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Abstract
Background: Multiple sclerosis (MS) is a progressive and neurodegenerative disease of the central 
nervous system. Its symptoms vary greatly, which makes its diagnosis complex, expensive, and 
time‑consuming. One of its most prevalent symptoms is muscle fatigue. It occurs in about 92% of patients 
with MS (PwMS) and is defined as a decrease in maximal strength or energy production in response to 
contractile activity. This article aims to compare the behavior of a healthy control (HC) with that of a 
patient with MS before and after muscle fatigue. Methods: For this purpose, a static baropodometric test 
and a dynamic electromyographic analysis are performed to calculate the area of the stabilometric ellipse, 
the remitting MS (RMS) value, and the sample entropy (SampEn) of the signals, as a proof of concept 
to explore the feasibility of this test in the muscle fatigue quantitative analysis; in addition, the statistical 
analysis was realized to verify the results. Results: According to the results, the ellipse area increased 
in the presence of muscle fatigue, indicating a decrease in postural stability. Likewise, the RMS value 
increased in the MS patient and decreased in the HC subject and the opposite behavior in the SampEn 
was observed in the presence of muscle fatigue. Conclusion: Thus, this study demonstrates that SampEn 
is a viable parameter to estimate muscle fatigue in PwMS and other neuromuscular diseases.
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Introduction
Multiple sclerosis (MS) is a 
neurodegenerative disease of the central 
nervous system, characterized by being 
progressive because damage spreads 
throughout the brain and spinal cord. It 
may cause physical or cognitive disability, 
as well as neurological problems in young 
adults.[1] About 85%–90% of patients with 
MS (PwMS) have a relapsing‑remitting 
course of the disease.[2] Relapsing‑remitting 
MS (RRMS) is characterized by relapses or 
flare‑ups that may have different durations 
and intensity of the symptoms and often 
result in transition to secondary‑progressive 
MS (SPMS).[3‑5]

MS affects women more than men, and its 
prevalence varies around the globe[6‑8] In 
Colombia, for instance, its prevalence ranges 
from 1 to 16/100,000 inhabitants,[9] which is 
why it was classified as an orphan disease 
according to Resolution 5265 of 2018 by the 
Ministry of Health and Social Protection.

The symptoms of MS vary greatly, which 
can cause it to be mistaken for other 
diseases. Currently, there are no clinical 
findings or complementary tests that allow 
its accurate diagnosis[10‑13] which makes 
its diagnosis complex, expensive, and 
time‑consuming[14,15]

Some authors have studied the symptoms 
experienced by PwMS before being 
diagnosed. For this purpose, they have 
analyzed the medical records of the 
5  years prior to the occurrence of the first 
demyelinating event and have found that 
the most prevalent symptoms include pain, 
sleep disorders, anemia, and fatigue.[16]

Up to 92% of PwMS may experience 
fatigue,[17] which has been defined as the lack 
of physical or mental energy to carry out 
daily living activities[18] and estimated based 
on the perception of patients or caregivers. 
Some studies have been developed 
to evaluate fatigue depending on the 
symptoms displayed by PwMS.[19] Muscle 
fatigue has been particularly quantified 
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using surface electromyography  (sEMG) in healthy 
controls  (HCs) and PwMS. The latter have been found to 
exhibit greater muscle fatigue during walking, a symptom 
associated with the disease.[20]

Moreover, sEMG signals of the upper and lower limbs in 
PwMS have been processed to obtain more specific data, 
such as average rectified value, mean frequency of the power 
spectrum, muscle fiber conduction velocity, and fractal 
dimension, which have been used as indirect indicators of 
muscle fatigue, particularly in the biceps brachii.[21]

Among these specific data, the sample entropy  (SampEn) 
of sEMG signals stands out, making it possible to quantify 
the complexity and randomness of a dynamic system 
represented by a time series. This measure reflects the state 
of a given signal from a new perspective in the nonlinear 
complexity domain rather than in the conventional time or 
frequency domains.[22]

According to the above, analyzing muscle fatigue in 
PwMS through sEMG signal processing can provide more 
information for the diagnosis and follow‑up of this complex 
disease. Therefore, this study seeks to develop a proof of 
concept for evaluating muscle fatigue using baropodometry 
and sEMG signal processing to analyze the root mean 
square  (RMS) value and the SampEn of the signals and 
determine whether these two characteristics significantly 
differ between a HC and a PwMS. The aim is to provide data 
that can help to conduct specific rehabilitation programs, 
considering the heterogeneity of the demyelinating lesions 
and their different and unique patterns in each patient.[23]

Methods
Muscle fatigue was quantified under static and dynamic 
conditions using baropodometry and sEMG (during walking), 
respectively. Participants included a female PwMS  (body 
mass index  [BMI] = 20.6) and a female HC  (BMI  =  20.3) 
with similar physical characteristics. The measurements were 
obtained in the Biomechanics and Rehabilitation Laboratory 
at the Instituto Tecnológico Metropolitano.

