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Abstract
We show that the space S ′(�) of Laplace transformable distributions, where � ⊆ R

d is a
non-empty convex open set, is an ultrabornological (PLS)-space. Moreover, we determine
an explicit topological predual of S ′(�).
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Fourier transform
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1 Introduction

Schwartz introduced the space S ′(�) of Laplace transformable distributions as

S ′(�) = { f ∈ D′(Rd) | e−ξ ·x f (x) ∈ S ′(Rd
x ) ∀ξ ∈ �},

where � ⊆ R
d is a non-empty convex set [1, p. 303]. This space is endowed with the

projective limit topology with respect to the mappings S ′(�) → S ′(Rd), f �→ e−ξ ·x f (x)
for ξ ∈ �. The second author together with Kunzinger and Ortner [2] recently presented
two new proofs of Schwartz’s exchange theorem for the Laplace transform of vector-valued
distributions [3, Prop. 4.3, p. 186]. Their methods required them to show that S ′(�) is
complete, nuclear and dual-nuclear [2, Lemma 5]. Following a suggestion of Ortner, in this
article, we further study the locally convex structure of the space S ′(�).

In order to be able to apply functional analytic tools such as DeWilde’s open mapping and
closed graph theorems [4, Theorem 24.30 and Theorem 24.31] or the theory of the derived
projective limit functor [5], it is important to determine when a space is ultrabornological.
This is usually straightforward if the space is given by a suitable inductive limit; in fact,
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ultrabornological spaces are exactly the inductive limits of Banach spaces [4, Proposition
24.14]. The situation for projective limits, however, is more complicated. Particularly, this
applies to the class of (PLS)-spaces (i.e., countable projective limits of (DFS)-spaces). The
problem of ultrabornologicity has been extensively studied in this class, both from an abstract
point of view as for concrete function and distribution spaces; see the survey article [6] of
Domański and the references therein.

In the last part of his doctoral thesis [7, Chap. II, Thm. 16, p. 131], Grothendieck showed
that the convolutor spaceO′

C is ultrabornological. He proved thatO′
C is isomorphic to a com-

plemented subspace of the sequence space ŝ⊗s′ and verified directly that the latter space is
ultrabornological. Much later, a different proof was given by Larcher and Wengenroth using
homological methods [8]. The first author and Vindas [9] extended this result to a consid-
erably wider setting by studying the locally convex structure of a general class of weighted
convolutor spaces.More precisely, they characterizedwhen such spaces are ultrabornological
and determined explicit topological preduals for them.One of their main tools is a topological
description of these convolutor spaces in terms of the short-time Fourier transform (STFT).

In this work, we will identify S ′(�) with a particular instance of the convolutor spaces
considered in [9]. To this end, we make a detailed study of the mapping properties of the
STFT on S ′(�). Once this identification has been established, we use Theorem 1.1 from [9]
(see also Theorem 4.2 below) to show that S ′(�) is an ultrabornological (PLS)-space and
that it admits a weighted (LF)-space of smooth functions on Rd as a topological predual.

2 Weighted spaces of continuous functions

For formulating the mapping properties of the STFT we recall the following notions from
[9,10].

Each non-negative function v on R
d defines a weighted seminorm on C(Rd) by

‖ f ‖v := sup
x∈Rd

| f (x)| v(x).

We endow the space

Cv(Rd) := { f ∈ C(Rd) | ‖ f ‖v < ∞}
with this seminorm; it is aBanach space ifv is positive and continuous.Apointwise decreasing
sequence V = (vN )N∈N of positive continuous functions onRd is called a decreasing weight
system. With this, we define the (LB)-space

VC(Rd) := lim−→
N∈N

CvN (Rd).

We consider the following condition on a decreasing weight system V , see [10, p. 114]:

∀N ∈ N ∃M > N : lim|x |→∞
vM (x)

vN (x)
= 0. (V)

The maximal Nachbin family associated with V is defined to be the family V = V (V)

consisting of all non-negative upper semicontinuous functions v on R
d such that

∀N ∈ N : sup
x∈Rd

v(x)

vN (x)
< ∞.

