3E-GFP were
found to be localized to the nucleus in N. benthamiana leaf
cells (Figure 3B). Next, we measured the promoter activity
of pAL6 by performing a fluorescent GUS assay in leaves
expressing either of the two AL6-En-GFP variants. We found
that the promoter activity of pAL6 (Supplemental Figure S6)
was significantly higher in leaf tissues expressing AL6-7E-GFP
compared with leaf tissues expressing AL6-3E-GFP
(Figure 3C). The difference in promoter activity between
samples was statistically significant (likelihood ratio test: P ¼

0.006; see “Methods”; Supplemental Data Set S12). This re-
sult agrees with the population-wide expression patterns of
AL6 (Figure 2E).

Interestingly, AL6 has been shown to form protein–pro-
tein interaction with members of the Polycomb Repressing
Complex 1 (PRC1), where the interaction is proposed to be
important for silencing of genes during seed germination by
regulating the chromatin state (Molitor et al., 2014). Among
the members of PRC1, AL6 forms a complex with RING1A
(Molitor et al., 2014). We therefore sought to test if length
variation in the poly-E tract of AL6 had an impact on its
protein–protein interaction with RING1A. The AL6 variants
were expressed in fusions with the donor (GFP) fluorophore
and RING1A to the acceptor (mCherry) fluorophore at their
C-termini driven by an estradiol-inducible 35S promoter in
N. benthamiana leaves. First, we established that both AL6-
3E-GFP and AL6-7E-GFP colocalized to the nucleus with
RING1A-mCherry in the same temporal and spatial manner
(Figure 3D). Next, we investigated protein–protein interac-
tions by performing Förster Resonance Energy Transfer
(FRET)–Acceptor Photobleaching (APB). Protein–protein in-
teraction in each sample was calculated as the GFP fluores-
cence after photobleaching of mCherry and was represented
as the percentage of change in GFP emission (EFRET [%]).
We found higher EFRET values in tissue expressing AL6-3E-
GFP and RING1A-mCherry (6.5 6 1.5, n¼ 40) compared
with tissue expressing AL6-7E-GFP and RING1A-mCherry
(5.2 6 1.4, n¼ 44) (Figure 3E). The difference in EFRET be-
tween samples was statistically significant (one-sided analysis
of variance (ANOVA) P-value ¼ 0.0002, see “Methods”;
Supplemental Data Set S12). Together, these experiments
provide in vivo evidence for the role of repeat length varia-
tion in the regulation of gene expression as well as protein–
protein interactions.

Discussion
In studies of human genomes and transcriptomes, a role for
STRs as influencers of gene expression has been established
(Gymrek et al., 2016; Quilez et al., 2016; Fotsing et al., 2019).
In contrast, little is known about STR length variation as a
driver of the regulation of gene expression in plants. Here,
by performing genomic and transcriptomic statistical analy-
sis of genome-wide, population-scale data, as well in vivo
experiments, we demonstrated that natural allelic variation
in STRs can regulate gene expression in A. thaliana.

