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Abstract

Memory T lymphocytes proliferate in vivo in the absence of antigen maintaining a pool of
central memory T cells (Ty) and effector memory T cells (Tg,,) with distinct effector function
and homing capacity. We compared human CD4% naive T, Ty, and Tgy cells for their ca-
pacity to proliferate in response to cytokines, that have been implicated in T cell homeostasis.
Interleukin (IL)-7 and IL-15 expanded with very high efficiency Tgy,, while Ty, were less re-
sponsive and naive T cells failed to respond. Dendritic cells (DCs) and DC-derived cytokines
allowed naive T cells to proliferate selectively in response to IL-4, and potently boosted the re-
sponse of Ty to IL-7 and IL-15 by increasing the expression of the IL-2/IL-15Rf3 and the
common 7y chain (yc). The extracellular signal regulated kinase and the p38 mitogen-activated
protein (MAP) kinases were selectively required for TCR and cytokine-driven proliferation,
respectively. Importantly, in cytokine-driven cultures, some of the proliferating Ty, differenti-
ated to Tgy-like cells acquiring effector function and switching chemokine receptor expression
from CCR7 to CCR5. The sustained antigen-independent generation of Tgy, from a pool of
Tem cells provides a plausible mechanism for the maintenance of a polyclonal and functionally

diverse repertoire of human CD4* memory T cells.
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Introduction

Naive and memory T lymphocyte numbers are maintained
constant in adult animals to ensure that the organism can
mount an immune response to a variety of new antigens,
while keeping appropriate levels of memory cells to previ-
ously encountered pathogens (1-3). In intact animals naive
T cells divide very slowly, while memory cells have a
higher rate of division (4). Furthermore, in T cell-deficient
mice transferred naive T cells rapidly proliferate in the ab-
sence of antigen to reconstitute the lymphocyte pool while
undergoing a limited differentiation process (5-8).
Signaling from the TCR and cytokine receptors have
been implicated in the maintenance and homeostatic ex-
pansion of T cell pools, but their relative contribution may
vary under different conditions. In particular, it has been
shown that naive CD4* and CD8" T cells need to interact
with self-MHC molecules in order to survive and prolifer-
ate under lymphopenic conditions, while memory T cells
show no such requirement (9-15). The peptide ligands
bound to selt-MHC molecules responsible for positive se-
lection in the thymus are also involved in T cell survival
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and homeostatic proliferation in the periphery (16-18).
Two recent studies, however, argue that TCR tickling and
p56Lck are required primarily for T cell expansion in lym-
phopenic hosts rather than for long-term survival (19, 20).
There is growing evidence that cytokines, which bind to
receptors containing yc, namely IL-2, IL-4, IL-7, and IL-15
(referred to thereafter as yc-cytokines), are involved in T
cell maintenance and homeostasis. Indeed, <yc-deficient
mice show impaired T cell survival and homeostasis but
normal proliferative response to antigenic stimulation (21,
22). The relative importance of different yc-cytokines var-
ies depending on their site of production and to the expres-
sion and signaling capacity of the relevant cytokine re-
ceptors on T cells. Pioneering studies using cytokine
combinations containing IL-2, IL-6, and TNF-a showed
that human T cells can proliferate in an antigen-indepen-
dent manner in vitro (23, 24). IL-15, which is produced by
several cell types including dendritic cells (DC)*s, plays an
essential role in T cell homeostasis. IL-15 expands CD8”"

* Abbreviations used in this paper: CsA, Cyclosporin A; DC, dendritic cell;
ERK, extracellular signal regulated kinase; JAK, Janus kinase; L, ligand;
MAP, mitogen-activated protein; Ty, central memory T cell; Tgy, ef-
fector memory T cell; TSST, toxic shock syndrome toxin.
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memory T cells in vivo (25, 26) and deletion of IL-15Ra
results in reduced numbers of CD8 memory cells (27). The
effects of IL-15 can be counteracted by IL-2, which primes
mouse T cells for death, suggesting that CD8 homeostasis
might be regulated at the level of these two opposing cyto-
kines (28). IL-7, which is produced by stromal cells, can
enhance homeostatic proliferation of both naive and mem-
ory CD8" T cells (29). Furthermore, IL-7 and IL-4 con-
tribute, together with self-MHC molecules, to naive T cell
survival (30). In humans increased IL-7 expression is associ-
ated with enhanced T cell turnover in lymphopenic HIV
patients (31).