123



On the space of Laplace transformable distributions Page 3 of 9 185

The projective hull of VC(Rd) is defined as

CV (Rd) := { f ∈ C(Rd) | ‖ f ‖v < ∞ ∀v ∈ V }.
and endowed with the locally convex topology generated by the system of seminorms
{‖ · ‖v | v ∈ V }. The spaces VC(Rd) and CV (Rd) always coincide as sets and, if V sat-
isfies condition (V), also as locally convex spaces [10, Thm. 1.3 (d), p. 118].

A pointwise increasing sequenceW = (wN )N∈N of positive continuous functions on Rd

is called an increasing weight system. Given such a system, we define the Fréchet space

WC(Rd) := lim←−
N∈N

CwN (Rd).

We consider the following conditions on an increasing weight system W:

∀N ∈ N ∃M > N : lim|x |→∞
wN (x)

wM (x)
= 0, (2.1)

∀N ∈ N ∃M > N : wN

wM
∈ L1(Rd), (2.2)

∀N ∈ N ∃M1, M2 ≥ N ∃C > 0 ∀x, y ∈ R
d : wN (x + y) ≤ CwM1(x)wM2(y). (2.3)

In the next lemma, we obtain a concrete representation of the ε-tensor product of weighted
spaces of continuous functions.

Lemma 2.1 LetW = (wN )N∈N be an increasing weight system and V = (vn)n∈N a decreas-
ing weight system satisfying (V ). Then, we have the identification

WC(Rd
x )̂⊗εVC(Rd

ξ ) = { f ∈ C(R2d
x,ξ ) | ∀N ∈ N ∃n ∈ N : ‖ f ‖wN⊗vn < ∞},

where we set ‖ f ‖w⊗v := sup(x,ξ)∈R2d | f (x, ξ)| w(x)v(ξ) for non-negative functionsw, v on

R
d . Moreover, f ∈ C(R2d

x,ξ ) belongs to WC(Rd
x )̂⊗εVC(Rd

ξ ) if and only if ‖ f ‖wN⊗v < ∞
for all N ∈ N and v ∈ V . Consequently, the topology of WC(Rd

x )̂⊗εVC(Rd
ξ ) is generated

by the system of seminorms {‖ · ‖wN⊗v | N ∈ N, v ∈ V }.
Proof This follows from the fact that the ε-tensor product commutes with projective limits
and [10, Thm. 3.1 (c), p. 137]. ��

3 The short-time Fourier transform onD′(Rd)

The translation and modulation operators are denoted by Tx f (t) = f (t − x) and Mξ f (t) =
e2π iξ ·t f (t) for x, ξ ∈ R

d . The short-timeFourier transform (STFT)of a function f ∈ L2(Rd)

with respect to a window function ψ ∈ L2(Rd) is defined as

Vψ f (x, ξ) := ( f , MξTxψ)L2 =
∫

Rd
f (t)ψ(t − x)e−2π iξ ·t dt, (x, ξ) ∈ R

2d ,

where (·, ·)L2 denotes the inner product on L2(Rd). We have that ‖Vψ f ‖L2(R2d ) =
‖ψ‖L2‖ f ‖L2 . In particular, themapping Vψ : L2(Rd) → L2(R2d) is continuous. The adjoint
of Vψ is given by the weak integral

V ∗
ψ F =

∫ ∫

R2d
F(x, ξ)MξTxψ dx dξ, F ∈ L2(R2d).
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If ψ �= 0 and γ ∈ L2(Rd) is a synthesis window for ψ , that is, (γ, ψ)L2 �= 0, then

1

(γ, ψ)L2
V ∗

γ ◦ Vψ = idL2(Rd ) .

We refer to [11] for further properties of the STFT.
Next, we explain how the STFT can be extended to the space of distributions; see [9,

Sect. 2] for details and proofs. We set Vpol = ((1 + | · |)−N )N∈N. Fix a window function
ψ ∈ D(Rd). For f ∈ D′(Rd) we define

Vψ f (x, ξ) := 〈 f , MξTxψ〉, (x, ξ) ∈ R
2d .