It is important to note that since the high number of tests
we performed required a proportionally strict significance
threshold, the number of statistically significant associations
we detected between gene expression variation and length
variation in STRs represents a conservative estimate. In our
modeling, we fitted STR variants as continuous variables in
linear models, which are restricted to detecting positive or
negative linear effects. Possible nonlinear effects could be
tested if STR variants were treated as categorical variables.
In total, 28% of tests we performed included only two var-
iants, and under such scenarios, variants were treated as
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Figure 3 Functional relevance of the GAA-encoded poly-E tract in ALFIN-LIKE 6. A, The nucleotide and amino acid alignment shows three differ-
ent natural variants of the AL6 glutamate tract (poly-E) present in the 472 A. thaliana accessions. The poly-E tract is located immediately up-
stream of the start of the PHD zinc finger DNA binding domain. B and C, Transient expression of AL6 from Col-0 (AL6-7E-GFP) and AL6 from
accession CS77246 (AL6-3E-GFP) in N. benthamiana leaves. B, AL6-7E-GFP and AL6-3E-GFP localize to the nuclei in N. benthamiana. A protein
known to localize to the plasma membrane (PM) was used to outline the PM of the cells. C, Staining with 1-mM 40 ,6-Diamidine-20-phenylindole
dihydrochloride shows that AL6 localizes to cell nuclei. D, Expression of AL6-7E-GFP, AL6-3E-GFP, and RING1A-mCherry fusion proteins prior to
FRET analysis. E, Boxplots show the promoter activity of AL6 measured by a fluorescent GUS assay. There was a significant difference in AL6 pro-
moter activity in tissue expressing AL6-7E-GFP compared with tissue expressing AL6-3E-GFP. See also Supplemental Figure S2. F, Boxplots showing
the results from FRET analysis of protein–protein interaction between AL6 and RING1A. AL6 with three repeated glutamates (AL6-3E) interacts
significantly stronger with RING1A than AL6 with seven glutamates(AL6-7E). Expression of AL6-7E-GFP alone served as a negative control. The
dashed line indicates the common threshold for significant interaction in FRET experiments (Bleckmann et al., 2010). In (E) and (F), the measure-
ments below the upper whisker and above the lower whisker fall within the interquartile range � 1.5. Measurements above or below the whiskers
are indicated with diamond symbols. The asterisks indicate a statistically significant difference between groups.
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though they were categorical in the regression. For the
remaining tests, we missed potential effects that are sym-
metric around zero. Another, possible obscuring factor for
detecting true associations stems from our correction for re-
latedness. The genetic variation in A. thaliana is known to
be closely intertwined with environmental variation (1001
Genomes Consortium, 2016). Although the natural samples
were grown in chambers under identical conditions, gene
expression differences that have been shaped by genetic ad-
aptation to the natural samples’ respective environment of
origin were likely artificially minimized when we corrected
for the genetic relatedness. This may have decreased our
ability to detect associations. Taken together, our scoring of
eSTRs should be regarded as a highly conservative estimate,
and it suggests that the statistically significant associations
we have found represent true eSTRs.

Our analyses showed that in light of STR length variation,
fairly similar patterns arise in A. thaliana gene expression
data as in human gene expression data, where a role for
STRs as influencers of gene expression has been suggested
and experimentally demonstrated (Gymrek et al., 2016;
Quilez et al., 2016; Fotsing et al., 2019). Various molecular
mechanisms have been proposed that can explain a causal
association between length variation in an eSTR and gene
expression, which differ between STRs with different unit
sizes. Fotsing et al. (2019) proposed that length variation in
homopolymer eSTRs may lead to nucleosome displacement,
and length variable dimer eSTRs could alter TF binding affin-
ities or the spacing between TF binding sites. Furthermore,
GC-rich trimer, tetramer, pentamer, and hexamer eSTRs
were proposed to influence DNA and RNA secondary struc-
ture and affect transcription. We note that the effect sizes
of eSTRs discovered in our analysis are influenced by the
unit size (Figure 2D), supporting the notion that the effects
are driven by different mechanisms. However, there are
some noteworthy differences between our results and
reports from analyses of human transcriptomes. In general,
STRs in the A. thaliana genome seem to cluster to an even
higher extent near the TSS and within coding exons
(Figure 1A, Supplemental Figure S1). Furthermore, we
detected a comparatively much higher number of protein-
coding eSTRs in the A. thaliana genome (306 in A. thaliana
versus 11 in human). Specifically, length variation in GAA(n)