It is well established that naive and memory cells have
different capacities to traffic in lymphoid and nonlymphoid
tissues (32). Recent evidence indicates that memory CD4"
and CD8" T cells comprise at least two functionally dis-
tinct subsets: (i) nonpolarized “central memory” T cells
(Tcm), which express the chemokine receptor CCR7 and
CD62 ligand (L) and home to the T cell areas of secondary
lymphoid organs; and (ii) polarized “effector memory” T
cells (Tgy), which have lost the expression of CCR7 and
have acquired the capacity to migrate to nonlymphoid tis-
sues (33-37). These findings suggest that Ty and Tpy
have access to different environments and possibly difterent
survival stimuli. It is possible that in the T cell differentia-
tion program cytokine receptor expression might be coor-
dinately regulated with migratory capacity and effector
function. However, the responsiveness of naive and mem-
ory T cell subsets to cytokines has not been investigated.

In this work we describe the selective expansion of naive
T and memory subsets using different combinations of yc-
and DC-derived cytokines and define distinct signaling re-
quirements for TCR- versus cytokine-driven proliferation.
We also show that cytokine-driven Ty but not naive T
cells differentiate acquiring effector function and switching
expression of chemokine receptors. The sustained antigen-
independent generation of Tgy, from a pool of Ty, cells
provides a plausible mechanism for the maintenance of a
polyclonal and functionally diverse repertoire of human
CD4" memory T cells.

Materials and Methods

Antibodies and Reagents. Phycoerythrin (PE)-labeled antibod-
ies specific for IL-6Ra, IL2Ra, IL-2/15R, IL-4Ra, CD40L,
and CD45RA were purchased from Beckman Coulter. Anti—
phospho-p38 antibodies were purchased from Southern Biotech-
nology and anti—phospho-extracellular signal regulated kinase
(ERK) from Sigma-Aldrich. All recombinant cytokines (IL-1f,
IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, TNF-a) and anti-
bodies to IL-4, IFN-y, MHC class II, CCR5, IL-10R and the
yc-chain were purchased from BD PharMingen. The anti-
CCRY7 antibody (3D12) was provided by M. Lipp, Max-Dee-
brueck Center for Molecular Medicine, Berlin, Germany. The
signaling inhibitors were purchased from Alexis and used as fol-
lows: the src tyrosine kinase inhibitor PP2 at 1 WM, the Janus ki-
nase (JAK)3 2 Inhibitor at 25 ng/ml, Cyclosporin A (CsA) at 50
nM, the PKC inhibitor bisindolylmaledeide at 1 wM, the PI3
Kinase inhibitor LY294002 at 10 pwM, the MEK inhibitor
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PD98059 at 50 puM and the p38 inhibitors SB202190 and
PD169316 at 10 wM.

Cell Culture.  Peripheral blood mononuclear cells were iso-
lated from healthy blood donors. B cells and monocytes were de-
pleted by plastic adherence and passage through a nylon wool
column. NK cells, CD8" T cells, residual B cells and monocytes
were depleted by panning technique with antibodies to CD8
(OKTS), CD14 (144), CD20 (HB9645), and CD16 (B73.1). The
T cells obtained were >97% CD4* CD3*. Naive and memory T
cell subpopulations were purified to >99% by cell sorting, using
anti-CD4 in combination with anti-CD45R O and anti-CCR7
Ab (33). Labeling of T cells with CFSE (Molecular Probes) was
performed as described previously (38). DCs were purified by
positive selection with anti-CD14 antibodies coupled to mag-
netic beads (Miltenyi Biotec). CD14" cells were cultured for 5 d
in RPMI 1640 containing 2 mM glutamine, 1% nonessential
amino acids, 1% sodium pyruvate, 50 wg/ml kanamycin
(GIBCO BRL), 1% human serum, 50 ng/ml GM-CSF (Novar-
tis), and 1,000 U/ml IL-4. The DCs obtained were stimulated
with 100 ng/ml LPS where indicated (from Salmonella abortus
equi; Sigma-Aldrich). T cells were cultured with DCs at a 5:1 ra-
tio. In some experiments DCs were pulsed with 100 ng/ml toxic
shock syndrome toxin (TSST; Toxin Technologies). All recom-
binant cytokines were used in culture at 25 ng/ml. For inhibition
experiments, T cells were preincubated with the various inhibi-
tors for 30 min and the inhibitors were left in culture for the en-
tire stimulation period.

FACS® Analysis.  Cell staining of CFSE-labeled T cells were
performed with APC- or PE-labeled antibodies with the excep-
tion of the anti-CCR7 Ab, which was detected with a PE-
labeled anti—rat antibody (BD PharMingen). Cells were analyzed
on a FACSCalibur™ (Becton Dickinson). Effector cytokine pro-
ducing capacity was assessed after stimulation for 6 h with 100
nM PMA and 1 pg/ml Ionomycin (Sigma-Aldrich). Brefeldin A
(Sigma-Aldrich) was added at 10 pg/ml during the last 4 h of
stimulation. Cells were fixed with 2% paraformaldehyde, perme-
abilized with PBS containing 10% FCS, and 0.5% saponin fol-
lowed by staining with APC-labeled anti-IFN-y and PE-labeled
anti—IL-4 antibodies.

Immunoblotting.  Cell lysates (Tris-Cl 50 mM, pH 7.4, NP-
40 0.5%, 0.15 M NaCl, 2 mM EDTA, 10 mM NaF, 10 mM
P,0,, 0.5 wM Na;VO,, 100 pwg/ml PMSF, 1 pwg/ml aprotinin
and leupeptin) were cleared by centrifugation, boiled in sam-
ple buffer, and resolved on a 10% SDS-PAGE. Proteins were
transferred on a nitrocellulose membrane (Amersham Pharma-
cia Biotech). Incubations with primary and secondary, horse-
radish peroxidase-conjugated antibodies were performed in
blocking buffer (5% dry nonfat milk in Tris buffered saline,
pH 7.4, containing 0.05% Tween 20 (TBST) while the anti—
phospho-p38 antibody was diluted in 5% BSA in TBST. Blots
were developed with an ECL kit (Amersham Pharmacia Bio-
tech).

RNase Protection Assay. Lysis and RNA isolation from 2-5 X
106 cells was performed with the RNeasy kit (QIAGEN). The
anti-sense mMRNA probes of the human cytokine receptors tem-
plate set hCR-1 (Riboquant; BD PharMingen) were labeled with
%2[P] using the Maxiscript kit (QIAGEN). The probe was puri-
fied with a G50 mini-column (Amersham Pharmacia Biotech).
Hybridization of 2.5-5ug RNA with 3 X 103 cpm probe and
RNase digestion was performed with the HybSpeed kit (Am-
bion). Undigested RINA was precipitated and loaded on a 5% de-
naturating acrylamide gel, run for 2.5 h at 400 V, dried, and ex-
posed to a film.
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Results

T Cell Proliferation In Response to TCR or Cytokine Stinu-
Based on previous reports (23, 24) and preliminary
experiments, we defined a cytokine combination that effi-
ciently drives proliferation of human peripheral blood T
lymphocytes. Using the CFSE dilution method to track
cell division (38), we compared the proliferative response
of naive CD4*% T cells to either cytokines or antigenic
stimulation (Fig. 1). As expected, stimulation of naive T
cells with DCs pulsed with the bacterial superantigen TSST
induced the rapid outgrowth of a small fraction (~~5%) of
VB2* cells. The first division occurred after a lag period of
~40 h and cells subsequently divided rapidly, approxi-
mately every 10 h. In contrast, when exposed to a combi-
nation of IL-7, IL-15, TNF-a, IL-6, and IL-10, all T cells
divided, although with a slower kinetics: the first division
occurred after ~72 h and the division time was ~30 h.
DCs Prime Naive T Cells to Respond to <yc-Cytokines.
When cultured with IL-7 and IL-15, memory CD4* T
cells (comprising both Ty and Tgy) proliferated exten-
sively, while naive T cells failed to do so (Fig. 2 A). Be-
cause naive T cells traffic to the T cell areas of secondary
lymphoid organs and make extensive contacts with DCs,
we tested whether DCs may synergize with yc-cytokines

