
����������
�������

Citation: Güven, E.; Afzal, M.;

Kazmi, I. Screening the Significant

Hub Genes by Comparing Tumor

Cells, Normoxic and Hypoxic

Glioblastoma Stem-like Cell Lines

Using Co-Expression Analysis in

Glioblastoma. Genes 2022, 13, 518.

https://doi.org/10.3390/

genes13030518

Academic Editor: Stefania Bortoluzzi

Received: 11 February 2022

Accepted: 12 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Screening the Significant Hub Genes by Comparing Tumor
Cells, Normoxic and Hypoxic Glioblastoma Stem-like Cell
Lines Using Co-Expression Analysis in Glioblastoma
Emine Güven 1 , Muhammad Afzal 2,* and Imran Kazmi 3

1 Department of Biomedical Engineering, Düzce University, Düzce 81620, Turkey; emine.guven33@gmail.com
2 Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
3 Department of Biochemistry, Faculty of Science, King Abdulaziz University,

Jeddah 21589, Makkah, Saudi Arabia; ikazmi@kau.edu.sa
* Correspondence: afzalgufran@ju.edu.sa

Abstract: Glioblastoma multiforme (GBM) is categorized by rapid malignant cellular growth in the
central nervous system (CNS) tumors. It is one of the most prevailing primary brain tumors, particu-
larly in human male adults. Even though the combination therapy comprises surgery, chemotherapy,
and adjuvant therapies, the survival rate is on average 14.6 months. Glioma stem cells (GSCs) have
key roles in tumorigenesis, progression, and counteracting chemotherapy and radiotherapy. In
our study, firstly, the gene expression dataset GSE45117 was retrieved and differentially expressed
genes (DEGs) were spotted. The co-expression network analysis was employed on DEGs to find
the significant modules. The most significant module resulting from co-expression analysis was the
turquoise module. The turquoise module related to the tumor cells, hypoxia, normoxic treatments
of glioblastoma tumor (GBT), and GSCs were screened. Sixty-one common genes in the turquoise
module were selected generated through the co-expression analysis and protein–protein interaction
(PPI) network. Moreover, the GO and KEGG pathway enrichment results were studied. Twenty
common hub genes were screened by the NetworkAnalyst web instrument constructed on the PPI
network through the STRING database. After survival analysis via the Kaplan–Meier (KM) plotter
from The Cancer Genome Atlas (TCGA) database, we identified the five most significant hub genes
strongly related to the progression of GBM. We further observed these five most significant hub
genes also up-regulated in another GBM gene expression dataset. The protein–protein interaction
(PPI) network of the turquoise module genes was constructed and a KEGG pathway enrichments
study of the turquoise module genes was performed. The VEGF signaling pathway was emphasized
because of the strong link with GBM. A gene–disease association network was further constructed
to demonstrate the information of the progression of GBM and other related brain neoplasms. All
hub genes assessed through this study would be potential markers for the prognosis and diagnosis
of GBM.

Keywords: biomarker; differentially expressed genes; co-expression; VEGF signaling pathway; gene
ontology pathway enrichment; glioblastoma multiforme

1. Introduction

One of the most prevailing and highly deadly heterogeneous forms of brain tumors is
glioblastoma multiforme (GBM) or grade-IV glioma [1]. The diagnosis of GBM patients
is very challenging, and the patient survival rate is 12–15 months even with combina-
tional therapies [2]. The low efficiency of all therapeutic methods including surgery,
chemotherapy, and radiotherapy [3] demands pointed to new therapeutic targets for GBM
in recent years.

GBM is an extremely heterogeneous tumor at the pathological and cellular level [4,5].
Gene expression and cell proliferation levels also highly differ in GBM. Glioma stem cells
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(GSCs) take a central position regarding tumor formation of lower-grade gliomas and
glioblastoma multiforme. GSCs have important characteristics including self-renewal abil-
ity, tumor initiation, progression ability, and resistance to GBM therapies. Several important
roles of GSCs in GBM make GSCs new therapeutic targets [6,7]. As the neoplastic cells
emerge as immune cells, cancer can be observable since the tumor cells have an extensive
clonogenic latent sort called cancer stem cells. In the wet lab conditions, glioblastoma stem-
like cells efficiently disseminate in the media after being insulated from newly resected
human GBM [8].

The metabolic relation between the glycolysis and pentose phosphate pathway has
been discovered in GSCs [9]. Neoplastic cells consume glycolysis energy for uncontrolled
cell growth and further division. The study further demonstrated that FLK-1 carries a key
position in the development of Vasculogenic Mimicry (VM) in glioblastoma multiforme.
They reported the clinical characteristics of SOX2 and original outcomes that may offer
fresh medical purposes for SOX2 as a prognostic biomarker.

Hence, a restructured knowledge of GBM is essential, and direct machinery is crucial
for modified and curable therapies to increase patient survival rates. The multi-gene expres-
sion profiling of diseased samples was driven by high-throughput sequencing technology
publicly available through the GEO database [10]. Even though just a small fraction of
these datasets have been taken and analyzed, additional aspects of the mechanism of rapid
expansion and resistance to treatments of glioblastoma tumor should be highlighted. The
gene expression microarray dataset GSE45117 [9] is re-evaluated and employed to propose
useful results for additional investigation in silico.

This study aims to suggest a treatment to handle them to block the rapid progress
by associating clinical data with a molecular mechanism. Currently, there are still no
permanent therapeutic alternatives available for GBM. Furthermore, patients who are
diagnosed with glioblastoma tumors has very low survival rates. Screening of pathways
and proteins involved in chemotherapeutic resistance identification use genomic and
proteomic analyses [11]. For instance, changes in the Interleukins protein family expression
and related conditions in GBM progression and growth require extensive investigation [12].

The computational pipeline detects the genetic markers for tumor differentiation by
determining discrepancies in expression levels of glioblastoma tumor cells, stem-like cells,
and cell lines. The investigation of hub nodes between pairwise samples by treatments of
a significant co-expression module of DEGs resulted in the construction of co-expression
networks. The current project is intended to reveal the biological, cellular, and functional
pathways and linked genetic mechanisms of GB tumor in the most significant module.

The empirical research [13,14] so far has only focused on screening the significant
genes. This analysis further presented the study of the DEGs utilizing WGCNA. Moreover,
GO and KEGG pathway studies were reported concerning the biological process, cellular
component, and molecular function of the pathways of the common hub genes. Moreover,
a PPI network was built, and the related signaling pathways were studied to identify
most significant hub genes of DEGs in the GSE45117 dataset. The gene expression of the
GSE124145 dataset was further studied for the verification of the upregulated expression of
the most significant hub genes.

2. Materials and Methods
2.1. The Gene Expression Dataset

Microarray data for human glioblastoma and glioma stem-like cells were retrieved
from the GEO database of NIH by typing in the search box the word “glioma”. The
GSE45117 gene expression dataset includes total RNAs from samples of glioblastoma
tumor (GBT), normoxic glioblastoma stem-like cell lines (GSN), normoxic glioblastoma
stem-like cell line, exposed to hypoxia for 48 h (GSN_H), hypoxic glioblastoma stem-like
cell line (GSH), and hypoxic glioblastoma stem-like cell line, exposed to normoxia for 48 h
(GSH_N).
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The GEOquery package in Bioconductor is used to analyze the GSE45117 dataset [15].
The list of other packages is Biobase, biomaRT, and gplots of R studio [15–17]. The
Benjamini–Hochberg technique is used to correct multiple testing and calculate the adjusted
p-value to avoid Type I errors. A hypergeometric model was performed for both the down
and up-regulated DEGs in GO enrichment in categories and KEGG pathway studies [18,19].
Moreover, adjusting the statistical tests locally is done by calculation of a false discovery
rate (FDR) [20,21]. A workflow of the data analysis step by step is drawn in Figure 1.
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2.2. Gene Expression Analysis

The study was done in R version 3.6.3. The GBM dataset with low quality and
low reads was excluded, yet the rest of the expression set was transformed to a base-2
logarithmic scale. Moreover, gene expression levels were normalized by averaging the
treatments before conducting analyses. A general assessment of statistical implementation
can be obtained by clustering samples utilizing the correlation metric. Dendrograms
based on the correlation metric are useful for identifying outlying samples [22]. Samples
presenting atypical distribution of noisy intensities might be an extensive issue. This can be
balanced by utilizing non-normalized data to create a box plot of the log intensities, before
using absolute signal intensities, which warrants a more even representation of data [23,24].

2.3. Statistics and Differentially Expressed Genes

The dataset was retrieved utilizing the GEOquery package in Bioconductor [25]. The
statistical significance of p-value < 0.05 and |log2(FC)| > 0.5 was set to determine DEGs
between each treatment category using student t-test for additional review. The study used
the heatmap.2 function in the gplots package to generate heatmap plots of DEGs [17,26].
Moreover, the expression values were normalized for each data point in each case of
expression data using a log(FC) transformation as follows:

nij = log2
caseij

meani
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where caseij represents the expression value of the genei of the jth case and meani is the
average expression value of the gene i in the control samples [27].

2.4. Weighted Co-Expression Analysis

The union of DEG sets with the corresponding expression values within the treatments
was utilized to detect the scale-independent gene modules of co-expression and strongly
linked genes generated by WGCNA [28,29]. The topological overlap matrix (TOM) was
estimated by adjacency conversion and picked the number (1-TOM) as a measure of
distance for detecting genes and modules via hierarchical clustering [30]. Moreover, the
parameter blockSize set to 30 and TOMType were assigned to nothing. The soft threshold
power β was fixed to 7, the lowermost power founded on the scale-independent topology
to construct a weighted gene network.

2.5. The PPI Network

A most significant module was selected, and the common hub genes were outlined by
treatment weights and module connectivity, which resulted from co-expression analysis.
Furthermore, to pick hub seeds, all the candidate genes in the significant module were
uploaded by their corresponding average gene expression values to the NetworkAnalyst
platform to build the PPI network utilizing STRING Interactome [31]. Additionally, we
utilized a zero-order network tool, particularly one that enables to keep hub proteins
that interact with each other directly. The proteins were determined with the degree
connectivity > 2 (total edges/total nodes) as the hub genes in the PPI network to implement
the co-expression network [32].

2.6. GO and KEGG Enrichments of the Pathways

Before studying annotations of the DEGs in the most significant module, affy IDs
were matched with corresponding gene symbols using the Biomart package [16]. Con-
sequently, gene ontology annotations regarding BP, CC, and MF using DAVID 6.8 and
KEGG pathways were studied [19,33]. All of the annotations and subsequent hub genes
were cautiously evaluated and separated based on the features of their biological and
molecular significances.

2.7. Common Hub Gene Survival Analysis

The common hub genes portion in the stemness of GBM was examined via the pos-
itively correlated genes in TCGA of the gene expression dataset utilizing the UALCAN
database [34]. The gene expression levels of hub genes at significance (p-value < 0.05)
are studied. For deep analysis and validation, survival analysis of GBM patients and the
significance of survival effect is measured by log-rank test [35]. The GEPIA2 multiple gene
comparison tool [36] was utilized to pair TCGA normal and GTEx data of most significant
hub genes.

2.8. Validation of the Common Hub Genes
2.8.1. Analysis of a Separate Glioma Gene Expression Dataset

This study retrieved another human glioblastoma and glioma stem cells from the NIH
Gene Expression Omnibus (GEO) by typing in the search box the word “glioma” in the
GEO database. The GSE124145 gene expression dataset [37] includes total RNAs from three
human glioblastoma multiforme tissues (hGBM), six human glioma stem cells (GSCs), and
three glioma cell lines from direct tumor resection of a 54-year-old female patient. The
DEGs of the GSE124145 gene expression dataset were studied separately. In particular, the
expression levels of the most significant hub DEGs from the GSE45117 were focused on to
validate the significance of them referencing the GSE124145 dataset.
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2.8.2. The Gene-Disease Association Network of the Common Hub Genes

This study further constructed a gene-disease network to confirm the association of the
common hub genes with GBM and related genetic diseases or disorders via NetworkAnal-
ysist. The network association information was collected from the DisGeNET database [38],
which is a broad platform combining knowledge on human disease-associated genes
and variants.

3. Results
3.1. A Hierarchical Clustering of the Clinical Dataset

Figure 2A illustrates the GSE45117 dataset examining hierarchical clustering that
is beneficial for picturing clusters or groups of samples and comparative adjacencies.
Figure 2B demonstrates the boxplot of the GSE45117 gene expression dataset within each
treatment. The expression values were used to confer a paired comparison of volcano plots
and designed heatmaps (Figures S1 and S2).
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logarithmic value. (B) The boxplot of the GSE45117 gene expression dataset within each sample.

3.2. DEGs of Paired Tumor Subtypes

Following data preprocessing and quality evaluation, this study revealed the expres-
sion values from the 12 samples in GSE45117. A set of 2447 DEGs (1133 down-regulated
and 1313 up-regulated) in GBT, GSN, GSN_H, GSH, and GSH_N clinical features, under the
threshold of p-value < 0.05 and |log2(FC)| > 0.5 (Table 1) were screened for the consequent
analyses. The heatmaps and volcano plots of DEGs are provided in Figure S1.

Table 1. The number of down and up-regulated DEGs by paired features.

Treatments Compared Down-Regulated DEGs Up-Regulated DEGs

GBT–GSN 592 981
GBT–GSN_H 728 1192

GBT–GSH 562 894
GBT–GSH_N 448 867
GSN-GSN_H 30 44

GSN-GSH 40 5
GSN-GSH_N 4 3
GSN_H-GSH 233 301

GSN_H-GSH_N 0 0
GSH-GSH_N 324 242
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3.3. Co-Expression Analysis

Employing the average linkage-clustering technique (Figure 3A) based on samples of
DEGs of the GSE45117 dataset and to offer a scale-independent network, β = 7 (unscaled
R2 = 0.90) power was chosen (Figure 3B). The significant five modules were observed
(Figure 3C) using two techniques to assess the relationship among modules and progression
of the GBM treatments. Module hierarchical clustering analysis (Figure 3C) revealed
the turquoise module had a greater correlation with treatments than different modules
(Figure 3D). Moreover, the turquoise module was positively correlated with GBT cells but
was not correlated with GSH_N and GSH (white shading), and was negatively correlated
with GSN_H and GSN (blue shading) (Figure 4). Hence, the analysis noted the turquoise
module of progression in treatments as the most correlated based on the two methods.
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Figure 3. (A) Treatment samples clustering to identify outliers of GSE45117: Treatments dendrogram.
(B) Identification of soft-thresholding power in the WGCNA. (left) The plot of the scale-independent
fitting index for numerous soft-thresholding powers (β). (right) The plot of the average connectivity
for numerous soft-thresholding powers. (C,D) Identification of modules linked to the tumor treat-
ments of GSE45117. (C) Clustered dendrogram of all the DEGs with a dissimilarity measure (1-TOM).
(D) Bars of the mean gene significance distribution and each module’s error on the corresponding bar
linked to the treatments of GBM.

3.4. The Hub Module: GO and KEGG Pathway Enrichments

In Table 2 and Figure 5, the BP, CC, and MF of the GO annotations on DAVID are listed
for 61 common hub genes in the turquoise module at a significance level (p-value < 0. 05)
(See Table S1 for the entire list).
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Table 2. The GO and KEGG pathway enrichments of the 61 common hub genes in the turquoise module.

Category Term Count % p-Value

GOTERM_BP_FAT GO:0006955~immune response 199 20.7507821 5.93 × 10−36

GO:0006952~defense response 194 20.2294056 1.00 × 10−34

GO:0050900~leukocyte migration 83 8.6548488 4.11 × 10−30

GO:0006954~inflammatory response 109 11.3660063 2.26 × 10−29

GO:0002682~regulation of immune system
process 170 17.7267988 2.77 × 10−28

GO:0016477~cell migration 150 15.641293 5.56 × 10−26

GO:0051674~localization of cell 160 16.6840459 2.47 × 10−25

GO:0048870~cell motility 160 16.6840459 2.47 × 10−25

GO:0040011~locomotion 173 18.0396246 1.99 × 10−24

GO:0002684~positive regulation of immune
system process 128 13.3472367 4.78 × 10−24

GOTERM_CC_FAT GO:0005887~integral component of plasma
membrane 156 16.2669447 7.49 × 10−13

GO:0031226~intrinsic component of plasma
membrane 159 16.5797706 2.26 × 10−12

GO:0005615~extracellular space 141 14.7028154 2.42 × 10−12

GO:0044421~extracellular region part 291 30.3441085 7.48 × 10−11

GO:0031988~membrane-bounded vesicle 275 28.6757039 7.59 × 10−11

GO:0045121~membrane raft 45 4.6923879 1.03 × 10−10

GO:0098857~membrane microdomain 45 4.6923879 1.16 × 10−10

GO:0009986~cell surface 83 8.6548488 1.65 × 10−09

GO:0098589~membrane region 49 5.10948905 3.57 × 10−09

GO:0005576~extracellular region 326 33.9937435 4.78 × 10−09
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Table 2. Cont.

Category Term Count % p-Value

GOTERM_MF_FAT GO:0005102~receptor binding 128 13.3472367 6.62 × 10−09

GO:0032403~protein complex binding 79 8.23774765 2.52 × 10−09

GO:0005178~integrin binding 23 2.3983316 1.31 × 10−08

GO:0004872~receptor activity 136 14.181439 2.61 × 10−08

GO:0060089~molecular transducer activity 136 14.181439 2.61 × 10−08

GO:0003779~actin binding 47 4.90093848 1.39 × 10−07

GO:0005539~glycosaminoglycan binding 30 3.1282586 7.18 × 10−07

GO:0004871~signal transducer activity 135 14.0771637 7.64 × 10−07

GO:0098772~molecular function regulator 109 11.3660063 5.07 × 10−06

GO:0038023~signaling receptor activity 110 11.4702815 5.65 × 10−06

KEGG_PATHWAY hsa05150:Staphylococcus aureus infection 20 2.08550574 7.31 × 10−11

hsa05144:Malaria 19 1.98123045 1.02 × 10−10

hsa04380:Osteoclast differentiation 29 3.02398332 1.38 × 10−09

hsa04064:NF-kappa B signaling pathway 22 2.29405631 1.73 × 10−08

hsa05134:Legionellosis 17 1.77267988 4.00 × 10−08

hsa04610:Complement and coagulation cascades 18 1.87695516 2.97 × 10−07

hsa05133:Pertussis 18 1.87695516 1.06 × 10−06

hsa04015:Rap1 signaling pathway 32 3.33680918 1.48 × 10−06

hsa04611:Platelet activation 23 2.3983316 5.55 × 10−06

hsa04060:Cytokine-cytokine receptor interaction 33 3.44108446 1.18 × 10−05
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This shows the significant enrichments of most candidate hub genes in BP terms are
GO:0006955~immune response, GO:0006952~defense response, GO:0050900~leukocyte mi-
gration, GO:0006954~inflammatory response, and GO:0002682~regulation of immune system
process. The significant enrichment GO terms in CC are revealed as GO:0005887~integral
component of plasma membrane, GO:0031226~intrinsic component of plasma membrane,
GO:0005615~extracellular space, GO:0044421~extracellular region part, and GO:0031988
~membrane-bounded vesicle. Lastly, the significant enrichment of the hub genes in MF
contains GO:0005102~receptor binding, GO:0032403~protein complex binding, GO:0005178
~integrin binding, GO:0004872~receptor activity, and GO:0060089~molecular transducer activity.
KEGG signaling pathway enrichment study reported that the hub genes were significantly
enriched in hsa05150:staphylococcus aureus infection, hsa05144:Malaria, hsa04380:Osteoclast
differentiation, hsa04064:NF-kappa B signaling pathway, and hsa05134:Legionellosis.

3.5. Screening Common Hub Genes and PPI Network

To achieve the analysis of protein–protein interactions in the turquoise module (1025 DEGs),
the PPI network was built on the common hub genes list. Through the PPI network, 123
nodes and 219 edges were selected (Figure 6) A total of 61 seeds (proteins) which were highly
connected with the turquoise module were screened as common hub genes as a result of PPI
network construction.

Twenty primary nodes (proteins) with the greatest degrees in the gene expression of
GSE45117 dataset common hub genes were picked and are listed in Table 3. These are SRC,
SYK, EGFR, LYN, RAC2, SORBS2, IL1R1, PLCG2, S100A8, CCL8, PIK3CG, RHOG, CD44,
TLR4, RHOU, EGR1, DAB2, KDR, ITGB2, HCK. Hub genes in Figure 6 following a gradual
color change from green to light green and brown to light brown represent expression
intensity. The size of nodes represents fold change (FC). The turquoise module was linked
to the connectivity degree in the co-expression network. In Figure 6, a negative correlation
in the brown nodes and a positive correlation in the green nodes can be seen.

The PPI network of common hub gene KEGG enrichment analysis picks the VEGF
signaling pathway as the most significant (p-value < 0.05) pathway (Table 4). The VEGF
signaling pathway demonstrates an important role in many cancers is one of the leading an-
giogenic regulator pathways involving GBM through hyperactivation. It is also of concern
in various biomarkers of tumorigenic progression such as proliferation and survival.

3.6. Authentication of the Five Most Significant Hub Genes

The top 20 common hub genes (Table 4) of the co-expression network were confirmed
at expression levels and overall survival (OS) in TCGA datasets. After survival analysis
using the GSE45117 and TCGA dataset, as illustrated in Figure 7 and Table 5, we identified
the five most significant hub genes (IL1R, SORBS2, S100A8, CCL8, DAB2) strongly linked
to the progression of GBM. Figure 8A demonstrates a histogram of the five most significant
hub gene expression levels by treatments (GBT, GSN, GSN_H, GSH, and GSH_N). The
multiple gene comparison analysis of hub genes using TCGA normal and GTEx datasets is
shown in Figure 8B.

All five hub genes have shown a decrease in expression with GSN_H and GSH_N
treatments. A dramatic drop in the expression of IL1R1 and S100A8 with GSN_H and
GSH_N treatments is further reported in Table 5. The relation to gene expression study
outcomes shows details about relative expression levels of IL1R1 and S100A8 in normal
versus GB tumor samples as demonstrated in Figure 8C,D.
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Table 3. The most common hub genes of co-expression and PPI networks of GBM. Gene expression
and Fold Change (FC) values are converted log2 base, and Betweenness Centrality (BC).

Gene ID Genes Nodes BC Expression FC

6714 SRC 30 3695.91 2.6267 2.9203
6850 SYK 16 1439.37 3.4004 2.7203
1956 EGFR 15 1418.53 3.5177 2.9542
4067 LYN 14 583.26 3.4102 3.0925
5880 RAC2 13 1008.07 3.1154 3.1027

25663 IL1R1 11 559.3 1.7369 3.2063
8470 SORBS2 11 628.4 1.4228 2.7049
5336 PLCG2 11 559.3 1.9957 3.2063
6279 S100A8 10 331.58 1.5018 3.4303

20307 CCL8 10 594.37 1.6424 2.7071
5294 PIK3CG 9 578.13 3.0209 2.5033
391 RHOG 9 289.17 2.9575 3.1110
960 CD44 8 928.38 3.4897 2.7970
7099 TLR4 8 541.23 1.9957 3.2063

58480 RHOU 8 84.23 3.0484 3.1619
1958 EGR1 7 851.81 1.5607 2.3868

13132 DAB2 7 538.61 1.2431 3.2141
3791 KDR 7 255.53 3.2197 2.4276
3689 ITGB2 6 754.92 3.1132 2.5583
3055 HCK 6 753.11 3.4433 2.7049
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Table 4. The KEGG pathways of the top 20 candidate hub genes of PPI network in GBM gene
expression dataset.

Term % p-Value Genes FDR

hsa04370:VEGF signaling pathway 30 9.46 × 10−7 LYN, HCK, SYK, PLCG2,
RAC2, PIK3CG 7.29 × 10−5

hsa05205:Proteoglycans in cancer 35 3.52 × 10−6 SRC, PLCG2, KDR, TLR4,
CD44, EGFR, PIK3CG 1.35 × 10−4

hsa04666:Fc gamma R-mediated phagocytosis 25 9.41 × 10−6 SRC, PLCG2, RAC2, KDR,
PIK3CG 2.37 × 10−4

hsa04664:Fc epsilon RI signaling pathway 25 1.45 × 10−5 LYN, SYK, PLCG2, RAC2,
PIK3CG 2.37 × 10−4

hsa04662:B cell receptor signaling pathway 25 1.54 × 10−5 LYN, SYK, PLCG2, RAC2,
PIK3CG 2.37 × 10−4

hsa04064:NF-kappa B signaling pathway 25 3.87 × 10−5 LYN, SYK, IL1R1, PLCG2,
TLR4 4.96 × 10−4

hsa04062:Chemokine signaling pathway 30 4.69 × 10−5 LYN, HCK, CCL8, SRC,
RAC2, PIK3CG 5.16 × 10−4

hsa04015:Rap1 signaling pathway 30 8.39 × 10−5 SRC, ITGB2, RAC2, KDR,
EGFR, PIK3CG 8.07 × 10−4

hsa04650:Natural killer cell mediated cytotoxicity 25 1.45 × 10−4 SYK, ITGB2, PLCG2,
RAC2, PIK3CG 0.00111904

hsa05169:Epstein-Barr virus infection 25 1.45 × 10−4 LYN, SYK, PLCG2, CD44,
PIK3CG 0.00111904

hsa04611:Platelet activation 25 1.86 × 10−4 LYN, SYK, SRC, PLCG2,
PIK3CG 0.00130087

hsa05120:Epithelial cell signaling in Helicobacter
pylori infection 20 4.52 × 10−4 LYN, SRC, PLCG2, EGFR 0.00289853

hsa04012:ErbB signaling pathway 20 9.71 × 10−4 SRC, PLCG2, EGFR,
PIK3CG 0.00575409

hsa04510:Focal adhesion 25 0.0010709 SRC, RAC2, KDR, EGFR,
PIK3CG 0.00589005

Table 5. The five most significant hub genes by average expression values in log2 base for each treatment.

Treatments

Hub Genes GBT GSN GSN_H GSH GSH_N

IL1R1 2.14414492 1.51946703 1.62000278 1.69623124 1.70512233
SORBS2 1.53735033 1.3820224 1.40838817 1.41361128 1.40112064
S100A8 3.02782655 1.16171985 1.11443605 1.07375792 1.13145547
CCL8 2.15629112 1.5202201 1.46912071 1.53510117 1.53155342
DAB2 1.33510619 1.18921123 1.29003408 1.21577006 1.18538083
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high expression.
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3.7. Validation of Five Most Significant Hub Genes

The expression level of IL1R1, SORBS2, S100A8, CCL8, and DAB2 was focused on
GSE124145. The outcomes of the analysis to validate the significance are demonstrated in
Table 6; it was noted that all of the most significant hub genes (IL1R1, SORBS2, S100A8,
CCL8, and DAB2) were expressed significantly upregulated in both GSE124145 as well. We
further constructed a gene–disease association network as shown in Figure 9. The most
significant hub genes were observed in the intersection of glioblastoma, giant glioblastoma,
status epilepticus, and head and neck Neoplasms.

Table 6. Base-2 logarithmic scale of differential expression of most significant hub genes in two
different GBM datasets.

Datasets Genes Expression FC p-Value

GSE45117

IL1R1 1.73699366 3.2063 1.40 × 10−11

SORBS2 1.42849856 2.7049 2.45 × 10−9

S100A8 1.50183917 3.4303 3.95 × 10−10

CCL8 1.6424573 2.7071 3.65 × 10−11

DAB2 1.24310048 3.2141 1.23 × 10−8

GSE124145

IL1R1 1.85324517 1.5956 1.76 × 10−5

SORBS2 2.04573421 2.4535 1.95 × 10−3

S100A8 3.47524211 5.6832 1.44 × 10−6

CCL8 1.89256437 3.7544 1.47 × 10−7

DAB2 3.56778915 4.8697 3.56 × 10−5
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4. Discussion

GBM is the most prevalent, destructive, and fatal brain cancer. Present treatment
decisions including surgery, adjuvant therapy, and chemotherapy cannot fully treat the
disease, because the tumor is highly defiant to these treatments. GSCs have the self-renewal
capacity and are accountable for the tumor resistance in treating GBM.
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This study identified the DEGs in the GBT–GSN, GBT–GSN_H, GBT–GSH, GBT–
GSH_N, GSN-GSN_H, GSN-GSH, GSN-GSH_N, GSN_H-GSH, and GSN_H-GSH_N treat-
ment groups. Prior to the identification of DEGs, normalization is done based on a method
used by Chung and Lee (2021). In this study, we performed WGCNA for mutual DEGs
derived from the GEO database and reconstructed gene co-expression networks. First, we
applied the WGCNA approach to DEGs (Table 1) of the GSE45117 dataset to evaluate the
gene expression profile differences including GSCs, and a human GBT sample. As a data
analysis approach or a gene filtering (screening) technique to identify groups (modules)
of favorably related proteins, the WGCNA is an R software for weighted co-expression
study and can be utilized [28,29]. Subsequently, GO and KEGG pathway enrichments
were implemented on the turquoise module (p-value < 0.05), which resulted in the most
significant module (Table 2).

The GO pathway analysis is revealed in biological process (BP) terms GO:0006955
~immune response, GO:0006952~defense response, GO:0050900~leukocyte migration,
GO:0006954~inflammatory response, and GO:0002682~regulation of immune system pro-
cess. The significant enrichment GO terms in the cellular component (CC) are revealed
as GO:0005887~integral component of plasma membrane, GO:0031226~intrinsic compo-
nent of plasma membrane, GO:0005615~extracellular space, GO:0044421~extracellular
region part, and GO:0031988~membrane-bounded vesicle. Lastly, the significant enrich-
ment of the hub genes in molecular function (MF) contains GO:0005102~receptor binding,
GO:0032403~protein complex binding, GO:0005178~integrin binding, GO:0004872~receptor
activity, and GO:0060089~molecular transducer activity. The KEGG signaling pathway
study reported that the hub genes were significantly enriched in hsa05150:staphylococcus
aureus infection, hsa05144:Malaria, hsa04380:Osteoclast differentiation, hsa04064:NF-kappa
B signaling pathway, and hsa05134:Legionellosis (Table 2 and Figure 5).

Twenty primary nodes (Figure 6) with the top degrees in the gene expression levels of
DEGs are presented in Table 3. These genes can be listed as SRC, SYK, EGFR, LYN, RAC2,
SORBS2, IL1R1, PLCG2, S100A8, CCL8, PIK3CG, RHOG, CD44, TLR4, RHOU, EGR1, DAB2,
KDR, ITGB2, and HCK, and so-called common hub genes (Table 4 and Figure 7). The VEGF
signaling pathway was screened as the most significant (p-value < 0.05) pathway (Table 4).
The VEGF signaling pathway demonstrates an important role in many cancers involving
GBM through hyperactivation and is of concern in various biomarkers of tumorigenic
progression such as proliferation and survival. Furthermore, the VEGF signaling pathway
is one of the leading angiogenic regulator pathways in these tumors [39,40]. Other KEGG
pathway enrichments of the top 20 hub genes have resulted in hsa05205:Proteoglycans in
cancer, hsa04666:Fc gamma R-mediated phagocytosis, hsa04664:Fc epsilon RI signaling
pathway, hsa04662:B cell receptor signaling pathway, and hsa04064:NF-kappa B signal-
ing pathway.