motifs seems to be a strong driver of gene expression varia-
tion, predominantly present in protein-coding sequences as
well as 50-UTRs (Supplemental Data Set S9). We note that a
study of the A. thaliana RNA–protein interaction landscape
found GAA(n) to be the most common motif bound by
mRNA binding proteins (Gosai et al., 2015). This finding sug-
gests that the correlation observed between length variation
in GAA(n) motifs and gene expression is caused by altera-
tions on the transcript level, which are related to the inter-
actions between RNA binding proteins and GAA(n) motifs.
However, our experimental work shows that length variation
in the GAA(n) motif in AL6 affects the strength of protein–
protein interactions, suggesting that length variation in such

motifs could also be important at the protein level and
could provide a more general mechanism to simultaneously
affect protein interaction and gene expression regulation in
A. thaliana. Our results suggest that such a mechanism, dis-
tinct from how STRs in promoter sequences are thought to
influence gene expression, is more common to plants, which
might provide an additional layer of fine-tuning required in
a sessile organism.

As STRs have a high mutation rate, selection could in
principle operate rapidly to keep gene expression levels
tuned according to biotic, environmental, and climatic
changes, providing a mechanism by which plants could
adapt to their surroundings over a short time span (Rando
and Verstrepen, 2007). It is therefore intriguing that many of
the genes whose expression levels are influenced by STRs
function in responses to biotic or abiotic factors
(Supplemental Data Sets S1 and S10). RESISTANCE TO P.
SYRINGAE PV MACULICOLA 1 (RPM1), a plant immune re-
ceptor that activates effector-triggered immunity by recog-
nizing pathogen-released effectors alongside activated RPM1
INTERACTING PROTEIN 4, had an STR length variation lo-
calized upstream of the TSS that affected gene expression
across the accessions included in this study (Grant et al.,
1995; Mackey et al., 2002). The same was the case for
RESISTANCE TO FUSARIUM OXYSPORUM 1, a receptor ki-
nase that confers resistance to a broad spectrum of
Fusarium races (Diener and Ausubel, 2005). Genome-wide
time-series gene expression analysis of Bay-0 and Sha, two
rapid-cycling spring annuals A. thaliana ecotypes grown in
natural field environments, showed an enrichment for abi-
otic and biotic stress-inducible genes (Richards et al., 2012).
It is therefore possible that the differences in gene expres-
sion driven by STR variation that we observe across the
accessions play a significant role in adaptation to varying
ecological factors, particularly those imposing stress on
plants.

Genes whose expression influence the morphology of the
plant are also important for local adaptation. In this respect,
changes in root system architecture in response to variations
in soil composition are imperative. Pi deficiency is a major
growth-limiting factor in many natural ecosystems (Chiou
and Lin, 2011). Plants have developed morphological and
molecular responses to optimize Pi uptake and distribution
(Raghothama, 1999; Ticconi and Abel, 2004). These adaptive
responses are dependent on changes in the expression of
several genes under low Pi conditions. The development of
root hairs is altered in response to low Pi availability to in-
crease the absorptive surface of the root, as observed in A.
thaliana, where root hair density can increase by five-fold
under suboptimal Pi concentrations (Ma et al., 2001). AL6, a
member of the Alfin1-like homeodomain protein family, was
identified as one of the TF genes whose expression corre-
lated to a GAA(n)-eSTR in the coding region of the gene.
Our fluorescent GUS reporter assay (Figure 3E) indicated
that differences in the GAA repeat influence the expression
of AL6. AL6 acts as an upstream regulator of root hair
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formation during Pi starvation in A. thaliana, as mutants de-
fective in this TF have shorter root hairs than wild-type
plants under low Pi conditions and aberrant PI concentra-
tions (Chandrika et al., 2013). Differences in expression as a
result of eSTR variation in AL6 in the natural accessions,
where shorter repeats lead to lower promoter activity, likely
contribute to local nutritional adaptation. AL6 control the
transcription of a suite of genes critical for root hair elonga-
tion under low Pi conditions (Chandrika et al., 2013). Our
results indicate that AL6 regulates its own expression either
directly or indirectly. Interestingly, during seed development,
AL6 interacts with RING1A, a component of PRC1, via its
PHD zinc finger domain (Molitor et al., 2014) (Figure 3A).
Association of this complex leads to a switch in the histone
methylation pattern, causing a change from an active to a
repressive transcriptional state in seed developmental genes
during seed germination (Molitor et al., 2014). It is therefore
interesting that our FRET measurements (Figure 3F) showed
a difference in the protein–protein interactions between
AL6 and RING1A depending on the length of the poly-E
tract encoded by the GAA(n)-eSTR in AL6. The addition of
glutamates localized directly upstream of the PHD zinc fin-
ger domain (Figure 3A) leads to a weaker association with
RING1A, as measured based on FRET efficiency (Figure 3F).
A reduced interaction between AL6 and RING1A when the
protein contains seven glutamates compared with three can
explain the reduction in AL6 promoter activity in the pres-
ence of AL6-3E-GFP compared with AL6-7E-GFP if a stronger
protein–protein interaction between AL6 and RING1A leads
to an increased repressive transcriptional state of the chro-
matin. It remains to be seen if RING1A has an effect of root
hair elongation under low Pi conditions.