Clearly, Vψ f is a continuous function on R2d . In fact,

Vψ : D′(Rd) → C(Rd
x )̂⊗εVpolC(Rd

ξ )

is a well-defined continuous mapping [9, Lemma 2.2]. We define the adjoint STFT of an
element F ∈ C(Rd

x )̂⊗εVpolC(Rd
ξ ) as the distribution

〈V ∗
ψ F, ϕ〉 :=

∫ ∫

R2d
F(x, ξ)Vψϕ(x,−ξ) dx dξ, ϕ ∈ D(Rd).

Then,

V ∗
ψ : C(Rd

x )̂⊗εVpolC(Rd
ξ ) → D′(Rd)

is a well-defined continuous mapping by [9, Prop. 2.2]. Finally, if ψ �= 0 and γ ∈ D(Rd) is
a synthesis window for ψ , then the following reconstruction formula holds [9, Prop. 2.4]:

1

(γ, ψ)L2
V ∗

γ ◦ Vψ = idD′(Rd ) . (3.1)

4 Duals of inductive limits of weighted spaces of smooth functions

Let v be a non-negative function on R
d and n ∈ N. We define Bn

v (Rd) as the seminormed
space consisting of all ϕ ∈ Cn(Rd) such that

‖ϕ‖v,n := max|α|≤n
sup
x∈Rd

∣

∣∂αϕ(x)
∣

∣ v(x) < ∞.

As before, Bn
v (Rd) is a Banach space if v is positive and continuous. LetW = (wN )N∈N be

an increasing weight system. We define the (LF)-space

BW◦(Rd) := lim−→
N∈N

lim←−
n∈N

Bn
1/wN

(Rd).

We endow the dual space B′
W (Rd) := (BW◦(Rd))′ with the strong topology. If W satisfies

(2.1), then D(R) is densely and continuously included in BW◦(Rd) and therefore B′
W (Rd)

is a vector subspace of D′(Rd).
On the other hand, we define the convolutor space

O′
C,W (Rd) := { f ∈ D′(Rd) | f ∗ ϕ ∈ WC(Rd) ∀ϕ ∈ D(Rd)}.

For f ∈ O′
C,W (Rd) fixed, the mapping

D(Rd) → WC(Rd), ϕ �→ f ∗ ϕ
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is continuous, as follows from the closed graph theorem. We endow O′
C,W (Rd) with the

topology induced via the embedding

O′
C,W (Rd) → Lβ(D(Rd),WC(Rd)), f �→ [ϕ �→ f ∗ ϕ],

where β denotes the topology of uniform convergence on bounded sets.
In [9] the structural and topological properties of the spaces B′

W (Rd) and O′
C,W (Rd) are

discussed. We now present the main results of this paper and refer to [9] for more details and
proofs.1

Proposition 4.1 [9, Prop. 4.2] Let W be an increasing weight system satisfying (2.1), (2.2)
and (2.3) and let ψ ∈ D(Rd). Then, the mappings

Vψ : O′
C,W (Rd) → WC(Rd

x )̂⊗εVpolC(Rd
ξ )

and

V ∗
ψ : WC(Rd

x )̂⊗εVpolC(Rd
ξ ) → O′

C,W (Rd)

are well-defined and continuous.

Theorem 4.2 [9, Thm. 3.4, Thm. 4.6 and Thm. 4.15] Let W = (wN )N∈N be an increas-
ing weight system satisfying (2.1), (2.2) and (2.3). Then, B′

W (Rd) = O′
C,W (Rd) as sets

and the inclusion mapping B′
W (Rd) → O′

C,W (Rd) is continuous. Moreover, the following
statements are equivalent:

(i) B′
W (Rd) = O′

C,W (Rd) as locally convex spaces.

(ii) O′
C,W (Rd) is an ultrabornological (PLS)-space.