lation.
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Figure 1. Kinetics of TCR- and cytokine-induced T cell proliferation.
CFSE-labeled naive CD4* T cells were stimulated with either TSST-
loaded autologous DCs (A) or with a cytokine mixture (IL-7, IL-15,
TNF-a, IL-6, and IL-10) (B). Cell division was measured by flow cytom-
etry at the time indicated.
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and polyclonally expand naive T cells (Fig. 2 A). Autolo-
gous DCs did not induce polyclonal T cell proliferation
(data not shown), but endowed all naive T cells with the
capacity to respond to IL-15 and IL-7 and enhanced re-
sponsiveness of memory T cells. The eftect of DCs on cy-
tokine-driven T cell proliferation was not inhibited by ad-
dition of antibodies to MHC class II molecules, suggesting
that the latter were not involved in this process. The cell-
free supernatant of LPS-stimulated, but not of unstimulated
DCs had a similar effect as live DCs, since it did not induce
proliferation on its own (data not shown), but enhanced re-
sponsiveness to IL-7 and IL-15. These results suggest that
DC-derived, maturation-induced soluble factors were re-
sponsible for the observed effects.

Selective Expansion of Naive, Teyy, and Tgy CD47 Cell
Subsets.  CD4* naive, Ty, and Ty, cells were isolated by
cell sorting from peripheral blood according to expression
of CD45RA and CCRY7 and tested for their proliferative
response to cytokines (Fig. 2 B). Three observations were
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- m i
TEM m 41;
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Figure 2. Differential requirements for cytokine-induced proliferation

of naive T, Ty, and Tiy, cell subsets. (A) CFSE-labeled naive and mem-
ory CD4™ T cells were cultured for 7 d with IL-7 and IL-15 alone or in
combination with autologous DCs, in the absence or presence of a block-
ing anti-MHC class I antibody, or with the supernatant of 24-h LPS-
activated DCs. (B) CD4* naive, Ty, and Tgy cells were isolated by cell
sorting from peripheral blood according to their expression of CD45RA
and CCR7. CFSE-labeled cells were cultured in the presence of different
cytokines as indicated. Cell division was assessed by flow cytometry after
7 d. One representative experiment out of five and eight, respectively.



made. First, IL-7, which was poorly mitogenic on its own
(data not shown), synergized with IL-15 in driving prolif-
eration of Ty, had a modest effect on Ty, and no effect
on naive T cells. Second, a mixture of TNF-«, IL-6, and
IL-10 could substitute for DCs. These cytokines, that alone
did not induce proliferation of either naive or memory
cells, enhanced IL-7 plus IL-15-driven proliferation of all
subsets tested. Third, IL-4, which by itself was not effective
(data not shown), in combination with DC-derived cyto-
kines selectively induced proliferation of naive but not
memory cells. Taken together these results identify two
groups of cytokines: (i) 'yc-cytokines, that drive T cell pro-
liferation; and (ii) DC-derived cytokines that prime naive
T and Tey cells to respond to <yc-cytokines. They also
show that using appropriate cytokine combinations naive
and memory T cell subsets can be selectively expanded.
Cytokine Receptor Expression and Regulation in Naive and
Memory T Cell Subsets. The differential requirement for
DC-derived cytokines and the difterential responsiveness to
IL-4 and IL-15 suggest that naive and memory T cells ex-
press different receptors for these cytokines. As shown in
Fig. 3, the IL-2/IL-15R B-chain was expressed at very low
levels on naive cells, at intermediate levels on Ty and at
high levels on Tgy,. In each subset, DC-derived cytokines
rapidly increased the expression of IL-2/IL-15Rf3 chain.
However, the increase was most pronounced in naive T
cells, a result that is consistent with the increased prolifera-
tion to IL-15 induced by this treatment. The yc-chain was
expressed at comparable levels on all three subsets and was
also upregulated (3—4-fold) by DC-derived cytokines. Re-
markably, the increase of both IL-2/IL-15R 3 and yc-chain
expression induced by DC-derived cytokines was compa-

TN TEM

rable to that induced by TCR stimulation (data not
shown). This indicates that the two pathways can indepen-
dently confer responsiveness to yc-cytokines. In contrast,
CD25, which is required to respond to low doses of IL-2,
was selectively upregulated by TCR stimulation but not by
DC-derived cytokines (data not shown).

Receptors for DC-derived cytokines were difterentially
expressed, IL-6Ra being present on naive and Tgy, but
lost on Ty, while IL-10R was retained and actually in-
creased on Tgy, (Table I A). The differential expression of
these receptors correlates with changes in the capacity to
respond to individual cytokines, TNF-a and IL-6 being
the most effective for naive T cells, while IL-10 and IL-12
being most effective for Tgy, (Table I A). Naive and mem-
ory T cells expressed IL-7Rat, 'yc-chain and low levels of
IL-4Ra mRNAs (data not shown). Addition of IL-4 in-
duced a marked upregulation of the IL-4Ra-chain on na-
ive, but not on memory T cells both at the RNA (data not
shown) and protein level (Fig. 3), explaining the selectivity
of IL-4 as a growth factor for naive CD4* T cells. How-
ever, since IL-4 downregulates yc (but not IL-2/15R[3)
chain selectively on naive T cells, their proliferation still re-
quires the contribution of DC-derived cytokines for the
upregulation of yc chain expression.

Altogether these data indicate that the enhancing effect
of DC-derived cytokines on IL-7 and IL-15 induced pro-
liferation is due to the upregulation of the IL-2/IL-15R3
and the yc chains. In addition, the selective responsiveness
of naive T cells to IL-4 and of Ty, to IL-15 can be related
to the differential regulation of the corresponding recep-
tors, which are respectively lost or acquired after T cell
differentiation.

IL-2/15Rp

Y
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Figure 3. Modulation of cytokine receptors on T cell
subsets by DC-derived cytokines or IL-4. Naive, Ty, and
Tgum cells were cultured for 16 h in the absence (red) or in
the presence of TNF-a, IL-6, and IL-10 (blue) or IL-4
(green) and stained with antibodies to IL-2/IL-15Rf3, yc

IL-4Ro

and IL-4Ra. The black lines show staining with isotype-
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L matched controls. One representative experiment out of five.
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Table I.  Expression and Modulation of Cytokine Receptor Chains
in CD4" Naive and Memory T Cell Subsets

(A) Cytokine receptor surface expression (MFI)?

T naive Tem Tem
IL-6R 14 15 3
IL-10R 4 (5)° 7 (13)° 7 (13)®
(B) ac chain surface expression (fold-induction)®
TNF-«a 2.5 2 1.5
IL-6 2 1.5 1
IL-10 2 2 3.5
IL-12 1.5 1.5 2.5
TNF-a + IL-6 + IL-10 4 3 4.5

“Unstimulated T cell subsets were stained with antibodies to IL-6R or
IL-10R. Mean fluorescence index (MFI) after subtraction of the back-
ground is indicated.

"Values in parentheses indicate IL-10R expression after stimulation
with IL-7 and IL-15 for 16 h.

T cell subsets were cultured as in Fig. 4 and analyzed after 16 h for sur-
face expression of ac chain. The fold-increase in MFI after subtraction
of the background is shown.

Distinct Signaling Requirements for Cytokine versus TCR-
driven Proliferation. Because TCR and cytokine receptors
engage mainly distinct, although partially, overlapping sig-
naling pathways (39, 40) we investigated the effect of drugs
that block signal transduction components on TCR- versus
cytokine-driven proliferation (Fig. 4 A).

Inhibition of the downstream effectors of the PLC-y
pathway with bisindolylmaledeide (BIM, a PKC inhibitor)

or CsA (a calcineurin inhibitor) prevented TCR-induced
proliferation. However, no detectable effect was observed
on the cytokine-induced response, confirming that cyto-
kine-induced proliferation is TCR-independent. Both
TCR- and cytokine-driven proliferation are dependent on
a G1 to S cell cycle transition induced by yc-cytokines. In-
deed, inhibition of the yc-cytokine—dependent pathways,
with a JAK3 inhibitor, with the TOR kinase inhibitor Ra-
pamycin or with the PI3 kinase inhibitor LY294002,
blocked both cytokine- and TCR-dependent prolifera-
tion. Interestingly, while Lck and ERK are activated after
both TCR and cytokine stimulation (41, 42), the Lck and
MEK1/2 inhibitors PP2 and PD98059 abrogated TCR-
induced, but not cytokine-induced proliferation, suggest-
ing that in the latter case these pathways are dispensable.
Reciprocally, while the p38 mitogen-activated protein
(MAP) kinase pathway is stimulated by both TCR and cy-
tokines, its selective inhibition by PD169316 (data not
shown) and SB202190 resulted in a selective block of cy-
tokine-induced but not TCR-induced proliferation (Fig. 4
A). Importantly, p38 MAP kinase activity was required
both in the absence and presence of DC-derived cytokines
(data not shown).

According to the above results, ERK inhibition blocks
TCR-dependent proliferation while p38 inhibition blocks
cytokine-dependent proliferation. Therefore, we com-
pared the activation profiles of these MAP kinases in cy-
tokine- versus TCR-stimulated cells by immunoblotting
with antibodies specific for the active form of the kinases.
The ERK MAP kinase was strongly activated by TCR
stimulation, and only weakly by cytokine stimulation.
PD98059, which blocks the activating ERK-kinase MEK,
prevented ERK phosphorylation in both cytokine- and

A control BIM CsA PP2 PD98059 B
5 Phospho-ERK Q
Q &
) S S S 9
anti-CD3 N Y s KL
S s <
(& Q G
cytokines — ,:w
Untreated  Cytokines Anti-CD3
C Phospho-p38
-~ SB202190 S &
inhibi R i LY294002 S ) N
inhibitor apamycin §° Py VQ § Py £
3 O Q > ) ) Q D
anti-CD3 ﬂ_ L —
i Untreated { Cytokines I Anti-CD3
Figure 4. Differential requirements for signal transduction

cytokines

vy

—* CFSE

pathways in TCR- versus cytokine-driven proliferation. (A)
CFSE-labeled CD4* T cells were stimulated with plate-
bound anti-CD3 or with cytokines (IL-7, IL-15, TNF-a,
IL-6, and IL-10) for 7 d in the absence (control) or in the
presence of optimal concentrations of the indicated inhibi-
tors. (B and C) CD4" T cells were stimulated as above for 20

min in the presence or absence of inhibitors. ERK (B) and p38 (C) were assessed by immunoblotting with antibodies specific for the active kinases. Pro-
tein amount was controlled by reblotting with an antibody specific for total p38 (data not shown). One experiment out of four and three, respectively.
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TCR-stimulated cells (Fig. 4 B). Furthermore, the p38
MAP kinase was activated by both TCR- and cytokine-
stimulation (Fig. 4 C). However, while TCR-dependent
p38 activation was blocked by PP2 and partially by CsA,
cytokine-dependent p38 activation was not affected by
these drugs but was blocked by a JAK3 inhibitor. Alto-
gether these findings indicate that the TCR and cytokine
receptors activate p38 by different mechanisms and that
p38 activation is required for cytokine-dependent, but not
for TCR-dependent proliferation.

Cytokine-driven Differentiation of Naive and T¢y, Cells.
Recent studies in the mouse system demonstrated that
naive T cells transferred into lymphopenic mice expand
and acquire some markers and functions of effector cells,
but retain a partially naive/resting phenotype (5-8). We
therefore compared TCR- and cytokine-stimulated T
cells for the expression of surface markers characteristic
of activated/memory cells (Fig. 5). TCR-stimulated na-
ive T cells upregulated CD40L and progressively down-
regulated CD45R A and CCR7 as a function of cell divi-
sion. In contrast, cytokine-expanded naive T cells
maintained CCR7 expression and even upregulated
CD45R A, while only a fraction of the cells upregulated
CD40L. In response to the same treatment, Ty, upregu-
lated CD40L on a higher proportion of cells and to a
higher level, while remaining CD45RA™. Importantly,
while cytokine-stimulated naive T cells retained CCR7
expression, Ty cells downregulated CCR7 and upregu-
lated CCR5, a chemokine receptor characteristic of ef-
fector T cells. Furthermore, a large fraction of cytokine-
expanded Ty acquired the capacity to produce IFN-y
(23%) and IL-4 (13%) (Fig. 6 A). In contrast, only a small
fraction of naive T cells acquired effector function under
the same culture conditions. Taken together these find-
ings indicate that, upon cytokine stimulation, Ty (but
not naive T cells) differentiate to Tgy,-like cells with loss
of lymph node homing capacity and acquisition of in-

CD45RA CD40L CCR5

flamed tissue homing capacity as well as effector func-
tion.

IL-12 and IL-4 are the master cytokines that promote
Th1 and Th?2 polarization in TCR-stimulated cells. We in-
vestigated whether these polarizing cytokines might exert
the same effect in T cells that proliferate in response to cy-
tokines in the absence of TCR stimulation. Since T cell
differentiation is influenced by division number and since
both IL-4 and IL-12 had an enhancing effect on cytokine-
driven proliferation (in the presence of DC-derived cyto-
kines; data not shown), we analyzed IL-4 and IFN-y pro-
duction on cells that had undergone the same number of
divisions (Fig. 6 B). While IL-12 and IL-4 exerted the ex-
pected Th1l and Th2 polarizing effect in TCR-stimulated
naive T cells, their effects on cytokine-stimulated cells was
surprisingly different. Indeed, under cytokine-driven con-
ditions, IL-4 failed to induce Th2 polarization and even
slightly enhanced Th polarization. Moreover, IL-12 not
only enhanced Th1l but also Th2 polarization. Comparable
results were obtained with Ty cells as well as with naive T
cells purified from cord blood. Addition of IL-7, IL-15, or
of DC-derived cytokines did not change the polarizing ef-
fect of IL-4 and IL-12 on TCR-stimulated cells (data not
shown). These results indicate that the effect of IL-12 and
IL-4 on polarization depends on the activating stimulus
e.g., TCR versus cytokines.

Discussion

The upregulation of cytokine receptors induced by
TCR stimulation is the basis of antigen-driven clonal ex-
pansion, which is mediated by yc-cytokines produced by T
cells in an autocrine fashion (43). We have shown here that
DCs as well as DC-derived cytokines (TNF-a, IL-6, IL-
10, and IL-12) promote T cell proliferation in response to
ye-cytokines. Like TCR stimulation, DC-derived cyto-
kines can upregulate IL-2/15R[3 and <yc chain expression

CCR7

T
anti-CD3
+CD28

Ty
+cytokines

Figure 5. Cytokine expanded T, differentiate and
switch chemokine receptor expression. CFSE-labeled

Tem
+cytokines

—» CFSE
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CD4" naive T and Ty, cells were stimulated with
plate-bound anti-CD3 and anti-CD28 or with cyto-
kines (IL-7, IL-15, TNF-a, IL-6, IL-10) and stained af-
ter 7 d with antibodies specific for the indicated surface

receptors (y axis, PE, or APC staining). One experi-
ment out of five.
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Figure 6. Cytokine-driven difterentiation of naive T
and Tey cells. (A) CESE-labeled CD4* naive T and

13 Tem cells were stimulated with TSST-pulsed DCs or
with cytokines (IL-7, IL-15, TNF-a, IL-6, and IL-10)

for 7 d. Intracellular IFN-y and IL-4 were measured
6 h after stimulation with PMA and ionomycin. Num-
bers indicate the percentage of cytokine-producing

mature
allogenic DC
(division 7).

cells. (B) CFSE-labeled CD4" naive T cells were stim-
15 ulated with allogeneic DCs or with cytokines (IL-7,
IL-15, TNF-a, IL-6, and IL-10) for 7 d in the absence
of IL-4 and IL-12 or in the presence of either IL-4 and

anti-IL-12 or IL-12 and anti-IL4. IFN-y and IL-4 pro-
3 duction were measured 6 h after stimulation with PMA
and ionomycin. The dot plots display cells, which had

(44, 45), thus inducing proliferation of naive T cells and
boosting that of memory T cells in response to yc-cyto-
kines. These findings suggest that DCs may play a dual role
in promoting both antigen-driven as well as homeostatic T
cell proliferation.

Several studies demonstrated a role for TCR tickling by
self-MHC molecules in promoting both survival of naive T
cell under steady-state conditions and their expansion and
differentiation in lymphopenic mice (9-15, 46). This
mechanism, however, is influenced by the capacity of each
TCR to interact with self=EMHC molecules (17) and would
inevitably lead to a skewing of the TCR repertoire. In
contrast, cytokine-driven proliferation can be induced and
tuned in the absence of TCR stimulation and represents a
driving force for the maintenance and expansion of a poly-
clonal repertoire. In both cases the level of stimulation will
depend on T cell density and competition for access to
DCs providing either selt~MHC molecules or cytokines.

Previous studies demonstrated that yc-cytokines play
nonredundant roles in T cell homeostasis in mice (26—30).

1717 Geginat et al.

undergone the same number of divisions. One repre-
sentative experiment out of six.

We found that cytokine responsiveness and cytokine re-
ceptor expression vary with the differentiation stage of T
cells. The responsiveness to IL-7 and IL-15 and the expres-
sion of the IL-2/15R 3-chain are progressively acquired as
naive T cells differentiate to Ty, and Tgy. While IL-7 acts
synergistically with IL-15 on all CD4* T cell subsets, only
Tgwm can directly proliferate in response to these cytokines,
as naive and Ty, require DCs or DC-derived cytokines to
upregulate the relevant receptors. In contrast to other yc-
cytokines, IL-4 is selective for naive T cells, an effect that
can be explained by the upregulation of the IL-4Ra chain
by IL-4 on naive but not on memory T cells. Altogether
these results reveal that yc-cytokine receptor expression is
regulated both developmentally and by signals from TCR
or DC-derived cytokines.

TCR- and cytokine-driven proliferation can be differen-
tially blocked by inhibitors that selectively target signal
transduction pathways. While TCR -driven proliferation is
inhibited by CsA and PP2, cytokine-driven proliferation is
completely resistant. Furthermore, the p38 pathway is acti-



vated in response to both TCR and cytokines stimulation,
although through different mechanisms. However, phar-
macolocical inhibition experiments indicate that p38 is es-
sential for cytokine-driven, but not for TCR-driven prolif-
eration. The reciprocal applies to ERK MAP kinases,
which are activated by both stimuli, but are essential only
for TCR-induced responses. Our results suggest an essen-
tial role for p38, besides its eftects on cytokine production
(47, 48), in antigen-independent T cell proliferation.

Cytokine-driven proliferation of human T cells in vitro
can also lead to differentiation. Our study has revealed a
striking difference in the differentiation capacity of naive T
versus Ty cells. While cytokine-expanded naive T cells
retain a lymph node homing phenotype (CD45RA7Y,
CCR77") and undergo only a very limited differentiation,
Tewm differentiate efficiently, losing CCR7 and acquiring
CCR5 as well as the capacity to produce high levels of
IFN-y and IL-4, comparable to those produced by effector
T cells. These findings indicate that Ty can generate cells
with the characteristics of Tgy, in an antigen-independent
fashion.

IL-12 is produced by DCs and was recently reported to
enhance homeostatic T cell proliferation in mice (49). The
polarizing effects of IL-12 and IL-4 in cytokine driven cul-
tures were unexpected, since IL-12 boosted IFN-y as well
as IL-4 producing capacity, while IL-4 boosted only IFN-y
production. While the paradoxical Th1 polarizing capacity
of IL-4 remains to be explained, its failure to induce Th2
polarization in this system is consistent with previous re-
ports indicating that Th2 polarization critically depends on
simultaneous TCR and IL-4R stimulation (50, 51)

Altogether our results suggest that Ty, cells might not
only self-renew, but also replenish the Tgy, pool. Indeed,
although Ty, cells are responsive to cytokines they may be
consumed as they enter peripheral tissues. Consistent with
this hypothesis is the fact that Ty, incorporate BrdU ex
vivo almost as efficiently as Tg,,, which on the other hand
have an enhanced rate of apoptosis (unpublished data). Fur-
thermore the high propensity of Ty, to undergo terminal
differentiation suggests that at least some of the proliferat-
ing Tpy may be generated by homeostatic proliferation and
differentiation of the Ty, pool. Under pathological condi-
tions, the rapid and extensive cytokine-driven differentia-
tion of Ty may induce large numbers of effector cells that
may damage sensitive target organs such as the gut (52). Al-
together these results provide a plausible mechanism for the
maintenance of a polyclonal repertoire of memory T cells
and for the generation of Tyy in the absence of antigen
from a Ty, pool.
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