The presence of similar patterns among distant species
suggests that the link between STRs and the fine-tuning of
gene expression, regardless of the specific mechanisms, is
common to eukaryotes. Future work should focus on the in-
teraction between gene expression, abiotic and biotic stim-
uli, and length variation in STRs. Given the biological
relevance of the genes with STRs, future experimental stud-
ies should focus on elucidating the significance of the ex-
pression patterns on biological activities such as plant organ
development, hormone pathways, and stress responses.

Materials and methods

STR variant calling, filtering, and validation
We used HipSTR (Willems et al., 2017) to call STRs in all
1,135 sequenced accessions released by the 1001 genome
project. Briefly, HipSTR performs genotyping of STRs by ana-
lyzing the alignment of sequencing reads to STRs detected
in a reference genome (here the accession Col-0). If suffi-
cient overlap of nonrepetitive flanking sequence is present,
HipSTR is able to “call” the STR variant. First, we used BWA
(mem) to align each accession’s reads to the TAIR10 refer-
ence genome (Li and Durbin, 2009). Next, we scanned the
TAIR10 reference for STRs using Tandem Repeats Finder
(Benson, 1999) and used the framework for building

nonhuman HipSTR references as described at https://github.
com/HipSTR-Tool/HipSTR-references/. The binary alignment
map (BAM) files from BWA and the reference repeats serve
as input to HipSTR, which performs PCR-stutter aware call-
ing of variants.

./HipSTR

–bams run1.bam, . . ., run1135.bam

–fasta genome.fa

–regions str_regions.bed

–str-vcf str_calls.vcf.gz

We used the “vcf_melt” utility script of PyVCF (https://
github.com/jamescasbon/PyVCF) to produce a data frame
from the VCF built by HipSTR for further analysis. For each
reference and alternative call, we extracted the number of
units, combined for both alleles in cases of heterozygosity,
within each STR (in-house Python scripts). The unit motif
was defined by Tandem Repeats Finder in the initial STR de-
tection step and does not necessarily represent the relevant
reading frame (relevant if the STR is protein coding). From
these unit counts, we constructed a matrix containing 1,135
rows (accessions) and 37,462 columns (STR sites). We re-
duced this matrix to 869 georeferenced and high-quality
accessions following the rationale from a recent study
(Ferrero-Serrano and Assmann, 2019). From this matrix, we
first omitted all STR sites with >15% missing calls. From the
resulting matrix, we omitted all accessions with >10% miss-
ing calls. This resulted in a matrix with 770 accessions. The
gene expression dataset (Kawakatsu et al., 2016) contained
728 accessions, and 472 of these accessions were overlapping
with the 770 in our variant calling dataset. The resulting var-
iant calling dataset is available as Supplemental Data Set S2.
The common STR variants (sites with allele frequencies
>0.05) used in our gene expression modeling were com-
pared with overlapping STR sites and accessions genotyped
in an independent study (Press et al., 2018). For a vast pro-
portion of sites, the mean squared error between our cen-
tered and standardized HipSTR calls and the centered and
standardized calls from the study was zero, meaning that
the relative lengths of the variants were identical to one an-
other (Supplemental Figure S2 and Supplemental Data Set
S4).

Gene expression modeling
To test if gene expression, Y, is a function of the number of
units present in an STR, G, we needed to perform regression
with Y as response and G as an explanatory variable. Gene
expression is generally assumed to show a negative binomial
distribution, which is an overdispersed version of the
Poisson distribution for count data of independent events
(Robinson et al., 2010). When the expected values are high,
the negative binomial distribution has a standard deviation
that increases in proportion to the expected value, as does
the log-normal distribution. Also, for high expected values, a
large number of outcomes are possible, making a continu-
ous approximation feasible. Thus, the log-normal distribu-
tion can be a good approximate distribution for gene
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expression data, meaning that after log-transformation, re-
gression models using normally distributed residuals can be
utilized. This is important, as we modeled gene expression
data from a highly genetically divergent population, and
thus needed to control for relatedness and population
structure.

Normal distribution-based tools are available for perform-
ing such analysis. We used the Python package “limix”
(https://github.com/limix/limix), which performs regression
on the following model: y ¼ b01 þ Xb þ re þ sd,
where y is the vector over the accessions of loge-trans-
formed gene expressions, b0 is the intercept, 1 is the unit
vector, b is the set of regression coefficients (which is trans-
posed in the equation), X is the explanation variable matrix
(one column running over the accessions for each explana-
tory variable), r is the standard deviations of independent
noise, e is a vector of independent standard normally dis-
tributed noise, s is a scaling factor for the relatedness covari-
ance, and d�(0,

P
) is a random effect due to relatedness,

having covariance matrix
P

. Apart from the last term, this
follows the form of a standard linear regression. The last
term allows the relatedness to be taken into account by
having closely related accessions share the same noise term.
The independent noise term is there because gene expres-
sions can vary even between highly related individuals or
even the same individual measured at different times. The
explanation variable matrix X is for our analysis simply the
STR that is being examined, although extra explanation vari-
ables (such as SNPs in STR analysis) are also possible. The
significance of the STR was evaluated by comparing models
with and without the STR as an explanatory variable. The
model log-likelihood assesses the “goodness of fit” of each
model, and a log-likelihood ratio test can test whether the
differences between models are statistically significant. A low
P-value indicates that a model that treats differences in
gene expression as a response to natural allelic variation in
the STR is a better model than a model that does not take
STR variation into account. As we modeled hundreds of
thousands of gene–STR pairs, we had to adjust the P-value
to maintain a 5% type II error rate. For this purpose, we
used the Bonferroni correction, that is, dividing the chosen
significance threshold of 0.05 by the number of tests we per-
formed (665,364), resulting in a much stricter significance
threshold of 7.5e�8. In our case, y is loge-transformed
RNAseq data produced by Kawakatsu et al. (2016). We re-
trieved the RNAseq data from the NCBI GEO Accession
GSE80744. To avoid spurious associations due to outliers
(with a higher probability of being erroneous) in the STR
calls, we kept only common variants (minor allele frequency
> 0.05), requiring that every variant included in the model
should be present in at least 24 of the 472 accessions. Note
that the sample size for each regression (gene–STR pair)
thus depends both on the number of common STR variants
present in X and the number of nonzero measurements in
y. The result is that the samples size varies from n¼ 16 to
470. However, 99.6% of tests had a sample size > 100

(Supplemental Figure S3). Although it is possible to model
all STRs versus all genes and not to restrict modeling to
STR–gene pairs within 100 kb of each other, we argue that
the gain in “completeness” is counterbalanced by the time,
CPU, and memory requirements needed to analyze and
work with such a large dataset, which would require approx-
imately 482,000,000 tests. Further discussion, including simu-
lations to support our choice of model, can be found in the
Supplemental Methods.

Mock STR control
For every STR site, accessions were given a random STR vari-
ant from the pool of all variants that occurred across the
population in that particular site. These mock genotypes
were modeled using the exact same approach as described
for real STR genotypes.

Modeling SNPs
As mentioned in the main text, we tested, on average �29
STRs per gene. To treat SNPs similarly, we first drew 300,000
unique SNPs randomly from the 10,709,949 SNPs present in
the 1,135 sequenced natural A. thaliana samples available at
1001genomes.org. Next, we calculated the allele frequency
for these 300,000 SNPs and omitted rare variants (i.e. var-
iants with allele frequency <0.05) as we did prior to STR
modeling. Of these 300,000 SNPs, 51,437 were common
based on this definition. Next, we retrieved the 100 closest
SNPs to the TSS for every gene, prioritizing SNPs upstream
of the TSS before choosing downstream SNPs. This choice
made the distribution of SNPs in relation to the TSS skewed
toward promoter sequences, and more similar to how STRs
are distributed, which should facilitate fair comparison. As in
our treatment for STRs, we omitted every SNP more than
100 kb in any direction from the TSS. The remaining 46,767
SNPs were modeled as described for STRs, testing all of
these SNPs against the expression of genes within 100 kb of
the SNP. In addition to this, we separately modeled the clos-
est (common) SNP to STRs that produced a significant asso-
ciation with gene expression (2,306 SNP-gene tests) in the
same manner as previous gene expression modeling.

STR distributions
We used the “distplot” function of the Python package
“seaborn” with regular options for obtaining and plotting
kernel density estimates of the distances between STRs and
gene TSSs.

Cloning and transient expression of proteins
Arabidopsis thaliana accession CS77246 was ordered from
Nottingham Arabidopsis Stock Center. The DNA sequences
encoding RING1A from Col-0, AL6 from Col-0 (seven
GAAs), and AL6 from accession CS77246 (three GAAs) were
cloned in frame with expression vectors containing an 35S
estradiol-inducible promoter and a C-terminal fluorescent
molecule of GFP or mCherry (Bleckmann et al., 2010) using
the Invitrogen Gateway cloning system. Primers used for
cloning of AL6 and RING1A are listed in Supplemental Table
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S1. The AL6 promoter (pAL6) was defined as the region
1,500-bp upstream of the AL6 start codon and amplified
from Col-0 genomic DNA using the primers 50-TTCACA
AACGATGTCGCCGG0-3 and 50-TTCACAAACGATGTCG
CCGG0-3. pAL6 was cloned into the R4pGWB633 vector
(Nakamura et al., 2009; Tanaka et al., 2013) containing the
GUS gene, creating the pAL6:GUS construct. Plasmids were
transformed into Agrobacterium tumefaciens C58 and fur-
ther used for transient expression in N. benthamiana leaves
following a previously described protocol (Butenko et al.,
2014). The clones were verified by sequencing, and no other
mutations were present that altered the amino acid sequen-
ces (Supplemental Data Set S11).

Förster Resonance Energy Transfer–Acceptor
PhotoBleaching
We performed FRET�APB measurements to investigate if
AL6 proteins containing different numbers of repeated gluta-
mates would have differences in binding properties to
RING1A. FRET�APB was performed as described in
Bleckmann et al. (2010) on N. benthamiana leaves transiently
expressing the proteins of interest. A ZEISS LSM880 Airyscan
microscope with a Plan-Apochromat 20�/0.8 WD¼ 0.55
M27 objective, an optical zoom of 5�, frame size of 256 �
256 pixels, and scan speed of 629 ms per frame was used for
all measurements. Frame size, laser-power, and gain were
kept constant throughout all measurements. FRET efficiency
(EFRET) was measured based on the increase in GFP fluores-
cence intensity after photobleaching of the acceptor
mCherry using the ZEISS FRET measurement option
(EFRET ¼ ðGFPafter � GFPbeforeÞ=GFPafter � 100). All meas-
urements were performed 10–15 times, and each experiment
was repeated three times. The donor only sample (GFP) was
used as a negative control. FRET–APB measurements were
performed at the NorMIC Imaging platform.