(iii) The (LF)-space BW◦(Rd) is complete.
(iv) W satisfies

∀N ∈ N ∃M ≥ N ∀P ≥ M ∃θ ∈ (0, 1) ∃C > 0 ∀x ∈ R
d :

wN (x)1−θwP (x)θ ≤ CwM (x). (4.1)

Remark 4.3 Condition (4.1) is closely connected with D. Vogt’s condition () that plays an
essential role in the structure and splitting theory for Fréchet spaces.

5 The spaceS ′(0)

Our next goal is to characterize S ′(�) in terms of the STFT.
Let ∅ �= � ⊆ R

d be open and convex. We denote by CCS(�) the family of all non-empty
compact convex subsets of � and byB(S(Rd)) the family of all bounded subsets of S(Rd ).
The topology of S ′(�) can easily be described by a system of concrete seminorms which
essentially is due to Schwartz [1, p. 301]; for this, note that the system of convex hulls of
finite sets is cofinal in CCS(�):

1 To be precise, the spaces considered in [9], denoted there by (ḂW◦ (Rd ))′ and O′
C (D, L1W ), differ from

B′
W (Rd ) and O′

C,W (Rd ) defined above. However, if W satisfies (2.1), (2.2) and (2.3), then B′
W (Rd ) =

(ḂW◦ (Rd ))′ andO′
C (D, L1W ) = O′

C,W (Rd ); the first equality is clear, while the second one follows from
[9, Prop. 6.2].Moreover, under these conditions, all statements and proofs from [9] remain valid if one replaces
L1W (Rd ) byWC(Rd ).
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Lemma 5.1 [1, p. 301] Let ∅ �= � ⊆ R
d be open and convex. For all K ∈ CCS(�) and

B ∈ B(S(Rd)) we have that

pK ,B( f ) := sup
η∈K

sup
ϕ∈B

∣

∣〈e−η·x f (x), ϕ(x)〉∣∣ < ∞, f ∈ S ′(�).

Moreover, the topology of S ′(�) is generated by the system of seminorms {pK ,B | K ∈
CCS(�), B ∈ B(S(Rd))}.
We need to introduce some additional terminology. Given a non-empty compact convex
subset K of Rd , we define its supporting function as

hK (x) = max
η∈K x · η, x ∈ R

d .

It is clear from the definition that hK is subadditive and positive homogeneous of degree one.
In particular, hK is convex. Supporting functions have the following elementary properties.

Lemma 5.2 [12, Cor. 1.8.2 and Prop. 1.8.3] Let K1 and K2 be non-empty compact convex
subsets of Rd .

(a) K1 ⊆ K2 if and only if hK1(x) ≤ hK2(x) for all x ∈ R
d .

(b) hK1+K2(x) = hK1(x) + hK2(x) for all x ∈ R
d .

Example 5.3 For r > 0 we have hB(0,r)(x) = r |x | for all x ∈ R
d , where B(0, r) denotes the

closed ball in R
d centered at the origin with radius r . Next, let K be a non-empty compact

convex subset of Rd and ε > 0. We set Kε = K + B(0, ε). Lemma 5.2 and the above yield
that hKε (x) = hK (x) + ε |x | for all x ∈ R

d .

Let ∅ �= � ⊆ R
d be open and convex and let (KN )N∈N ⊂ CCS(�) be such that KN ⊆ KN+1

for all N ∈ N and � = ⋃

N KN . Lemma 5.2 yields that W = (eh−KN )N∈N is an increasing
weight system.We setC�(Rd) := WC(Rd). Clearly, the definition ofC�(Rd) is independent
of the chosen sequence (KN )N∈N. The next result is the key observation of this article.

Proposition 5.4 Let ∅ �= � ⊆ R
d be open and convex and let ψ ∈ D(Rd). Then, the

mappings

Vψ : S ′(�) → C�(Rd
x )̂⊗εVpolC(Rd

ξ )

and

V ∗
ψ : C�(Rd

x )̂⊗εVpolC(Rd
ξ ) → S ′(�)

are well-defined and continuous.

We need some preparation for the proof of Proposition 5.4. Firstly, Lemma 2.1 implies that
the topology of C�(Rd

x )̂⊗εVpolC(Rd
ξ ) is generated by the system of seminorms

‖ f ‖K ,v := sup
(x,ξ)∈R2d

| f (x, ξ)| eh−K (x)v(ξ) < ∞, K ∈ CCS(�), v ∈ V (Vpol).

For k, n ∈ N we write

‖ϕ‖Sn
k

:= max|α|≤n
sup
x∈Rd

∣

∣∂αϕ(x)
∣

∣ (1 + |x |)k, ϕ ∈ S(Rd).

The topology of S(Rd) is generated by the system of seminorms {‖ · ‖Sn
k
| k, n ∈ N}. We

now give two technical lemmas.
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Lemma 5.5 Let ψ ∈ D(Rd), K ⊂ R
d be compact, v ∈ V (Vpol) and ε > 0. Then,

{eη·(t−x)MξTxψ(t)e−ε|x |v(ξ) | (x, ξ) ∈ R
2d , η ∈ K } ∈ B(S(Rd

t )).

Proof Choose r > 0 such that suppψ ⊆ B(0, r) and R ≥ 1 such that K ⊆ B(0, R). For all
k, n ∈ N we have that

sup
(x,ξ)∈R2d

sup
η∈K

e−ε|x |v(ξ)‖eη·(t−x)MξTxψ(t)‖Sn
k,t

≤ sup
(x,ξ)∈R2d

sup
η∈K

e−ε|x |v(ξ)·

max|α|≤n
sup
x∈Rd

∑

β≤α

∑

γ≤β

(

α

β

)(

β

γ

)

|η||α|−|β| eη·(t−x)(2π |ξ |)|γ | ∣
∣∂β−γ ψ(t − x)

∣

∣ (1 + |t |)k

≤ eRr (8πR)n max|α|≤n
‖∂αψ‖L∞(1 + r)k sup

x∈Rd
e−ε|x |(1 + |x |)k sup

ξ∈Rd
v(ξ)(1 + |ξ |)n

< ∞.
��

Lemma 5.6 Let ψ ∈ D(Rd) and η ∈ R
d . Then, for all k, n ∈ N and ϕ ∈ S(Rd),

∣

∣

∣Vψ,t (e
−η·tϕ(t))(x,−ξ)

∣

∣

∣ ≤ Cη,k,n,ψe−η·x‖ϕ‖Sn
k

(1 + |x |)k(1 + |ξ |)n , (x, ξ) ∈ R
2d ,

where

Cη,k,n,ψ = 4n(1 + √
d)n max{1, |η|n} max|α|≤n

‖∂αψ‖L∞
∫

suppψ

e−η·t (1 + |t |)kdt .

In particular, supη∈K Cη,k,n,ψ < ∞ for all K ⊂ R
d compact.

Proof We have that
∣

∣

∣Vψ,t (e
−η·tϕ(t))(x,−ξ)

∣

∣

∣ (1 + |x |)k(1 + |ξ |)n

≤ (1 + √
d)n max|α|≤n

∣

∣

∣ξ
αVψ,t (e

−η·tϕ(t))(x,−ξ)

∣

∣

∣ (1 + |x |)k

≤ (1 + √
d)n(1 + |x |)k max|α|≤n

∑

β≤α

∑

γ≤β

(

α

β

)(

β

γ

)

·
∫

Rd
|η||γ | e−η·t ∣

∣∂β−γ ϕ(t)
∣

∣

∣

∣∂α−βψ(t − x)
∣

∣ dt

≤ (1 + √
d)n(1 + |x |)k max|α|≤n

∑

β≤α

∑

γ≤β

(

α

β

)(

β

γ

)

·
∫

suppψ

|η||γ | e−η·(t+x)
∣

∣∂β−γ ϕ(t + x)
∣

∣

∣

∣∂α−βψ(t)
∣

∣ dt

≤ Cη,k,n,ψe
−η·x‖ϕ‖Sn

k
.

��
Proof of Proposition 5.4 (i) Vψ : S ′(�) → C�(Rd

x )̂⊗εVpolC(Rd
ξ ) is well-defined and con-

tinuous: Let K ∈ CCS(�) and v ∈ V (Vpol) be arbitrary. Choose ε > 0 so small that
Kε ∈ CCS(�) and pick, for x ∈ R

d fixed, ηx ∈ K such that h−K (x) ≤ (−ηx · x) + 1.
Example 5.3 implies that, for all f ∈ S ′(�) and (x, ξ) ∈ R

2d ,
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∣

∣Vψ f (x, ξ)
∣

∣ eh−K (x)v(ξ) =
∣

∣

∣〈e−(ηx−ε x
|x | )·t f (t), e(ηx−ε x

|x | )·t MξTxψ(t)〉
∣

∣

∣ eh−K (x)v(ξ)

≤ e
∣

∣

∣〈e−(ηx−ε x
|x | )·t f (t), e(ηx−ε x

|x | )·(t−x)MξTxψ(t)〉
∣

∣

∣ e−ε|x |v(ξ)

≤ epKε,B( f ),

where

B = {eτ ·(t−x)MξTxψ(t)e−ε|x |v(ξ) | (x, ξ) ∈ R
2d , τ ∈ Kε} ∈ B(S(Rd

t ))

by Lemma 5.5.
(ii) V ∗

ψ : C�(Rd
x )̂⊗εVpolC(Rd

ξ ) → S ′(�) is well-defined and continuous: We start by

showing that V ∗
ψ F ∈ S ′(�) for all F ∈ C�(Rd

x )̂⊗εVpolC(Rd
ξ ). Lemma 5.6 implies that, for

all η ∈ �,

〈 fη, ϕ〉 =
∫ ∫

R2d
F(x, ξ)Vψ,t (e

−η·tϕ(t))(x,−ξ) dx dξ, ϕ ∈ S(Rd),

is a well-defined continous linear functional on S(Rd). Since e−η·t V ∗
ψ F(t) = fη(t)|D(Rd ),

we obtain that e−η·t V ∗
ψ F(t) ∈ S ′(Rd) and that

〈e−η·t V ∗
ψ F(t), ϕ(t)〉 =

∫ ∫

R2d
F(x, ξ)Vψ,t (e

−η·tϕ(t))(x,−ξ) dx dξ, ϕ ∈ S(Rd).

Next, we show that V ∗
ψ is continuous. Let K ∈ CCS(�) and B ∈ B(S(Rd)) be arbitrary.

Choose ε > 0 so small that Kε ∈ CCS(�). Lemma 5.6 implies that there is v ∈ V (Vpol)

such that
∣

∣

∣Vψ(e−η·tϕ(t))(x,−ξ)

∣

∣

∣ ≤ eh−K (x)v(ξ), (x, ξ) ∈ R
2d ,

for all η ∈ K and ϕ ∈ B. Set w(ξ) = v(ξ)(1+|ξ |)d+1 ∈ V (Vpol). Example 5.3 implies that,
for all F ∈ C�(Rd

x )̂⊗εVpolC(Rd
ξ ),

pK ,B(V ∗
ψ F) ≤ sup

η∈K
sup
ϕ∈B

∫ ∫

R2d
|F(x, ξ)|

∣

∣

∣Vψ,t (e
−η·tϕ(t))(x,−ξ)

∣

∣

∣ dx dξ

≤
∫ ∫

R2d
|F(x, ξ)| eh−K (x)v(ξ) dx dξ ≤ C‖F‖Kε,w,

where

C =
∫

Rd
e−ε|x |dx

∫

Rd

1

(1 + |ξ |)d+1 dξ.

��
We now combine Theorem 4.1 with the results from Sect. 4 to study the space S ′(�). Let
∅ �= � ⊆ R

d be open and convex and let (KN )N∈N ⊂ CCS(�) be such that KN ⊆ KN+1

for all N ∈ N and � = ