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In this work, we aim to investigate whether information based metrics of neural activity
are a useful tool for the quantification of consciousness before and shortly after birth.
Neural activity is measured using fetal magnetoencephalography (fMEG) in human
fetuses and neonates. Based on recent theories on consciousness, information-based
metrics are established to measure brain complexity and to assess different levels of
consciousness. Different metrics (measures of entropy, compressibility and fractality) are,
thus, explored in a reference population and their usability is evaluated. For comparative
analysis, two fMEG channels were selected: one where brain activity was previously
detected and one at least 15 cm away, that represented a control channel. The usability
of each metric was evaluated and results from the brain and control channel were
compared. Concerning the ease of use with fMEG data, Lempel-Ziv-Complexity (LZC)
was evaluated as best, as it is unequivocal and needs low computational effort. The
fractality measures have a high number of parameters that need to be adjusted prior
to analysis and therefore forfeit comparability, while entropy measures require a higher
computational effort and more parameters to adjust compared to LZC. Comparison
of a channel with brain activity and a control channel in neonatal recordings showed
significant differences in most complexity metrics. This clear difference can be seen as
proof of concept for the usability of complexity metrics in fMEG. For fetal data, this
comparison produced less clear results which can be related to leftover maternal signals
included in the control channel. Further work is necessary to conclusively interpret results
from the analysis of fetal recordings. Yet this study shows that complexity metrics can
be used for fMEG data on early consciousness and the evaluation gives a guidance for
future work. The inconsistency of results from different metrics highlights the challenges
of working with complexity metrics as neural correlates of consciousness, as well as the
caution one should apply to interpret them.
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INTRODUCTION

Consciousness is known to be one of the characteristics that
make humans unique. But when does this aspect of the human
mind arise? Is it possible that consciousness already exists before
birth? From the 24th week of gestation, a fetus can process
sensory stimuli at a cortical level, as thalamocortical connections
are already established (Kostovi ć and Judaš, 2010). Long range
pyramidal neurons—which are known to be important for
conscious processing (Dehaene et al., 1998)—are developed
around week 26 (Lagercrantz and Changeux, 2009). Yet, it is
difficult to assess the conscious state of a fetus in the mother’s
womb. Fetal magnetoencephalography (fMEG) is a tool to
noninvasively investigate fetal brain activity in the last trimester
of pregnancy and in neonates shortly after birth (Preissl et al.,
2004). This measurement of fetal/neonatal brain activity makes
it possible to investigate neural correlates of consciousness and
pursue the question of the debut of consciousness in human life.

During the last decades, work in the field of disorders of
consciousness led to an increased interest in neural correlates of
consciousness. Neural processes that allow conscious experience
need to be highly integrated and differentiated, which are
properties that can be measured by complexity of neurological
data (Tononi and Edelman, 1998). In nature, complexity of
physiology is related to the adaptive capacity of an organism
(Costa et al., 2002). This is translated into physiological signals
with long-range correlations across various spatio-temporal
scales—a behavior that is named self-organization—that
indicate the presence of self-invariant and self-similar structures
(Pritchard and Duke, 1995). The self-organizational properties of
a complex system can be quantified by estimating its dimension
(Theiler, 1990), or its ability to compress information (Cover
and Thomas, 2012; Ruffini, 2017a).

For a system to be complex, it has to operate on several scales
and also show an interplay between those scales (Lutzenberger
et al., 1995). This is a property of a so-called chaotic system
and can be measured in space and time (Elbert et al.,
1994). Typically chaos in space is estimated with the fractal
dimension, which is defined as the dimension of a strange
attractor towards which a complex system evolves in phase-
space (Grassberger and Procaccia, 1983b). Thus, the fractal
dimension, namely D, describes the overall complexity of an
object, which can be the geometrical complexity, the space
filling property, the roughness of a surface, or the variation
of a time series. The fractal dimension D is defined by the
logarithmic ratio of change in detail with change in scale
(Di Ieva, 2016). This relates to the distinct characteristic of
a fractal, namely the property of self-similarity: i.e., pieces
of an object are similar to larger pieces of it as well as to
the whole object (Eke et al., 2002). In nature, fractals are
usually only statistically self-similar which means that smaller
excerpts are not necessarily exact copies of the larger ones, but
they are the same on average (Pritchard and Duke, 1995). In
contrast to fractal dimension, entropy gives information about
the dynamical properties of an attractor and not about its
geometrical shape (Rodríguez-Bermúdez and Garcia-Laencina,
2015). Chaos in time, therefore, relates to this stability and

sensitivity to initial conditions (Elbert et al., 1994; Baranger,
2000). Related to those properties of complex systems, several
measures were developed to quantify their complexity. The
sensitivity to initial conditions can be quantified in terms of the
Lyapunov exponent and the Kolmogorov entropy, also known
as information dimension (Theiler, 1990). Different entropy
measures, as well as the measure of compressibility, can be
employed for this. Ruffini (2017a) recently proposed a theory
of consciousness that considers the brain an engine that strives
to model the world with simplicity, while learning it is a result
of exchanging information with it. According to this theory,
the ability of the brain to compress information is an indicator
of consciousness.

In consciousness neuroscience, this quantification of
complexity is used in different scenarios. The main areas
of application are research with patients with disorders of
consciousness, anesthesia monitoring and sleep studies (e.g.,
Casarotto et al., 2016). For instance, Burioka et al. (2005) showed
that approximate entropy calculated on small segments of
electroencephalography (EEG) data decreases with depth of
sleep. In particular, there is a linear decrease from wakefulness
over sleep stage 1 until 4, while rapid eye movement sleep
showed values similar to wakefulness. Analysis of data from
EEG, MEG and intracranial EEG recordings confirmed this
drop of complexity with a drop in wakefulness (Mateos
et al., 2018). Complexity was calculated with entropy and
compressibility measures. Zhang et al. (2009) could differentiate
between active sleep and quiet sleep in newborns by means
of sample entropy (SE). Similarly, the dimensional complexity
of the EEG pattern measured by correlation dimension
(CD) was found to be higher in active sleep compared to
quiet sleep for infants in their 1st months of life (Janjarasjitt
et al., 2008b; Scher et al., 2009). Furthermore, scale-free
properties caused by the self-similarity of fractals can be used
to differentiate between sleep stages whereas an increase or
decrease of values depends on the scale-free parameter estimated
(Weiss et al., 2009).

In general, the measurement of this scale-free behavior
appears promising in the investigation of state transitions
(Weiss et al., 2009). Studies with Propofol anesthesia showed
a change in scale-free behavior before and after loss of
consciousness (Eagleman et al., 2018) and a difference between
wakefulness and loss of consciousness as well as recovery
from anesthesia (Tagliazucchi et al., 2016). Also with the
help of entropy measures, Eagleman et al. (2018) could
show a change in complexity of scalp EEG data before and
after loss of responsiveness in anesthesia patients. Similarly,
Schartner et al. (2015) could distinguish between loss of
consciousness during Propofol-induced anesthesia and wakeful
rest by means of entropy measures as well as compressibility
measures. Furthermore, higher entropy values were shown in
the EEG data of healthy control participants compared to
unresponsive wakefulness patients, matched for sex and age
(Sarà and Pistoia, 2010).

Compressibility measures in combination with transcranial
magnetic stimulation are widely used to distinguish between
patients with different disorders of consciousness (e.g.,
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unresponsive wakefulness state, minimally conscious state,
locked in syndrome) and healthy subjects in different sleep
stages. In addition, sedation with different anesthetics can
be differentiated (e.g., Propofol and Ketamine), whereby
in both cases patients are behaviorally unresponsive but
in case of Ketamine they report vivid dreams (e.g., Casali
et al., 2013; Sarasso et al., 2015; Casarotto et al., 2016; Bodart
et al., 2017; Rosanova et al., 2018). Moreover, a recent study
on MEG revealed increased lempel-ziv-complexity (LZC)
complexity during a psychedelic state of consciousness
induced using Ketamine, LSD, and Psilocybin compared to
a placebo effect (Schartner et al., 2017). Regarding other, related,
patient populations, schizophrenic patients have higher LZC
compared to healthy controls (Fernández et al., 2011), and
depressed patients have higher MEG pre-treatment complexity
that decreases after 6 months of pharmacological treatment
(Méndez et al., 2012).

These findings show that there are many valid approaches to
use complexity metrics to quantify consciousness, although to
our knowledge there are no studies that investigated complexity
on early consciousness. Yet, the exact relation of the different
metrics is hard to grasp and it is difficult to define a metric that
is most suitable for a specific purpose. Therefore, in the current
study, as we use a different type of data than previous studies,
we follow an explorative approach and apply numerous different
metrics to our fMEG data (Table 1). The aim of this approach
is to capture different aspects of complexity and compare the
metrics regarding their behavior towards this special type of
data and their usability when employing them to pursue a novel
question. In particular, data from fetal MEG recordings with
different gestational ages and additional neonatal recordings are
used in this study. The data included in the analysis previously
showed auditory event-related responses, which allowed for
identification of channels with high brain activity within the
sensor space. Such data are used, as it is otherwise difficult to
localize clusters of brain activity. The goal of the analysis is to
evaluate if complexity metrics are a useful tool for fMEG analysis
in the search for fetal consciousness.

MATERIALS AND METHODS

Fetal Magnetoencephalography
fMEG is a non-invasive tool to measure heart and brain
activity in fetuses in the last trimester of pregnancy and in
neonates shortly after birth (Preissl et al., 2004). For the
recording of fetal- and neonatal data, the SARA (SQUID
Array for Reproductive Assessment, VSM MedTech Ltd., Port

Coquitlam, BC, Canada) system installed at the fMEG Center
at the University of Tuebingen was used (Figure 1). To
attenuate magnetic activity from the environment, the device
is installed in a magnetically shielded room (Vakuumschmelze,
Hanau, Germany). The system includes 156 primary magnetic
sensors and 29 reference sensors. The magnetic sensors are
distributed over a concave array whose shape is designed
to match the maternal abdomen. Based on an ultrasound
measurement (Ultrasound Logiq 500MD, GE, UK) prior
to the fMEG recording, the position of the fetal head is
determined and is marked by a localization coil placed on
the maternal abdomen. Three additional localization coils are
placed on the spine, left and right side of the subject, to
track position changes in relation to the sensor array. An
ultrasound directly after the measurement is used to confirm
the fetal head position. In case of a change in position, datasets
are excluded. Auditory stimulation can be presented via a
balloon placed between the maternal abdomen and the sensor
array. Neonates get a small, child-appropriate earphone (Ear
Muffins from Natus, Biologic, San Carlos, CA, USA), placed
on one ear. For neonatal recordings, a cradle is attached to
the fMEG device. The neonate is attended by one parent
inside the measurement room and is measured asleep or
quiet awake.

Dataset
For the current analysis, fetal and neonatal data from previously
analyzed studies were used (Linder et al., 2014; Morin et al.,
2015). Both studies were approved by the local Ethical
Committee of theMedical Faculty of the University of Tuebingen
(No. 476/2008MPG1 and 339/2010BO1). All participants gave
written informed consent in accordance with the Declaration of
Helsinki and agreed on reuse of data for additional studies. The
auditory stimulation paradigm used in these studies consists of
an auditory oddball paradigmwith a 500 Hz tone as standard and
a 750 Hz tone as deviant. The standard occurs in 80% of times
in a pseudorandomized order. Each tone is 500 ms long with an
inter-trial interval of 1,500 ms. Forty-five fetal recordings were
selected from subjects where auditory event-related responses
were detected. They have a gestational age range from 29 to
39 weeks–15 of them in an early phase of the third trimester
(29–32 weeks), 15 in the middle (33–36 weeks) and 15 in a later
phase (37—39 weeks)—approximately uniformly distributed
over the whole age range. Fifteen neonatal recordings were
included with an age range from 4 to 46 days (mean = 17.47;
SD = 12.68). For all subjects, data with auditory stimulation
(‘‘audio’’) and data without stimulation (‘‘spont’’) is available. As
the length of the fetal datasets varies from 6 to 15 min, for all

TABLE 1 | Overview used metrics.

Concept investigated Method Objective

Entropy Multiscale entropy Measurement of self-similarity of time series by looking at repeating sequences on multiple scales
Entropy Multiscale permutation entropy Measurement of self-similarity of time series by looking at probability of patterns in data on multiple scales
Compressibility Lempel-Ziv-Welch compression Quantification of compressibility of time series
Fractality Correlation dimension Measurement of strangeness of attractor, towards which complex system evolves
Fractality Scale free approaches Detection of power-law exponent that describes scale free behavior and additionally description

of multifractal properties
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FIGURE 1 | Diagram of data acquisition and processing. Blue: analysis done for previous studies. Picture courtesy (left): University Hospital Tuebingen; written
informed consent for publication was obtained by subject (top) and caregivers (bottom).

of them only the first 6 min were used. The neonatal datasets all
have a length of 10 min.

Data Analysis
Preprocessing
As first step for all datasets, the maternal magnetocardiogram
and fetal magnetocardiogram were detected by template
matching or using the Hilbert transform algorithm and were
subtracted from the relevant signal, through signal space
projection (Vrba et al., 2004; McCubbin et al., 2006; Wilson
et al., 2008). One of the two methods was selected depending on
whichmethod detected themagnetocardiogrammore accurately,
which is the established procedure for fetal brain analysis (e.g.,
Linder et al., 2014). Matlab R2016b was used (The MathWorks,
Natick, MA, USA) for all further processing steps, except for the
calculation of the compressibility measure, where Python 2.7 was
used (Python Software Foundation1). Fieldtrip (Oostenveld et al.,
2011) was used to filtering and downsampling of data. All fetal
data were filtered between 0.5 and 10 Hz and all neonatal data
between 0.5 and 15 Hz which is the usual filtering range for
the analysis of event-related brain responses (Linder et al., 2014;
Schleger et al., 2014). Data were downsampled from 610.35 Hz to
256 Hz. An example dataset can be seen in Figure 2.

In the previous analysis of these datasets, five channels were
selected for the analysis of auditory event-related responses
(example for analysis procedure in Schleger et al., 2014). As
these were the five channels with the highest evoked brain
activity, they were selected as brain channels for this study
(‘‘brain’’). Additional to those five channels, five control channels
(‘‘control’’) were selected which were all more than 15 cm away
from the previously selected brain channels. By default, the five
channels were situated in the upper middle part of the sensor

1https://www.python.org/

field. This was suitable for all neonatal recordings due to the
similar positioning of the neonate on the sensor array. In fetal
recordings, if the fetus was positioned in a way that was too
close to the default control channels, resulting in selected brain
channels with a distance less than 15 cm, five channels in the
lower middle part were selected as control channels. As the five
brain channels showed similar behavior, for simplicity of the later
analysis only the brain channel with the highest amplitude, and
one control channel, were used. Distribution of selected channels
within sensor array can be seen in Figure 3. The usability
of a single channel for complexity analysis was previously
demonstrated (e.g., Scher et al., 2005). For later analysis the signal
was cut into windows of 1 min (Scher et al., 2009; Kaffashi et al.,
2013), to generate a more stationary signal. This results in six
time-windows for fetal data and ten time-windows for neonatal
data. If a time window included a signal that was higher than 1pT,
it was classified as containing an artifact and the concerning time
window was removed from the analysis.

Power Spectral Analysis
To provide amore traditional view on the data, we also calculated
power spectral density, using the Fast Fourier Transform
algorithm implemented in Matlab. Unlike described in the
preprocessing section, data were pre-filtered from 1 Hz to 35 Hz
to allow a better display of power in relation to frequency.
All other steps were the same. Mean power in the delta
range (1.5–3.5Hz) and theta range (4–8 Hz) was calculated for
further comparisons.

Complexity Metrics
To measure the informational complexity of the fMEG signal,
multiscale entropy (MSE) and multiscale permutation entropy
(MPE) were used, as well as LZC. Additionally, we included the
geometrical properties of the signal and measured its amount of
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FIGURE 2 | Example fetal magnetoencephalography (fMEG) dataset. Recording from subject in 38th week of gestation. Top: raw fMEG data trace, overlay of all
channels. Middle: trace after removal of maternal and fetal heart activity. Bottom: auditory event-related response. Green rectangle marks dipole that represents fetal
brain activity. Event-related peak from five strongest channels within this dipole is shown, whereas peak time is marked in green.

fractality. As an approximation for this, the CD, also known as
dimensional complexity (Janjarasjitt et al., 2008b), is calculated.
In addition, scale-free behavior, which is a basic property of a
fractal, was taken into account.

Multiscale Entropy
MSE calculates SE for different time scales. If SE is calculated,
lower values indicate more self-similarity in time series and
the calculation is largely independent of recording length
and relatively consistent (Richman and Moorman, 2000). This
traditional entropy measure takes only one scale into account,
therefore MSE uses a coarse-grained time series with different
scaling factors which takes long range correlations into account
(Costa et al., 2002). By considering multiple scales, both

highly deterministic and completely random signals result in
low values, only complex signals can reach a high value
(McIntosh et al., 2008).

For the coarse graining step, the dataset is divided into
non-overlapping windows and the data points in each window
are averaged. SE is based on the definition of Kolmogorov
entropy and is defined as the negative logarithm of the
probability of two sequences that are similar for m points, to be
similar at the pointm + 1 as well (Richman andMoorman, 2000).
Equation 1 describes the calculation of SE for one scale whereas
B is the number of template matches of length m and A the total
number of matches of length m + 1. r describes the tolerance
within which two points are accounted as similar (Richman and
Moorman, 2000).
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FIGURE 3 | fMEG sensor array with selected channels. Blue: default control channel; green: alternative control channel (if default is closer than 15 cm to brain
channel); yellow: selected brain channels. Left: fetal recordings; right: neonatal recordings.

SE (m, r,N) = −ln
Am (r)
Bm (r)

(1)

For the calculation of MSE, the ‘‘msentropy’’ function out of the
WFTB Toolbox (Goldberger et al., 2000; Silva and Moody, 2014)
was used. The parameters used in the current analysis are guided
by the default parameters described by Costa et al. (2005). We
used m = 2, r = 0.15 (15% of the standard deviation of the time
series) andN = 15360 which is a bit lower than the recommended
N = 2∗104 but was selected in terms of comparability of the
different methods and did not show any disadvantage compared
to an example analysis with a larger N. We chose a window
size between 1 and 20 to calculate the SE for 20 different scales
whereas scale one equals the original time series. A time series
is considered as more complex than another if a majority of
scales show higher entropy values (Costa et al., 2005). For that
reason, we used the average MSE over all scales for all further
comparisons. To get an impression on the behavior of MSE over
different scales, values are displayed in Figures 4A,B.

Multiscale Permutation Entropy
MPE calculates permutation entropy (PE) for multiple time
scales. In comparison to other complexity measures, PE is very
robust towards noise (Bandt and Pompe, 2002; Zanin et al.,
2012). PE looks at different patterns within a time series with
the idea that those patterns do not have the same probability of
occurrence and that this probability can be informative regarding
the underlying dynamics of the system (Zanin et al., 2012). PE
uses short samples of a time series to look at their permutation
patterns and their frequency of occurrence in relation to all
possible permutation patterns (Bandt and Pompe, 2002). PE
can be used to quantify complexity of a dynamical time series
as it refers to its local order structure (Ouyang et al., 2013).
A large value of PE indicates that all permutations are equally

likely, a value close to zero signifies a very regular time series
(Ouyang et al., 2013).

MPE was calculated using the ‘‘MPerm’’ function by Ouyang
(2012, November 21)2. Like for MSE, the first step is a coarse
graining where we selected the same time windows as in the MSE
calculation. In this study, the short samples had a length of 4 and
a time delay of 1 which corresponds to the default values. Like
for the MSE, the average MPE over all scales was used for further
comparisons. Values of MPE over different scales are displayed
in Figures 4C,D.

Lempel-Ziv-Welch Compressibility
LZC is a measure closely related to Kolmogorov complexity and
Shannon entropy (Gao et al., 2011), and is originally described
by Ziv and Lempel (1978). For LZC, a dictionary that starts
with the shortest new sequence in a time series is built and
then adds longer sequences until it captures all non-repetitive
sequences (Ruffini, 2017b). The length of this dictionary defines
the amount of compressibility of a time series (Ziv and Lempel,
1978). LZC values increase with increasing frequency but not
with increasing amplitude as well as with increasing power of
noise and increasing signal bandwidth (Aboy et al., 2006).

To calculate LZC, a signal of length n has to be binarized
(with an alphabet with A = 2 symbols), which in our case is
done by a median split as a threshold. In particular, values
below the median are indicated as zero, whereas values above
the median as one. The median split is relatively robust
to outliers compared to other methods (Aboy et al., 2006).
After the binarization process, the data can be compressed
to a set of ‘‘words,’’ c(n), and the description length of the
dictionary (lLZC) is defined as the number of included words
times the bits needed to encode those words plus the bits

2Multiscale permutation entropy (MPE), version 1.3. Retrieved
from https://ch.mathworks.com/matlabcentral/fileexchange/37288-multiscale-
permutation-entropy-mpe-
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FIGURE 4 | Mean values of Multiscale Entropy (MSE) over time scales 1–20 for neonatal (A) and fetal (B) recordings. Solid lines represent brain channels and
dotted lines control channels for recordings with and without auditory stimulation (audio/spont). Corresponding plots for Multiscale permutation entropy (MPE) in
(C,D). Values for control channel (audio and spont) in (C) are overlapping.

needed to define a new symbol in the dictionary (Equation 2;
Ruffini, 2017a).

lLZC = c(n)log2
[
c (n)+ log2A

]
(2)

The complexity counter, c(n), is then normalized by the length of
the data string (Ruffini, 2017b). In the current analysis, ρ0, which
represents the c(n) normalized by the original string length, is the
value used to indicate LZC. A higher ρ0 value indicates higher
complexity, thus, less ability to compress. For a more detailed
description of the process of compression, the reader is referred
to Aboy et al. (2006), and for the algorithm used in the current
analysis to Ruffini (2017b).

Correlation Dimension
The CD is a measure for the strangeness of an attractor,
which is closely related to the fractal dimension D. In addition
to the geometrical properties of the attractor it takes the
dynamics of coverage of the attractor into account (Grassberger
and Procaccia, 1983b). The CD uses the statistics of pairwise
distances to estimate dimension and is based on the scaling of
mass with size (Theiler, 1990). Correlations between points of

long-time series on the attractor are used for that (Grassberger
and Procaccia, 1983b). Stationarity of this time series is a
requirement to obtain reliable results (Theiler, 1986). Therefore
each time windowwas tested for stationarity with the Augmented
Dickey.Fuller-Test (implemented in the Matlab Econometrics
Toolbox) and non-stationary time windows excluded from
analysis (2% of time windows). For a complete description of a
higher dimensional nonlinear system, a time series—which is an
observation in one dimension—has to be unfolded into a higher
dimensional space, the so called ‘‘embedding space’’ (Janjarasjitt
et al., 2008a). The process of embedding a time series in a higher
dimension is described by Takens (1981).

The CD is calculated using the correlation integral, defined
as the ratio of the distances between any two points that
are smaller than a certain radius and all possible distances
(Theiler, 1990). To determine the distance in the time series
of the points to be correlated, the time delay τ is introduced.
τ can be set with the help of the autocorrelation function
(Janjarasjitt et al., 2008a).

For the current analysis, the ‘‘gencorint’’ function was used
to determine the CD (Grassberger and Procaccia, 1983a; Albano
et al., 1988; Theiler, 1986; out of the Chaotic systems Toolbox,
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Leontitis, 20043). For setting the embedding parameter, we used
the false nearest neighbor algorithm (Kizilkaya, 20124; Kennel
et al., 1992), and determined an embedding dimension of four for
the current dataset. To determine the right time delay τ, an
autocorrelation function was calculated for each subject and time
window and the zero point of it was used as an individual value
of τ. If a time window showed an autocorrelation function with
a zero point <10, it was excluded from further analysis as such
a low value does not fit physiological data and is most likely
caused by an artifact in this time window. Except for those two
parameters all other parameters were set to the default values
suggested in the function. For algorithmic efficiency, the slope
of the CD can be used as an approximation of the CD (Theiler,
1990). In the current analysis, a linear fit over all points was
performed to determine this slope. The slope value was used for
all further comparisons.

Scale-Free Approaches
The self-similarity of a fractal can be expressed by amathematical
power-law with a distinct exponent (Eke et al., 2002). One of
these exponents is the Hurst exponent (H), which is also referred
to as ‘‘self-similarity parameter’’ (Zilber, 2014). It expresses the
probability that an event is followed by a similar event and is
related to the fractal dimension (D) by D = 2 – H. A value
of H = 0.5 shows that a time series is uncorrelated (e.g., white
noise). 0.5 < H is an indication for long range correlations
and H < 0.5 for long-range anti-correlations (Kantelhardt et al.,
2002). For some fractal processes one power-law exponent is
not enough to characterize them and a multifractal formalism
can be used to describe several exponents (Di Ieva, 2016). In
case of multifractality, the scaling function of a signal is not
linear anymore and can thus not be described by a single scaling
exponent H but by a nonlinear scaling function (Zilber, 2014).
Those multiple H are called Hölder exponents and can be used to
span a multifractal spectrum. The width of this spectrum (M) is
a measurement for the amount of multifractality (Zilber, 2014).

Self-similar processes also described as 1/f or scale free
behavior can be mainly observed in the infraslow frequency
range of the power spectrum (Zilber, 2014). This knowledge is
important for the selection of scale ranges in scale free analysis.
For the following analysis, the focus is on self-similar processes
in the range 0.5–2 Hz. To assess H and M, two methods
for multifractal analysis are employed. For both, all data were
normalized to avoid the influence of amplitude differences.

Multifractal Detrended Fluctuation Analysis
The multifractal detrended fluctuation analysis (MFDFA) is a
robust analysis for the estimation of the multifractal spectrum
of power-law exponents of a natural time series (Ihlen, 2012). Its
basis is the detrended fluctuation analysis (DFA), one of the most
popular methods to estimate scale-free behavior in physiological
signals which follows the idea that fluctuations within a signal

3Chaotic systems toolbox, version 1.0. Retrieved from https://ch.mathworks.com/
matlabcentral/fileexchange/1597-chaotic-systems-toolbox
4Minimum embedding dimension, version 1.0. Retrieved from https://ch.
mathworks.com/matlabcentral/fileexchange/37239-minimum-embedding-
dimension

are following a power-law as a function of the number of sample
points (Zilber, 2014). The root mean square (RMS) of a signal is
calculated over different scales with a certain number of points
within each segment. Larger scales are more affected by slower
fluctuations, smaller scales more by faster fluctuations (Ihlen,
2012). For each scale, the RMS of the individual segment—local
fluctuation—is calculated, and an overall RMS is computed from
these values. The slope of the values of this overall RMS over
different scales equals H. In case of MFDFA this calculation
is done for multiple orders. As a result, MFDFA obtains the
set of weighted overall RMS values whose slopes obtain Hurst
exponents for multiple orders. They can be used, to trace back the
multifractal spectrum and its width M (Ihlen, 2012). For a more
detailed description of the calculation steps, see Supplementary
Material and Ihlen (2012).

The MFDFA toolbox (Ihlen, 2012, MFDFA1 algorithm) was
used in this study. As the algorithm is built for random-walk
like signals—which are integrals of noise-like signals (Zilber,
2014)—first we checked whether the data resembles noise or
random-walk signals. This is determined by the value of H, which
was calculated by a simple DFA. As a cutoff H = 1.2 was selected
(< noise like,> random walk like; after Ihlen, 2012). If the signal
is noise like, it is transformed into a random-walk signal, and
if it is random walk like, this step is skipped. As a second step,
a general linear detrending of the signal is performed. For the
current analysis 19 equally spaced scales ranging from 128 to
512 data points, within a scale, were chosen. The orders were
selected to range from −5 to 5 in steps of 0.1. The value of Hq
at the order 2 equals H (Ihlen, 2012). The scale-free parameters
H and M were evaluated in the further analysis.

Wavelet-Leader Based Multifractal Formalism
Wavelet-leader based multifractal formalism (WLBMF) poses
a fast, theoretically efficient and robust analysis method for
multifractal properties of real-world data (Zilber, 2014). It uses
wavelet leaders to derive the multifractal properties of a signal by
the knowledge of the scaling exponents. This can be done because
wavelet leaders precisely reproduce the Hölder exponents of
a signal (Wendt et al., 2007). Wavelet leaders are defined as
the maximum wavelet coefficients within a predefined segment
(Ciuciu et al., 2008). The log-cumulants (c1-c3) of the scaling
exponents give information about the shape of the multifractal
spectrum.Whereas c1 equals its maximum, c2 its width and c3 its
asymmetry (Wendt et al., 2007; Zilber, 2014). For a more detailed

TABLE 2 | Comparison of usability of methods.

Method Computational Parameter Comparability Overall
effort space usability

MSE 3.11 s 3 high OK
MPE 5.69 s 3 moderate OK
LZC 0.29 s 1 high good
CD 37.8 min 7 moderate weak
MFDFA 7.09 s 6 low weak
WLBMF 2.84 s 7 low weak

Computational effort reflects the time to compute six time windows of one channel
of one dataset. Parameter Space quantifies the number of parameters that can be
manipulated within the analysis. Comparability relates to the abundance in related human
neuroscience literature.
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FIGURE 5 | Top: power spectral density of data used for current analysis (data smoothed over 200 data points for better visibility); solid lines represent brain
channels, dotted lines control channels. Middle: comparison of power in delta range for fetal (left) and neonatal (right) data. Bottom: equivalent for theta range.
∗Depicts significant difference (p = 0.025).

description of the calculation steps, the reader is referred to the
Supplementary Material.

For the calculation of the WLBMF, the toolbox described
in Wendt et al. (2007) was used. A Daubechies wavelet with
three vanishing moments was selected as a mother wavelet. The
scales for the WLBMF were chosen in accordance with the
scales of the MFDFA. To increase the reliability of the results,
Wendt et al. (2007) implemented a bootstrapping process to
obtain sets of log-cumulants, which opens up new possibilities for
statistical testing. In the present analysis, we used 100 bootstraps
and then averaged over the bootstrapped values to retrieve the
variables of interest. For a more detailed description see Wendt

et al. (2007). In the present study, we only evaluated c1 and
c2, whereby c1 is supposed to be equivalent to H and c2 to M
(Zilber, 2014).

Statistical Analysis
For statistical analysis, the results of all time windows of
a certain subject and condition were averaged. Those mean
values were then tested for normality with a Kolmogorov-
Smirnoff test. As they showed to be not normally distributed,
groups were compared with a Wilcoxon signed rank test. To
determine whether there is a trend over gestational ages, a
Pearson correlation was calculated. After Bonferroni correction,
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FIGURE 6 | Results from analysis of different metrics on data from neonates with auditory stimulation. ∗Depicts significant difference (p = 0.006).

significance levels were set to α = 0.006 for the complexitymetrics
and α = 0.025 for the additional power spectral analysis.

RESULTS

Usability of Methods
After testing several methods for determining complexity of
fMEG data, a first step was to evaluate those methods for
potential future use. As shown in Table 2, we evaluated them
in terms of computational costs, parameter space, comparability
regarding their prevalence in the literature and summarized this
with the term ‘‘overall usability.’’ Calculations were executed on
a multiprocessor machine [12 Intel(R) Xeon(R) CPU, X5660,
2.80 GHz; 96 GB RAM] without multicore support. The value
for computational cost is the time it took to calculate the results
of one subject with one channel and six time windows. LZC was
calculated fastest (0.29 s) followed by MSE, MPE and the scale-
free metrics (MSE: 3.11 s, WLBMF: 2.84 s, MPE: 5.69 s, MFDFA:
7.09 s). CD took a very long time for calculation (37.8 min).
Parameter space is defined as the number of parameters that have
to be adjusted within the analysis. Parameter space ranged from
1 (LZC) to 7 (CD and WLBMF). Thereby a low computational
effort is favored, as well as a small number of parameters that

can be adjusted. Abundance of literature is seen as an advantage,
to ensure comparability of results. Prevalence in literature is
assessed and subjectively estimated within the literature search
for this present work and only encounters related human
neuroscience literature. No literature search with formal search
criteria was performed. Overall LZC had the best overall usability
as it is unequivocal and fast and is therefore preferable for future
analysis. Nevertheless, this evaluation concerns the present field
and has only limited significance for other research questions and
other types of data.

Detection of Brain Activity
Power Spectral Analysis
Figure 5 (top) shows the power spectral density of neonatal, as
well as fetal data and the corresponding control channels. For
neonatal data, shape of the power spectrum clearly distinguishes
between brain and control channel, especially in the range from
0.5 Hz to 15 Hz, which is used for complexity analysis. For fetal
datasets, this differentiation is visually less clear, yet, the graph
clearly indicates that the major power is in the delta and theta
frequency range. Further comparisons in these frequency ranges
are shown in Figure 5. Comparison of brain and control channels
resulted in highly significant differences for neonatal audio and
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FIGURE 7 | Results from analysis of different metrics on data from neonates without stimulation. ∗Depicts significant difference (p = 0.006).

spont data in both delta and theta range (p < 0.001 in all cases).
For fetal data, a significant difference between brain and control
was only detected for audio data in the delta range (p = 0.001).
Interestingly, fetal audio and spont data differed in their power
in the delta range (p = 0.006).

Complexity Metrics
Neonatal Data
In the neonatal datasets, the comparison of brain vs. control
resulted in a significant difference for both audio and
spontaneous data for LZC, MPE and CD (all p < 0.001)
Differences for MSE in spontaneous data were marginally
significant (p = 0.007). In all cases, the control channel showed
higher values compared to the brain channel. For the scale-free
metrics in both cases, H/c1 could not differentiate between brain
and control but M/c2 showed a significant difference (p< 0.001).
In case of M, the channel with the brain activity appeared more
multifractal than the control channel, whereas in case of c2, the
opposite was observed. For detailed results, see Figures 6, 7.

Fetal Data
For the comparison of brain vs. control of in the fetal datasets, no
clear tendencies could be found. The LZC calculation, as well as

the MPE and CD metric did not reveal a significant difference,
neither for audio data nor for spontaneous data. MSE showed a
difference for audio data only (p > 0.001). Differences between
brain and control within the scale-free metrics did not hold after
correction for multiple comparisons expect c1 for audio data
(p = 0.006). For detailed results, see Figures 8, 9. The correlation
analysis did not show a trend over gestational age for the fetal
brain data for any of the metrics used.

DISCUSSION

The usability rating of the different metrics revealed that,
concerning the ease of use with fMEG data, LZC was evaluated
as best, as it is unequivocal and needs low computational
effort. The fractality measures have a high parameter space and
therefore forfeit comparability, while entropy measures require
a higher computational effort and more parameters to adjust
compared to LZC.

In the neonatal population, the channel with brain activity
showed lower complexity compared to the control channel,
measured by MPE, LZC and CD. As in this scenario, the control
channel records environmental noise, it shows us that these
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FIGURE 8 | Results from analysis of different metrics on data from fetuses with auditory stimulation. ∗Depicts significant difference (p = 0.006).

metrics can clearly differentiate between a physiological signal
and noise. This differentiation is supported by the results of
the power spectral analysis. These rather clear results can be
seen as proof of concept for the general usability of complexity
metrics in fMEG. The direction of the difference lies in the
nature of the comparison as LZC is highest for Gaussian
white noise (Aboy et al., 2006) and entropy maximal for
random time series (Costa et al., 2005). For fetal data, this
comparison produced less clear results—only MSE and one
scale-free metric showed a significant difference. This could
be due to the fact that the control channel does not consist
of pure environmental noise like in neonatal recordings but
can also contain leftovers of physiological signals produced
by fetus and mother. Magnetocardiographic activity of both,
mother and fetus, should be taken into account as major
confounds here. Results from power spectral analysis indicated
that there is no clear difference between physiological signals
and noise like it is seen in the neonatal recordings. This
uncertainty makes analysis with metrics, that are not established
for these kinds of signals challenging. The different preprocessing
steps that need to be performed, to evaluate fetal compared
to neonatal data should be considered likewise, as two heart
signals need to be detected and removed instead of one. It is

worth mentioning in this context, that the magnitude of the
maternal heart signal is significantly stronger than the fetal brain
signal (Figure 2).

The inconsistency of results from different metrics highlights
the challenges of working with complexity metrics as neural
correlates of consciousness, as well as the caution one should
apply to interpret them. Especially, if a dataset consists of as
many different aspects as fMEG data does, the choice of the
right metric is crucial. Therefore, there is a need for more
systematic, comparative studies, to evaluate the relations of
different complexity metrics as well as their sensitivity to small
changes in analysis parameters. Entropy measures during sleep,
for example, can reverse their direction, depending on the time
scale used for calculation (Miskovic et al., 2019). Based on
the assumption, that when using multiple scales to calculate
entropy, random signals result in lower entropy values than
complex signals (McIntosh et al., 2008), in the current study
we would have expected higher MSE and MPE values for the
brain compared to control channel, especially in neonatal data.
Yet, we found the opposite in our results; at least when using
a scaling range up to 20. Shapes of MSE curves displayed in
Figure 4A indicate that there might be a higher complexity for
brain signals in a scaling range larger than 20. As the number
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FIGURE 9 | Results from analysis of different metrics on data from fetuses without stimulation. No significant differences after Bonferroni correction.

of data points left for SE analysis decreases with increasing
scale, testing even larger scales is challenging for the present
analysis. Because we are looking at activity in a frequency range
below 15 Hz, it is nevertheless possible that larger scales reveal
more information about patterns in brain activity compared
to smaller scales. This challenge—regarding small changes in
analysis parameters—especially accounts for metrics with high
parameter space like the scale-free metrics that even showed
contradicting results in our analysis (M and c2 in neonatal data).
The claim of these measures being equivalent (Zilber, 2014) did
therefore not hold for the present results. Besides the analysis
parameters, the preprocessing steps play a crucial role. We can
see this for example in the relatively low LZC values throughout
our results, that are related to the previous bandpass filtering
of our data, as LZC values decrease with decreasing signal
bandwidth (Aboy et al., 2006). This implies that LZC results
from different studies, using different filter settings are difficult
to compare.

Further work is necessary to conclusively interpret results
from this analysis of fetal MEG recordings. Even if largely
explorative, this study shows that complexity metrics can be used
for fMEG data and the evaluation gives a guidance for future
work. Establishing information based metrics of neural activity

for the quantification of consciousness before and shortly after
birth still needs additional studies. The broad usage of LZC
across a variety of studies, in combination with its use in earlier
work on consciousness research, makes this metric especially
interesting when pursuing this topic, as results can be compared
to other subject populations. Yet, we need a better understanding
of each metric and its sensitivity to different aspects of the
data as well as their relation to different aspects of complexity,
to use these empirical measures of complexity to assess the
conscious state of a growing human being. However, as a precise
assessment of fetal states is still challenging, the implementation
of complexity metrics into fMEG research is a goal, that opens up
interesting possibilities.
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