Fluorescent GUS assay
We performed a fluorescent GUS assay to examine if the
promoter activity of pAL6 was significantly altered by
expressing AL6 containing different numbers of repeat units.
Nicotiana benthamiana leaves coinfiltrated with pAL6:GUS
and either AL6-7E-GFP (7 GAAs) or AL6-3E-GFP (3 GAAs)
were cut into leaf disks and incubated in an 10-mM estradiol
solution overnight to induce gene expression. After induc-
tion, the leaf disks were individually transferred to wells in a
96-well plate containing 100-mL reaction mixture (10 mM
EDTA [pH 8.0], 0.1% SDS, 50 mM sodium Pi [pH 7.0], 0.1%
Triton X-100, and 1 mM 4-MUG [M9130-Sigma]) as de-
scribed previously (Blázquez, 2007) and incubated at 37�C
for 6 h. The reaction was stopped by adding 50 lL of stop
reagent (1 M sodium carbonate) to each well. Fluorescence
was detected using a Wallac 1420 VICTOR2 microplate
luminometer (PerkinElmer) at an excitation wavelength of
365 nm and a filter wavelength of 430 nm. Each experiment
was repeated three times.

Statistical analysis of experiments
For both the GUS and FRET experiments, individual meas-
urements (n ¼ 10–15) were performed on three different
days (Supplemental Data Set S12). As such, we included
measurement day as a random factor in linear mixed-effect
models, which are linear models that take into account the
notion that measurements can be dependent. First, we
tested the significance of measurement day in the models.
For the GUS experiments, measurement day was a signifi-
cant explanatory variable and was included in model com-
parisons with and without repeat length as an additional
explanatory variable. For the FRET experiments, measure-
ment day was not a significant explanatory factor and was
not included. We tested repeat length as an explanatory var-
iable by comparing it to a model without repeat length
(null model) using the Chi-squared log-likelihood-ratio test,
as implemented in the “anova” function from the R “lme4”
package (Bates et al., 2015). See Supplemental Data Set S12
for the experimental data analyzed and the R commands
employed.

Accession numbers
The Illumina sequencing reads of 1,135 accessions are avail-
able through the National Center for Biotechnology
Information (NCBI) Sequencing Read Archive under acces-
sion number SRP056687. The RNAseq data of 728 accessions
are available through the NCBI Sequencing Read Archive un-
der accession number GSE80744. Accession numbers of
named candidate genes identified in this study are available
in Supplemental Data Set S10.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Data Sets, additional data materials, as well
as Python scripts required for figures and modeling are avail-
able at: https://doi.org/10.5061/dryad.fttdz08sg.

Supplemental Figure S1. The distribution of short tan-
dem repeats (STRs) in relation to transcription start sites
(TSSs).

Supplemental Figure S2. Validation of short tandem re-
peat variant calls with an independent study.

Supplemental Figure S3. Sample sizes used in modeling
gene expression.

Supplemental Figure S4. Short tandem repeat sites
tested per gene.

Supplemental Figure S5. Comparison of short tandem
repeats (STRs) and single nucleotide polymorphisms (SNPs).

Supplemental Figure S6. Representative images of meas-
urements shown in Figure 3E.

Supplemental Table S1. Primers used for cloning of AL6
and RING1A.

Supplemental Methods S1. Relatedness, simulations, and
histochemical GUS assay.

Supplemental Methods Figure S1. Histogram of log10
gene expression averages.
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