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Abstract

Globally, approximately | in 4 cancers in women are diagnosed as breast cancer (BC). Despite significant advances in the
diagnosis and therapy BCs, many patients develop metastases or relapses. Hence, novel therapeutic strategies are
required, that can selectively and efficiently kill malignant cells. Direct targeting of the genetic and epigenetic aberrations
that occur in BC development is a promising strategy to overcome the limitations of current therapies, which target the
tumour phenotype. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, composed of
only an easily modifiable single guide RNA (sgRNA) sequence bound to a Cas9 nuclease, has revolutionised genome
editing due to its simplicity and efficiency compared to earlier systems. CRISPR/Cas9 and its associated catalytically
inactivated dCas9 variants facilitate the knockout of overexpressed genes, correction of mutations in inactivated genes,
and reprogramming of the epigenetic landscape to impair BC growth. To achieve efficient genome editing in vivo, a vector
is required to deliver the components to target cells. Gold nanomaterials, including gold nanoparticles and nanoclusters,
display many advantageous characteristics that have facilitated their widespread use in theranostics, as delivery vehicles,
and imaging and photothermal agents. This review highlights the therapeutic applications of CRISPR/Cas9 in treating BCs,
and briefly describes gold nanomaterials and their potential in CRISPR/Cas9 delivery.

Keywords
Breast cancer, genome editing, CRISPR/Cas9, gold nanoparticles, gold nanoclusters

Date received: 16 April 2020; accepted: 3 December 2020

Introduction estrogen receptor (ER) and display relatively good prog-
noses.” HER2+ BCs, which are HR- and HER2+, are
treated using anti-HER2 drugs. Triple negative breast can-
cers (TNBC) are HR- and HER2-, with chemotherapy and

Advances in the treatment of breast cancers (BCs) have led
to significant improvements in the overall survival of
patients. Local therapies, including surgery and radiother-
apy, in conjunction with adjuvant targeted therapies and
chemotherapy are mainstays of BC treatment.' Based on
immunohistochemical staining of hormone receptors (HR),
human epidermal growth factor receptor-2 (HER2), and
ki67, a marker of cell proliferation, BCs can be divided
into four subtypes which respond to different therapies. The  Corresponding author:
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Figure 1. The process of genome editing by exploiting the natural repair mechanism of DSB repair, leading to random insertions or

deletions via NHE] or precise corrections via HDR.

radiotherapy as the options for treatment. The aggressive
nature of TNBC coupled with the lack of targeted therapies
has led to poor prognosis and high risk of relapse and
metastasis compared to other subtypes.®

Current treatments such as chemo- and radiotherapy are
associated with adverse physical and cognitive side effects,
as they are non-specific and also affect healthy cells.’
Many patients show intrinsic or acquired resistance to tar-
geted therapies, chemotherapy, or radiotherapy, causing
treatments to fail and leading to metastasis.”® Even if
tumours display a pathologic complete response, the risk
of relapse remains for decades after therapy.’ A major issue
with current therapies is their dependence on the tumour
phenotype. BCs show great molecular heterogeneity, with
mutations in a variety of genes controlling cell growth,
epigenetic modification, and transcription ultimately
resulting in the malignant phenotype. Thus, genome editing
techniques, which can directly target these genetic changes,
show great promise in cancer therapy.

Genome editing involves modification of DNA, through
the insertion, removal, or replacement of sequences. Cur-
rent methods exploit endonucleases that introduce double-
stranded breaks (DSB) into the DNA. Following cleavage,
the DNA may be repaired by non-homologous end joining
(NHEJ) or homology-directed repair (HDR) (Figure 1).
HDR uses a donor DNA molecule as a template for

repair.'® In this way, precise changes that correct gene
function can be introduced into the genome. In contrast,
NHEJ is an error-prone process in which the two ends of
the DSB are ligated together, often leading to insertion or
deletion (indel) mutations that may knock the gene out.'”
Since NHEJ targets the gene directly, it allows for more
effective silencing than RNA interference (RNAi), which
indirectly silences gene expression by targeting mRNA.

Four genome editing systems with different programma-
ble nucleases have been developed: meganucleases, which
have not seen extensive use for genome editing, zinc finger
nucleases (ZFNs), transcription activator-like effector
nucleases (TALENS), and the clustered regularly inter-
spaced short palindromic repeats (CRISPR)/Cas system.
Despite being the youngest genome editing system,
CRISPR/Cas9 has shown the most potential in cancer ther-
apy, and will be discussed in this review.

CRISPR/Cas9

In contrast to earlier genome editing systems, which med-
iate sequence recognition through protein-DNA interac-
tions, the CRISPR/Cas system uses an RNA molecule to
mediate binding. It is derived from an prokaryotic adaptive
immune system protecting against invading viruses and
plasmids, and is composed of CRISPR loci, comprised of
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Figure 2. Structure of the chimeric sgRNA, containing the targeting sequence of the crRNA and the hairpin loops of the tracrRNA.
The repeat sequences of the crRNA and tracrRNA sequences are linked via a tetraloop to form one structure.
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Figure 3. CRISPR/Cas9 mediated cleavage of DNA. The sgRNA mediates binding to the 20 nt directly upstream of the 5'-NGG-3' PAM

sequence on the target strand.

alternating repeat-spacer units, and CRISPR-associated
(Cas) proteins.'' Immunisation occurs in three stages: (i)
adaptation, in which invading nucleic acids are cleaved by
a complex of Cas endonucleases and the resulting frag-
ments, called protospacers, are integrated into CRISPR loci
between identical repeats; (ii) expression, in which the
locus is transcribed into pre-CRISPR RNA (pre-crRNA)
and processed into individual CRISPR RNA (crRNA)
molecules; and (iii) interference, where the crRNA directs
a single Cas endonuclease or a protein complex to cleave
the foreign nucleic acids.'*"?

CRISPR/Cas systems are broadly classified into two
classes, further divided into six types and numerous sub-
types, based on the mechanism by which recognition and
cleavage occur.'® Class 1 systems use protein complexes to
effect cleavage, while Class 2 systems only utilise one
protein, making them more applicable for genome edit-
ing."> All Class 2 systems (types II, V, and VI) have certain
targeting constraints. Type VI systems, which utilise Cas13
to cleave RNA, recognise a protospacer flanking sequence
(PFS).'® Type Il and V systems recognise a conserved 2—5
bp sequence called the protospacer adjacent motif

(PAM).'” Type V Cas proteins recognise a PAM directly
upstream of the protospacer, such as 5'-TTTN-3' recog-
nised by the Casl2a, or Cpfl, protein."*'® In contrast, the
Cas9 endonuclease of type II systems recognise a PAM
downstream of the protospacer.'®

The type II CRISPR/Cas9 system is the best charac-
terised and most commonly used CRISPR system. For clea-
vage, Cas9 requires an additional RNA molecule called the
trans-activating crRNA (tractrRNA), which facilitates
crRNA binding and maturation. However, for use in gen-
ome editing, the tractrRNA and crRNA can be connected
via a linker into one molecule termed the single guide RNA
(sgRNA) (Figure 2).

Cas9 undergoes a conformational change following
binding of the gRNA, allowing it to search for the PAM
sequence and cleave the target strand 3 bp upstream of the
PAM (Figure 3).° Cleavage is dependent not only on the
presence of the PAM, but also on the complementarity of
the “seed” sequence, the 10—12 nt of the target sequence
adjacent to the PAM.?' The Streptococcus pyogenes Cas9
(spCas9) is the most popular Cas9 used for genome editing.
It is a large 1368 amino acid protein; however, it recognises
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a short 5'-NGG-3' PAM sequence compared to orthologues
from other bacterial species.'’

The simplicity of CRISPR/Cas9 has made it the most
used genome editing system. Compared to earlier systems,
it is cheaper, easier to design, and can be retargeted without
the need for protein engineering.”> The PAM requirement
limits the choice of target sequence; however this may be
overcome by using different Cas proteins, or spCas9 var-
iants that have been modified to recognise different
PAMs.?*?* The CRISPR system is also highly versatile and
catalytically inactivated Cas9 s (dCas9), with mutated
nuclease domains, have been conjugated to a variety of
proteins and enzymes to perform different functions.
CRISPR interference (CRISPRi) and activation (CRISPRa)
techniques fuse dCas9 s with transcription repressors, such
as the Kriippel associated box (KRAB) domain, or activa-
tors, to inhibit or promote transcription, respectively.?>°
Fusions with DNA methyltransferases (DNMT) and DNA
deaminases can be used to modify methylation patterns and
specific bases. These variants greatly broaden the scope of
CRISPR applications in treating diseases such as cancer,
which result from a variety of mutations.

Therapeutic potential of CRISPR in BC

CRISPR/Cas9 is a powerful tool for the study and treat-
ment of various cancers, including BCs. Genes involved
in cancer development are often categorised into two
broad groups: proto-oncogenes, which promote cell
growth and proliferation and, when mutated or activated
drive tumour development; and tumour suppressor genes
(TSGs), which are involved in DNA repair and control of
cell growth, which when mutated or inactivated, lead to
genomic instability and uncontrolled proliferation. Many
different types of mutations, at the nucleotide, transcrip-
tional, and epigenetic levels, may lead to their aberrant or
inhibited expression. CRISPR/Cas9 and its variants can
target mutations at each level and thus have great potential
in treating BCs.

Targeting oncogenes and TSGs

Genes encoding growth factors and their receptors, tran-
scription factors (TFs), signalling transducers, and chroma-
tin remodelling proteins have oncogenic potential.?’
CRISPR/Cas9 can be used to target these oncogenes
directly, knocking them out and inhibiting cancer growth
through various mechanisms. The technique has been suc-
cessfully applied to knocking out both cellular and viral
oncogenes in diverse cancer models, including leukae-
mia,”® cervical cancer,29 endometrial cancer,>® and prostate
cancer.’! The PI3KCA, HER2/ErbB2, and MYC oncogenes
have been implicated in BC.** Knockout of HER?2 has been
observed to reduce the viability of HER2+ BT-474 and
SKBR-3 cells.*® Notably, targeting of HER2 exon 12 pro-
duced a truncated protein with a dominant negative

function rather than knocking out protein expression, sug-
gesting that knockout of all copies of an oncogene in cancer
cells may not always be necessary to exert a therapeutic
effect. In vitro CRISPR/Cas9-mediated knockout of the
Lipocalin 2 (Lcn2) oncogene, implicated in BC growth and
metastasis in TNBC cells, did not show reduced cell pro-
liferation, but instead inhibited cell migration by suppres-
sing epithelial to mesenchymal transition, while in vivo
treatment led to significantly reduced tumour growth.>*

Alternatively, oncogenes can be targeted indirectly, by
inhibiting aberrant transcriptional programmes that lead to
overexpression. The upregulation of the MYC oncogene,
overexpressed in 30-50% of high grade BCs, is often
mediated by super enhancers, regions surrounding the gene
bound by enhancer elements that bind TFs.>> 7 TF binding
can be impaired through CRISPR/Cas9-mediated mutagen-
esis or dCas9-DNMT-mediated methylation of the binding
site, both of which have been observed to reduce MYC
expression and cell proliferation in vitro.*® CRISPRIi stra-
tegies have also shown potential in suppressing oncogene
expression in squamous cell carcinoma cells and may be
applied to BC therapy.*®

Mutations in multiple TSGs such as PTEN, BRCAI and
BRCA?2 have been identified in BCs. These TSGs play
central roles in maintaining genome integrity by directing
repair of DSBs through HR and NHEJ, and by ensuring
progression of replication forks and restarting stalled
forks.>®*! Restoring TSG function is more difficult than
knocking out an oncogene.** TSG expression, which may
be repressed by dysregulated TFs or hypermethylated pro-
moters, can be promoted using CRISPR variants. Expres-
sion of the PTEN TSG, whose loss is associated with more
aggressive BC, has been activated in TNBC SUM159 cells
using a CRISPRa approach, fusing dCas9 with the VPR
domain consisting of the transcriptional activators VP64,
p65, and Rta.**** Hypermethylation of TSGs, including
PTEN and BRCAI, represses their expression.*> 7
Removal of methylation can be facilitated by fusion with
ten-eleven translocation (TET) dioxygenases. These
enzymes convert 5-mC to 5-hydroxymethylcytosine
(5-hmc), which is corrected to C during DNA replication,
removing methylation.*®*’ dCas9-TET fusions have been
used to demethylate the BRCAI gene in vitro in MCF-7 and
HeLa cells, upregulating BRCAI expression and enhancing
the cytotoxic effect of the chemotherapeutic Mitomycin-C.*’
Fusion of dCas9 with an R2-stemloop, a short RNA
sequence that recruits the DNMT1 enzyme and inhibits its
activity, has also shown potential as a demethylation
strategy.”

CRISPR/Cas9-mediated HDR can be used to correct
small mutations, such as single nucleotide polymorphisms
(SNPs) or indels, that knock out TSGs. The TP53 gene is
estimated to be mutated in 30-35% of BCs and 80% of
TNBCs.>! While it is not a “pure” TSG, as it may undergo
gain-of-function mutations that drive oncogenesis, 7P53
remains a prominent target for therapy.*? Correction of the
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TP53 414delC null mutation in PC-3 prostate cancer cells,
leading to increased protein expression and apoptosis, has
been facilitated using CRISPR, highlighting its potential
for correcting mutations in BC.”* Base editing techniques
provide a more precise method of correcting SNPs than
HDR, as they facilitate corrections without inducing a
DSB, reducing the chance of NHEJ-mediated repair. These
techniques conjugate dCas9 to cytidine or adenosine dea-
minases. Correction of the 7P53 Tyr163Cys mutation in
HCC1954 BC cells has been achieved by fusing a Cas9
nickase with cytidine deaminase and uracil DNA glycosy-
lase inhibitor (UGI) proteins, facilitating conversion of the
mutant C-G pair to T-A.>* Adenosine deaminases convert
A to inosine, which bonds C, ultimately leading to replace-
ment of an A-T bp with C-G.>

Targeting DNA repair pathways

In addition to TSGs such as BRCA1/2 and PTEN, genome
integrity is also maintained by poly-(ADP-ribose) polymer-
ase (PARP) enzymes, involved in single-stranded break
(SSB) repair and restarting stalled replication forks.>®>’
Their inhibition impedes repair and replication, and has
synthetic lethality with HR deficiency in BRCA1/2-defi-
cient cancers. However, PARP knockout in these cancers
may not be as effective as treatment with inhibitors, as the
cytotoxic effect results from PARP trapping at the SSBs
rather than from PARP downregulation.’® ®® Instead,
PARP gene knockout may be used in conjunction with
platinum-based chemotherapeutics that induce DNA dam-
age. CRISPR targeting of the PARPI gene has been shown
to enhance the cytotoxicity of cisplatin in ovarian cancer
cells.®' The gene also presents a therapeutic target in BC
patients receiving concurrent chemotherapy, as co-
treatment with PARP inhibitors and the platinum-based
drugs has shown improved survival in metastatic TNBC
patients.®

Targeting the kinome

The kinome refers to kinase proteins involved in the phos-
phorylation of proteins and lipids.®® Their dysregulation is
a common feature of many cancers, including BC. The
tyrosine kinase family, which phosphorylate tyrosine resi-
dues, includes transmembrane receptor and cytoplasmic
kinases.®* Well-studied oncogenes such as HER2, PI3KCA,
and FGFR that are susceptible to knockout via CRISPR/
Cas9, are members of this family.®

Cyclin-dependent kinases (CDKs) are serine/threonine
kinases. They bind cyclins and regulate cell cycle progres-
sion through phosphorylation of the retinoblastoma (Rb)
TSG, and transcription and RNA splicing through phos-
phorylation of RNA polymerase II and TFs.®® CDK4/6
inhibitors have been approved for combination therapy
for HR+ BCs and THZ inhibitors have been developed
for transcriptional CDKs (tCDKs); however, the

development of drug resistance remains a potential
issue.®”-°® CRISPR/Cas9 knockout of the cell cycle CDK2
has been observed to induce cell cycle arrest in vitro in
cutaneous melanoma cells.®® This CDK is a potential tar-
get for TNBC treatment, as it has been observed to pro-
mote tumourogenesis in vivo, with inhibition inducing ER
expression in TNBC MDA-MB-231 cells, sensitising
them to ER-targeted therapies.”® Overactivity of tCDKs
can lead to transcriptional addiction, where cancers
become “addicted” to transcription of genes that drove
the initial stages of tumour formation, but remain neces-
sary for cancer cell survival after tumourogenesis.”' Their
knockout may thus induce tumour death. Knockout of
tCDKs has identified CDK7 and CDK9 to be required for
TNBC growth.”> CDK7 dependence was observed to be
TNBC-specific, with knockout leading to reduced prolif-
eration in vitro and reduced tumour growth in vivo.

Altering the epigenome

Epigenetic modifications are heritable changes to the DNA
that do not involve changes to the nucleotide sequence.
These modifications work together to regulate gene expres-
sion, and their dysregulation is thus a feature of tumouro-
genesis. The major mechanisms are DNA methylation,
histone modification, and non-coding RNAs (ncRNA).

DNA methylation commonly occurs on the C of CpG
repeats in promoter regions, called CpG islands, preventing
TF binding and thus inhibiting gene expression.”® The pro-
cess is carried out by DNMT1, DNMT3A, and DNMT3B
enzymes, which convert C to 5’-methylcytosine (5'-mC)
and ensure methylation is maintained during cell divi-
sion.”* In addition to TSG hypermethylation, hypomethy-
lation at the promotor level, facilitating expression of genes
promoting tumour growth; and at the genome level, poten-
tially destabilising chromosomes, have been observed in
BCs.”””77 These abnormal methylation patterns can be
altered using dCas9 variants, as described above, or by inhi-
biting mutated or overexpressed DNMT and TET
enzymes.’® % Current DNMT inhibitors are associated with
adverse side effects, and their non-specific mechanism of
action can induce global hypomethylation or demethylation
of oncogenes, potentially promoting cancer growth.®!:8?
RNAi-mediated knockdown of DNMTI has been observed
to inhibit transformation without inducing excessive
demethylation.*' DNMTI knockout by CRISPR/Cas9 has
shown significant anti-tumour activity in in vivo ovarian
cancer models, and can thus potentially facilitate knockout
of specific DNMT genes in BCs, inhibiting cancer growth
with fewer side effects than DNMT inhibitors.*® TET has
also been observed to be overexpressed in TNBC cells, indu-
cing hypomethylation, with CRISPR knockout reducing cell
migration and proliferation.®*

Histone post-translational modifications in transcription
start sites similarly influence DNA accessibility to TFs, by
controlling whether the chromosomes are tightly bound,
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forming heterochromatin with repressed TF binding; or
loosely bound, forming euchromatin open for transcrip-
tion.®> Histone acetylation is associated with weakened
DNA binding, promoting transcription, while methylation
may increase or inhibit transcription.®® Various aberrant
modifications have been identified in BC that alter the
chromatin state and gene expression patterns, resulting
from dysregulation of histone-modifying enzymes, such
as lysine-specific demethylase 1 (LSD1).8”°? RNAi
knockout of LSD1 has been observed to inhibit cellular
proliferation in BC cell lines.’® Histone-modifying
enzymes also modify non-histone proteins, altering their
activity and potentially promoting tumour growth.”> %>
Thus, overexpressed enzymes present a therapeutic target
for CRISPR/Cas9 knockout. Alternatively, fusions of
dCas9 with acetyltransferases,’® deacetyltransferases,”’
methyltransferases,”™”” and demethylases can potentially
be used to correct abnormal modifications, repressing
oncogenes and activating TSGs.

Most non-coding DNA is transcribed as ncRNA, some
of which conduct essential housekeeping and regulatory
functions. The most widely studied ncRNA are microRNA
(miRNA) and long non-coding RNA (IncRNA). miRNA
(~22 nt) regulate gene expression by binding complemen-
tary mRNA, leading to its degradation or repressed trans-
lation'%’; while IncRNA (>200 nt) alter chromatin states
and TF binding, and influence mRNA and miRNA activ-
ity.'®! Their dysregulated activity has been associated with
chemoresistance and metastasis in BCs.!? 1% However,
their knockdown by RNAI is inhibited by the short length
of miRNAs, and the nuclear localisation of some
IncRNAs.'°7-1% CRISPR/Cas9 knockout of IncRNA and
miRNA has been observed to impair growth and invasion
in bladder, ovarian, and hepatocellular carcinoma models,
and can potentially be applied to knockout in BC.'7-19%:11
Moreover, CRISPR has been observed to induce long-term
knockouts of miRNA in vitro in colon cancer cells.'®®
However, NHEJ may not efficiently knockout ncRNAs,
as non-coding sequences may tolerate indels.''! This may
be overcome by using multiple sgRNA to delete the gene, a
strategy which has shown potential for IncRNA knock-
out.''*!'3 CRISPRIi has also shown potential for inhibition
of ncRNA transcription in a study which identified the
PVTI promoter for the PVTI IncRNA to act as a tumour
suppressor, and can thus potentially be used to inhibit onco-
genic ncRNA.''"* Type VI Casl3 systems may also be
exploited to target and cleave ncRNA.

Reversing drug resistance

BCs may develop resistance to chemotherapeutics through
a variety of mechanisms. Resistance in HR+ and HER+
BCs may result from the loss of ERa and HER2 expression,
often resulting from epigenetic changes that silence these
genes.''>!1¢ Multiple SNPs associated with resistance,
such as ERa Tyr537Ser and Asp538Gly, which drive

constitutive expression by promoting interactions with
coactivators, and HER2 mutations Lys753Glu and Leu755-
Ser, have also been associated with resistance to lapatinib
and trastuzumab.'!”"!2° Resistance to PARP inhibitors may
result from BRCA reactivation or PARPI point muta-
tions.'?!"'?2 These mutations can be altered using
CRISPR/Cas9 HDR, or the previously described Cas9 var-
iants, conjugated to epigenetic modulators or base editors,
to re-sensitise tumours to therapy.

Multidrug resistance is often mediated by overexpres-
sion of the ATP-binding cassette (ABC) transporters that
remove drugs from cancer cells before therapeutically
active concentrations can accumulate. The P-glycoprotein
(P-gp), Multidrug Resistance-Associated Protein 1
(MRP1), and Breast Cancer Resistance Protein (BCRP)
transporters have been recognised as playing a major role
in resistance.'** Knockout of these efflux pumps facilitates
re-sensitisation to existing drugs and avoids the need to
develop new therapies.'** CRISPR-mediated knockout of
P-gp has been observed to increase chemosensitivity of
A2780/ADR ovarian cancer cells, and increase the intra-
cellular doxorubicin concentrations in resistant MCF-7/
ADR cells, leading to increased cell death following treat-
ment compared to unedited cells.'**!?

Immunotherapy

Immunotherapy involves boosting the immune response to
tumour cells. Cancers may avoid immune responses
through overexpression of immune checkpoint proteins,
normally responsible for preventing autoimmune
responses.'2® These proteins bind receptors on the surface
of immune cells, averting immune attack. The expression
of various checkpoint proteins has been observed in BCs
and particularly in TNBC, including CD155 and pro-
grammed cell death-ligand 1 (PD-L1), which recognises
the programmed cell death 1 (PD-1) receptor on immune
cells.'””"** CRISPR/Cas9 knockout of either PD-L1 or its
receptor may trigger an immune response against the
tumour.'*"*'** CRISPR knockout of CDKS5 has also been
shown to downregulate PD-L1 expression, inhibiting
tumour growth in vitro and in vivo.'?*13* shRNA-
mediated knockdown of CD155 has also been observed
to inhibit the growth of in vitro and in vivo BC models,
highlighting its potential in BC therapy.'**

Knockdown of checkpoint proteins may be used to
enhance the efficacy of chimeric antigen receptor (CAR)
T-cells, which express CARs recognising tumour-
associated antigens (TAAs).'*® Multiple TAAs, such as
HER2, mucinl, and TEMS8 have shown potential as targets
for BC CAR T-cell therapy.'*”'** CRISPR/Cas9 knockout
of PD-1 has been shown to enhance the anti-cancer activity
of CAR T-cells targeting mesothelin, overexpressed in
TNBC BT-459 cells.!*° However, T-cells must be isolated
from the patient and edited ex vivo in a laborious and
lengthy process. Universal T-cells eliminate the need for
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isolation; however, class I human leucocyte antigens
(HLA) and T-cell receptors (TCR) present on the surface
of donor T-cells must be removed to prevent graft-vs-host
disease.'*' CRISPR/Cas9-mediated HDR allows for simul-
taneous knockout of TCRs and/or HLAs and knockin of
CAR-encoding genes. Introduction of the anti-CD19 CAR
into the TCR locus has been shown using CRISPR, leading
to effective CAR expression while avoiding T-cell exhaus-
tion.'** Multiplex strategies, allowing simultaneous knock
out of TCRs, beta-2 microglobulin (B2 M), a subunit of
HLA-I, and other proteins including PD-1 and CTLA-4,
have also been used to generate allogeneic CAR T-cells
with enhanced anti-cancer activity.'#!-'43-144

Targeting cellular adhesion

Integrins are transmembrane proteins that function in cell
adhesion to the extracellular matrix (ECM).'*> When dys-
regulated, they play important roles in both tumour devel-
opment and metastasis, by promoting cell motility, growth
and survival, modifying the ECM to promote growth, and
facilitating survival of circulating cancer cells and meta-
static colonisation."*® CRISPR knockout of these integrins
may thus reduce the tumour-forming and metastatic poten-
tial of BC cells, as shown by knockout of integrin a5
(ITGAS), an integrin that promotes tumour cell migration
and metastasis to the lymph nodes and lungs.'**'*

Delivery of CRISPR/Cas9

Therapeutic efficacy of CRISPR/Cas9 is dependent on its
ability to reach target cells with minimal biodegradation.
The Cas9 and sgRNA may be delivered in the form of the
ribonucleoprotein (RNP), a plasmid, or as a combination of
Cas9 mRNA and sgRNA. Plasmids are stable and easily
synthesised, and can simultaneously encode and deliver all
required components. However, their large size, with the
~4.2 kbp spCas9 gene, and strong negative charge hinder
delivery.'*® Moreover, plasmids must first undergo tran-
scription and translation, with expression continuing for
prolonged periods after transfection, leading to delayed
editing and increased off-targets compared to RNP deliv-
ery."* In contrast, delivery of the RNP produces rapid
therapeutic effects, and its relatively short expression time
before protease degradation reduces the chance of off-
targets. However, the large protein size and the net negative
charge of the complex may interfere with cellular
uptake.’>® Delivery of the mRNA and sgRNA similarly
avoids the need for nuclear localisation and leads to tran-
sient Cas9 expression with reduced off-target effects.'”'
However, the instability of RNA and the long Cas9 mRNA
length of ~4500 nt complicates delivery.'*?

Delivery methods can be broadly categorised as physi-
cal, viral or non-viral. Physical methods include electro-
poration, hydrodynamic injection, and microinjection.
However, these techniques are often difficult to apply

in vivo and may damage cells.'>® Viral vectors have seen
widespread use due to their high transfection efficiencies;
however, issues such as their limited packaging size, diffi-
cult synthesis, and immunogenic and carcinogenic risks
have resulted in a shift to non-viral vectors, and nanopar-
ticles (NP) in particular.'>*!'>> NPs, ranging from 1-100
nm in size, have shown great potential as gene and drug
delivery vehicles due to their lower immunogenicity, tun-
able synthesis, and large loading capacity. Their large sur-
face area-to-volume ratio allows for coating with polymers
that facilitate CRISPR/Cas9 binding and protection, and
functionalisation with compounds that promote targeting
and increased circulation times.'>® Inorganic NPs, com-
posed of metals, magnetic compounds, selenium and silica,
have been widely investigated as delivery vehicles for
cancer therapy. Gold nanomaterials are among the most
popular and have the potential as carriers for CRISPR/
Cas9-mediated genome editing.

Gold nanomaterials

Gold nanomaterials display many unique optical and phy-
siochemical properties that facilitate their use as imaging
agents, biosensors, and vectors. Among their attractive
properties are their small size, and facile synthesis and
functionalisation. Their highly tunable synthesis allows for
modification of NP size and shape to optimise characteris-
tics for therapy. Moreover, the ability of gold nanomater-
ials to convert absorbed light energy into heat following
irradiation with near infrared light, leading to thermal abla-
tion of surrounding tumour tissue, permits their use as
photothermal therapy agents.'>’

Spherical gold nanoparticles (AuNPs) are among the
most popular NPs for gene and drug delivery. Their unique
optical properties include their localised surface plasmon
resonance (LSPR), the phenomenon where free electrons
on the NP surface oscillate in response to light exposure.
The electrons absorb and scatter light energy, facilitating
the use of AuNP as imaging agents.'>® AuNP are most
commonly synthesised using the citrate reduction method,
in which chloroauric acid (HAuCly) is reduced by triso-
dium citrate, to produce citrate-capped AuNPs 10-20 nm
in diameter and with a net negative charge.'>*'%* This
method can be easily modified by varying the ratios of
reagents to produce AuNPs of 15-150 nm in diameter.'®!

Gold nanoclusters (AuNCs) have more recently been
investigated as carriers, as their advantageous qualities
facilitate their use as simultaneous delivery and imaging
agents. These ultrasmall (<2 nm) NPs consist of only a few
to tens of Au atoms, imparting them with characteristics
unique from conventional AuNPs, such as the absence of
SPR and size-dependent fluorescence.'®? They display a
large Stokes shift, good photostability, resistance to photo-
bleaching, and low toxicity compared to conventional
fluorophores such as dyes and quantum dots.'®*'®* These
optical properties have led to AuNCs being widely studied
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as sensors and cellular imaging agents.'®>'®® AuNCs are
commonly synthesised through reduction of HAuCl, with
biomolecules such as peptides,'®'7° proteins,'**!”" and
polymers.'¢%!17217% Glutathione (GSH) is often used as a
capping agent in a simple and eco-friendly synthesis pro-
cess requiring no additional reducing agents, to produce
biocompatible AuNCs with a relatively high quantum
yield. 17175

For use as delivery agents, inorganic NPs are often
coated with polymers and conjugated to various ligands
to enhance stability, biocompatibility, and transfection.
As-synthesised capped AuNPs and AuNCs can easily bond
with cationic polymers, such as chitosan and polyethyle-
neimine (PEI), facilitating interactions with anionic cell
membrane components and anionic groups of other ligands.
Functionalisation can alternatively exploit the semi-
covalent interactions between sulphur and gold to bind
thiol groups, allowing conjugation with peptides, proteins,
and thiol-modified nucleic acids. The hydrophilic polymer
polyethylene glycol (PEG) is widely used to inhibit inter-
actions with plasma proteins, thus preventing uptake by the
reticuloendothelial system and increasing circulation times
and bioavailability. Specific tumour accumulation may be
achieved through functionalisation with targeting ligands
that bind receptors on the surface of the target cells, facil-
itating uptake by receptor-mediated endocytosis. In addi-
tion to HRs and HER2, BCs have been shown to
overexpress folate and transferrin receptors, and their
ligands are commonly attached to NPs for targeting.'’®
178 The difficulties associated with nuclear localisation can
be overcome through conjugation with nuclear localisation
signals (NLS), peptides that promote interactions with the
nuclear pores.'’® The cationic HIV-1 trans-activator of
transcription (TAT) peptide is the most popular NLS, and
also acts as a cell-penetrating peptide (CPP) promoting
transport across the cell membrane.'®°

Gold nanomaterials for CRISPR delivery

AuNPs and AuNCs are relatively novel vehicles for
CRISPR delivery and have not been exploited, compared
to viral vectors and organic lipid and polymeric NPs. While
they have not been used to mediate genome editing of BC,
they have shown their potential in studies delivering
CRISPR components to various malignant cells in vivo and
in vitro, achieving editing efficiencies comparable to other
delivery systems.

Arginine-coated AuNPs have been shown capable of
delivering RNPs, and facilitating AASV1 and PTEN knock-
down in vitro."®'"'"¥* AuNPs were able to enter cells via a
membrane fusion process, avoiding potential lysosomal
degradation, leading to editing efficiencies of ~20-30%.
RNP binding has been achieved by binding a thiol-
modified crRNA to the AuNP, and reacting the resulting
AuNP-crRNA with Cas9 to form the RNP.'®? Delivery of
the large CRISPR/Cas9 plasmid targeting the Plk-1 gene

has been described using lipid-encapsulated TAT-coated
AuNPs in in vitro and in vivo melanoma tumours.'®* Con-
trolled irradiation with 514 nm light following transfection
was used to promote plasmid release without inducing cell
death, producing a synergistic effect in tumour ablation.

The delivery of an HDR template can be achieved in
multiple ways using AuNPs, and may be performed simul-
taneously with the Cas9 and sgRNA due to AuNPs’ large
loading capacity. A layer-by-layer approach has been used,
in which the ssDNA template was complexed with a PEI
layer coating the AuNP-RNP.'®? Another study utilised
AuNPs complexed with thiol-linked ssDNA molecules that
bound the donor DNA and RNP, and coated with the poly-
mer PAsp(DET).'® These AuNPs achieved an in vitro
HDR frequency of 3-4%, significantly higher than lipofec-
tamine transfection, and facilitated in vivo correction of the
dystrophin gene.

The potential of AuNCs for CRISPR delivery has been
highlighted in several studies. Lipid-encapsulated TAT-
coated AuNCs carrying both the Cas9 protein and Plkl
sgRNA encoded as a plasmid produced editing efficiencies
of 26.2% in vitro, and significantly inhibited tumour growth
in vivo in melanoma models.'®® A proof-of-concept study
showed that GSH-AuNCs can self-assemble with Cas9 pro-
teins at physiological pH, producing spCas9-AuNC com-
plexes which dissociate under acidic pH.'"®” Transfection
with these complexes and sgRNA targeting the viral E6
oncogene in HeLa cells produced editing efficiencies of
34% and significantly reduced protein expression. These
Cas9-AuNCs could facilitate genome editing in systems
where the components (Cas9, sgRNA, template for HDR)
are delivered separately.

While AuNCs have not been exploited to deliver
CRISPR nucleic acids, they have shown potential as gene
delivery agents. PEI-coated AuNCs have facilitated
improved delivery of the EGFP gene compared to PEI in a
proof-of-concept study.'”> AuNCs capped with the positive
tetrapeptide K4 have also been shown capable of assembling
with DNA and RNA.'®

Conclusion

The use of CRISPR/Cas9 has exploded since it was first
adapted for use in genome editing in 2013."%%!%° Its sim-
plicity, ease of use, and versatility have led to its wide-
spread use in all aspects of cancer research. CRISPR/Cas9
has the ability to target any oncogenic mutation through
simple redesign of an RNA sequence, and provides a
means of exploiting the molecular heterogeneity of BCs
to tailor therapies to specific individuals, thus avoiding
treatment with ineffective or cytotoxic drugs. Persona-
lised treatments for BC, targeting the hormone and HER2
receptors, have significantly improved the outcomes of
many patients. However, CRISPR now allows for exten-
sion of these tailored treatments to individuals suffering
from TNBC.



Padayachee and Singh

However, before the progression of CRISPR therapies
into clinical settings, their safety must be thoroughly eval-
uated to avoid adverse side effects. Off-target cleavage is a
concern, as mismatches outside the PAM and seed
sequences in the sgRNA are tolerated.'®' The use of bioin-
formatics tools that evaluate sgRNA and identify possible
off-targets and spCas9 variants with improved fidelity
reduces non-specific activity.'”*'?* Studies have also
observed innate and adaptive immunity against the spCas9
protein since it originates from pathogenic bacteria.'*>!%®
Cas9-induced immune responses may also lead to
responses being raised against the edited cells. Further
studies are required to assess the likelihood of adverse
immune responses as, thus far, the majority of CRISPR
clinical trials (as listed on U.S. National Library of Medi-
cine’s site, ClinicalTrials.gov) focus on ex vivo editing of
T-cells. However, an ongoing trial (NCT03872479) is
assessing the safety of adenoviral-packaged CRISPR/Cas9
correcting the CEP290 gene, in the first trial to attempt
editing in humans.'”-!%®

Efficient and selective delivery of therapeutics is a uni-
versal issue faced in gene and drug therapy. However, the
development of CRISPR delivery systems will benefit from
the extensive research that has already been conducted.
AuNPs have proven themselves as delivery agents for gene
therapy, and show great promise for the delivery of
CRISPR/Cas9 systems. Their capacity for multi-
functionalisation allows for efficient delivery of all
CRISPR/Cas9 formats. Before their clinical translation, the
biodistribution and fate of various sizes and shapes of
AuNPs and AuNCs must be clearly determined, as gold
is non-biodegradable.

Overall, the CRISPR/Cas9 system can be applied to the
treatment of BCs to develop highly effective precision
medicines. With further optimisation, these systems may
produce treatments that overcome the limitations faced by
current therapies and significantly improve the survival of
patients suffering from BC.
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