The survival and expression analyses of the common hub genes pick the five most
significant hub genes such as Interleukin 1 Receptor Type 1 (IL1R1), Sorbin and SH3
Domain Containing 2 (SORBS2), S100 calcium-binding protein A8 (S100A8), C-C Motif
Chemokine Ligand 8 (CCL8), and DAB Adaptor Protein 2 (DAB2). The hub genes are
powerfully connected with the development of GBM and they might be useful as potential
therapeutic agents as shown in Figure 9. A dramatic drop in the expression of IL1R1 and
S100A8 with GSN_H and GSH_N treatments is further reported in Table 5. The association
to gene expression analysis results proposes details about comparative expression levels
of IL1R1 and S100A8 in normal versus GB tumor as shown in Figure 8C,D. Interleukin-1
signaling is established as an appealing and key therapeutic target for the controlling of
glioblastoma-related cerebral edemas [41]. The role of the IL-1 gene family in glioblastoma
linked angiogenesis and tumor development has been reported in several studies [41–43].
Therapeutically, a knockdown of the IL-1R1 might evaluate inhibition of IL-1 signaling
as a novel therapy for GBM [44,45]. In a recent study, SORBS2 in TCGA GBM cohorts
has been reported among other genes as possibly being linked with inferior consequences
and PDE1C silencing down-regulated their expression [46], consequently proving to be
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promising concerning patient survival. Furthermore, WFDC1 is an instance of SORBS2-
bound transcripts which is mediated by SORBS2 and a key metastasis suppressor [47].
Previous research has reported that WFDC1 expression was considerably downregulated
in mesenchymal cells in brain cancer [48,49].

Recently, S100A8 has been reported as a prospective indicator with prognostic and
diagnostic value in GBM [50]. Gielen et al. (2016) proposed that glioma patients have
enlarged quantities of intracellular S100A8/9 compared with healthy controls. Glioma
patients further have boosted S100A8/9 serum quantities correlated with amplified arginase
bustle in serum. S100A8/9 can be expressed by various myloid cells and tumor cells in
glioma, where it can promote tumor cell growth and migration [51].

In a recent laboratory investigation [52], the data uncovered that CCL8 is a tumor-
associated macrophage element that resolves penetration and GBM stemness and has
resistance to therapies. Moreover, it is reported in another study that CCL8 stimulates the
development of tumor cells in the glioma microenvironment [52]. Our study also verified
targeting CCL8 offers a new prospect for GBM treatment.

The usual treatment protocol for GBM involves surgical removal of the tumor at a
maximal and healthy level, radiation therapy, and temozolomide (TMZ) chemotherapy
which is broadly used for silencing GBM. It is shown that the loss of DAB2IP (DOC-2/DAB2
interacting protein) is liable for TMZ resistance in GBM through autophagy-related protein
9b (ATG9B). In a fresh study that listed four subtypes of GBM, DAB2 is reported as one of
the fifteen selected genes that belong to the classical (CL) subtype. S100A4 was found in
the CL subtype of GBM [53].

To validate our results we further analyzed another clinical GBM gene expression
dataset of GSE124145. All these genes were significantly up-regulated in both of the
GBM datasets. Thus, targeting these five most significant hub genes (IL1R1, SORBS2,
S100A8, CCL8, and DAB2) may offer insightful strategies for GBM treatment. To confirm
the association with GBM, we constructed a gene–disease association network as shown
in Figure 9. While we validated the results in the TCGA dataset, the accuracy of the
results requires molecular and cellular experiments. Thus, by utilizing a sequence of
bioinformatics investigation, this current study demonstrated the five most significant hub
genes which may be tangled in the diagnosis and prognosis and efficient concerning the
characterization of GBM and treatment options. A limitation of this study is the lack of
experimental validation to confirm our results. The essential pathways enriched in the
candidate hub genes were cell migration, cell motility, localization of cell, locomotion, and
leukocyte migration. These results would significantly offer to uncover the progression
of GBM.

5. Conclusions

Here, we focused on one of the GBM gene expression datasets in the GEO database. In
this study, IL1R1, SORBS2, S100A8, CCL8, and DAB2 were filtered as the most significant
hub genes for the prospective molecular, metabolism, functional studies in GBM. We further
validated the five most significant hub genes’ significance level using a similar clinical GBM
gene expression dataset. Moreover, a gene–disease association network was constructed
to confirm the impact of these five hub genes in GBM. These hub genes can be offered to
the candidate markers of future research for therapeutic targets in GBM. The rest of the
analysis in this study would help to explore the causes of the gliomas, in particular GBM,
underlying biological, cellular, and functional events.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030518/s1, Figure S1: Volcano plots of each paired treat-
ments of DEGs of GSE45117 gene expression dataset; Figure S2: Heatmap plots of each paired
treatments of DEGs of GSE45117 gene expression dataset. Table S1: Full genes list.
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