Inclusion criteria

The HC was an adult woman with no motor impairments 
and no medical history. The PwMS met the following 
inclusion criteria:  (a) an MS diagnosis clinically defined 
as RRMS‑SPMS according to McDonald’s criteria,  (b) 
age over  18  years  (46  years old),  (c) a score from 0 to 
3.5 in the expanded disability status scale,[24] and  (d) no 
history of other diseases affecting the musculoskeletal 
system, or heart or respiratory conditions. In addition, such 
subjects did not meet any of the exclusion criteria, which 
included:  (a) being pregnant,  (b) having had a MS relapse 
in the 3 months prior to the study, and (c) not being willing 
to provide written informed consent.[20,25‑27] The study 
protocol was approved by the Ethics Committee of the 
Instituto Tecnológico Metropolitano.

Signal acquisition

Baropodometry

The baropodometric analysis was performed using 
the EcoWalk plantar pressure plate  (Ecosanit, Arezzo, 
Italy). This system consists of a portable plate and a 
480 mm × 480 mm active matrix with 2,304 sensors. Its data 
acquisition frequency is 40  (noninterpolated) frames per 
second. In addition, it has 4100 color levels that represent 
the pressure levels detected mathematically. The sensors 
activated by each foot provide data for the identification 
and calculation of baropodometric variables such as body 
weight distribution and area of the stabilometric ellipse.[28]

To perform this test, a marker which serves as a visual 
reference point must be fixed to the wall at the subject’s 
eye level. Subjects are placed on the plantar pressure plate, 
making sure that:  (a) both feet are on the plate, separated 
by a distance equal to the width of the shoulders, and  (b) 
the image projected on the computer completely shows 
the plantar surface. Subjects must remain in this position 
for 60 s, which is the time the EcoFoot software takes to 
acquire the information. Measurements were taken before 
gait initiation and after muscle fatigue occurred.

Electromyography

Signals were obtained using sEMG, which is a technique 
that captures and measures electrical activity and changes 
in the action potential of muscles while at rest or during 
the performance of some activity.[29]

FREEEMG  (BTS Bioengineering, Milan, Italy), a 
sEMG device with wireless probes for the dynamic 
analysis of muscle activity, was used. Besides being 
compact  (41.5  mm  ×  24.8  mm  ×  14  mm) and 
lightweight  (13  gr/probe), this device wirelessly transmits 
data  (IEEE 802.15.4) to a PC through USB receivers  (2.0). 
Each probe is equipped with internal memory to ensure 
uninterrupted recording in case of temporary connection loss.

For the analysis of muscle fatigue during walking, 
electrodes were placed on the subjects’ tibialis Anterior 
(TA), medial gastrocnemius (MG), lateral gastrocnemius 
(LG), rectus femoris (RF), vastus medialis (VM), vastus 
lateralis (VL), semitendinosus (ST), and biceps femoris 
(BF) muscles  [Figure  1]. In the PwMS, they were placed 
on the left lower limb, as it is the most affected by this 
disease. In the HC, they were placed on the right lower 
limb because this was her dominant leg.

For electrode placement, subjects’ skin was prepared, 
and participants adopted different postures to facilitate 
the identification of the muscles and, thus, determine the 
correct location of the probes. Ag/AgCl electrodes with 
a conductive area not exceeding 10 mm2 were used, and 
the inter‑electrode distance was 20  mm. Electrodes were 
selected and placed in accordance with the Surface EMG 
Non‑Invasive Assessment of Muscles protocol.[30]
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Subsequently, subjects were instructed to walk on a 
treadmill at a self‑selected speed. sEMG signals were 
recorded for 60 s at two different moments:  (1) after a 
warm‑up and (2) after showing signs of muscle fatigue.

Signal analysis

Baropodometry

The sway of the body’s center of gravity in presence or 
absence of muscle fatigue  was analyzed by calculating 
the area of the stabilometric ellipses using the EcoFoot 
software (Ecofoot software (version 4.0), Ecosanit, Arezzo, 
Italy), as an increase in such area is associated with a 
decrease in body stability [Figure 2].[31]

Electromyography

For signal analysis, variables such as RMS value, whose 
increase is associated with the presence of muscle fatigue 
in MS patients,[20] and SampEn, which assesses the 
complexity of signals,[32] were calculated.

Root mean square value

This time analysis feature is widely used in the analysis 
of electromyographic signals because its result is directly 
associated with the amplitude of a given signal, which 
allows muscle electrical activity to be detected more 
clearly. Given a time series  {X1...., XN}, the RMS value 
can be calculated using the following equation:[33]

N
2
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Where RMS denotes the RMS value of the original signal 
and N, its length.

Sample entropy

The complexity of signals can be evaluated using 
different metrics, such as the SampEn algorithm,[34,35] 
SampEn is used to estimate the regularity of physiological 
signals  (including sEMG signals) for the evaluation of 
the properties of biological systems.[36] It is defined as the 
negative natural logarithm of the conditional probability 
that subseries of length m, which match pointwise within 
a tolerance r, will also match at point m  +  1. In addition, 
it assesses the nonlinear predictability of signals. To 
calculate the SampEn of a given time series  {x1..., xN}, 
the following equations[37] are used:
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Here, N is the total length of the observed time series; m, 
the embedding dimension; r, the tolerance factor (for which 
two subseries with a distance below its value are considered 
identical); and τ, the time delay expressed in the samples.

In this study, MATLAB software  (version  2020. b) 
was employed to calculate the SampEn of the signals, 
considering the following parameters: M  =  2, τ = 1, and 
r = 0.25 × standard deviation (SD), where SD is the SD of 
the signal. These parameters are commonly used to analyze 
the complexity of biological signals.[35]

Statistical method

From the RMS and Entropy values obtained for each 
muscle under consideration, from the HC and the PwMS, 
Bayesian methods were used to characterize the individual 
behavior of the differences and make comparisons between 
the data. Since, it allows to inference from the evidence 
observed in the data using Bayes’ theorem.[38‑40]

The procedure used to compare the two subjects  (HC and 
PwMS) states is called BEST (Bayesian estimation supersedes 
the t‑test). This alternative to t‑test produces posterior estimates 
for the means and SDs of the groups and their differences 
and effect sizes. Characterization was performed based on 
three parameters of interest: mean, SD, and freedom degrees, 
with the BESTmcmc function of the BEST package from 
R software  (4.1.3). The BEST assumes that the generative 
model for the data is a t‑distribution; in this case, the data 
points may be outliers to some degree.[41]

Results
This section shows the results obtained for the PwMS 
and the HC. For the baropodometric analysis, we present 
the estimated areas of the stabilometric ellipses and, for 
the electromyography analysis, the estimated RMS and 
SampEn values of the signal of each muscle.

Baropodometry

From the baropodometric analysis without muscle fatigue, 
we obtained an area of 56.49 mm2 and 660.49 mm2 for the 
HC and the PwMS, respectively. However, in the presence 
of muscle fatigue, those areas increased in both subjects: 
77.78 mm2  (HC) and 2,576.63 mm2  (PwMS). As observed, 
this area is greater in the PwMS in both cases.

Electromyography

Figures  3 and 4 show the RMS and SampEn results for 
the HC (circle) and PwMS (triangle). Absence of muscle 
fatigue (red) and  presence of muscle fatigue (black).
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In the HC, it decreased in factors between 0.126 and 
0.992, with the ST muscle exhibiting the greatest 
increase. In the PwMS, it increased between 1.064 and 
5.556  times, except in the ST muscle, which showed 
a decrease in the RMS value in the presence of muscle 
fatigue. In the PwMS, variation in this value is minimal 
for the BF muscle.

In the HC, it increased between 1.009 and 1.956  times, 
with the ST muscle exhibiting the greatest increase. In the 
PwMS, it decreased in factor between 0.470 and 0.990, 

except in the ST muscle, which showed an increase in the 
SampEn value in the presence of muscle fatigue.

Statistical analysis

For each of the muscles of interest, the RMS of the patients 
in the following situations is compared:
•	 HC, before and after performing the physical activity
•	 PwMS, before and after performing the physical 

activity
•	 PwMS and HC, before performing the physical activity
•	 PwMS and HC, after physical activity.

Figure 5: Posterior probability distribution for the difference of the RMS 
values in the RF muscle, RMS: Remitting multiple sclerosis, RF: Rectus 
femoris

Figure 6: Posterior probability distribution for the difference of the RMS 
values in the GM muscle, RMS: Remitting multiple sclerosis, GM: Gluteus 
maximus

Figure 3: RMS values for the PwMS and the HC in presence and absence 
of muscle fatigue Figure 4: Sample entropy values of the signals obtained from the patient 

with multiple sclerosis and the healthy control in presence and absence 
of muscle fatigue

Figure 2: Area of the stabilometric ellipses calculated based on the sway 
of the body’s center of gravity while standingFigure 1: Probe placement on muscles. Source: Authors’ own work
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Bayesian analysis was performed for the difference in the 
observed values. A posterior distribution density plot shows 
the credibility interval at 95% and the under curve area 
for the difference around the null value. The results for 
the RF and MG muscles are presented in Figures 5 and 6, 
respectively.

When performing the difference between the RMS values 
obtained in the RF muscle of the PwMS with respect to 
the healthy patient, it was found that the difference is 0.15. 
By estimating the parameters of the Bayesian model, the 
posterior probability distribution for the difference of the 
RMS values is shown in Figure  5, in which a value of 
0.129 is observed for the posterior mean, which is lower 
than the observed point value. The 95% credible interval 
for the difference corresponds to  (−30.6; 32) and the 
probability of observing a null difference between the two 
values of interest ranges from 49.7% to 50.3%.

The difference between the RMS values obtained in the 
GM muscle of the PwMS with respect to the healthy patient 
takes a negative value, indicating a higher RMS value in 
the healthy patient. By estimating the parameters of the 
Bayesian, the posterior probability distribution for the 
difference of the RMS values is shown in Figure 6, in which 
a value of 0.0464 is observed for the posterior mean, which 
is lower than the observed point value. The 95% credible 
interval for the difference corresponds to  (−38.9; 40) and 
the probability of observing a null difference between the 
two values of interest ranges from 49.9% to 50.1%.

Discussion
Baropodometry

The area of the stabilometric ellipses before and during 
muscle fatigue was found to be greater in the PwMS than 
in the HC. For instance, before muscle fatigue, it was 
11.69  times greater in the PwMS than in the HC, whereas, 
during muscle fatigue, such area in the HC was 33.13 times 
lower than observed in the PwMS, which suggests that 
this latter has less body stability. In addition, the area of 
the ellipses increased in both subjects in the presence of 
muscle fatigue, thus confirming its existence, as it results in 
a decrease in postural stability. This finding is supported by 
previous studies, which have reported that muscle fatigue 
is associated with postural stability, mainly in PwMS.[42‑44]

Electromyography

In the PwMS, the increase in the RMS value of the 
electromyographic signals observed in Figure  3 could be 
associated with the presence of muscle fatigue, which is 
in line with what has been reported in similar studies.[20] 
However, the ST muscle showed a different behavior in 
which the RMS value decreased during muscle fatigue. 
This could be related to this patient’s difficulty in bending 
the knee, as this muscle is directly involved in the said 
movement.[45,46] In the HC was observed a decrease in the 

RMS value of the electromyographic signal. Therefore, the 
behavior of RMS value between HC and PwMS is different. 
This result may help identify when a patient suffers from a 
muscle disorder that can have MS or other diseases.

In the PwMS, most of the SampEn values without 
fatigue were higher than with fatigue, except in ST and 
BF; the behavior without fatigue may be attributed to an 
impaired activation of the motor neurons that drive muscle 
fibers. This impairment, in turn, is due to alterations in 
the transmembrane ionic concentrations that limit the 
firing of the action potentials that affect the perceived 
sEMG signal,[43] which may manifest as an increase in 
the complexity of the signal. The action potentials in the 
membrane are generated when there is muscle activation. 
In this case, the exercise causes a constant activation, and 
the behavior randomly of signals can decrease; therefore, 
the SampEn decreases in the case of fatigue. In the PwMS, 
it is recommended to do exercises to control the symptoms, 
and it is possible that the action potentials were more stable 
with constant activation.

Some similar studies examined the differences in the 
activation patterns of the ST and BF muscles and 
reported conflicting results. However, the increase in the 
electromyographic activity of the BF muscle has been 
suggested to be an attempt of the neuromuscular system 
to contract the already stretched muscle fascicles,[41] which 
could explain the different behaviors of the ST and BF 
muscles in terms of SampEn in the PwMS.

In the HC, most of the SampEn values without fatigue 
were lower than with fatigue, and the principal differences 
were observed in ST and BF. The randomness in the 
signals is lower without fatigue because there is no delay 
in propagation velocity. With fatigue, muscle activation is 
generated and the action potentials may be more random.

The SampEn of the electromyographic signals obtained 
before muscle fatigue was found to be lower in the PwMS 
than in the HC in most muscles, because the PwMS has a 
demyelination and axonal neurodegeneration disorder that 
alters ion channels and membrane potentials, which may 
manifest as a decrease in the complexity of the signal.[44,45]

SampEn is currently being used in the analysis of biological 
signals to evaluate physiological characteristics and study 
neuromuscular disorders,[37] regardless of the processing of 
the signal, thus making it invariant to the noise captured 
during signal acquisition.[36]

Finally, this proof of concept shows the feasibility of using 
SampEn to estimate muscle fatigue in PwMS. Therefore, 
future work should concentrate on studying several MS 
patients with different demyelinating lesions that affect 
other muscle groups and that can be correlated with the 
diagnosis and follow‑up of this disease.
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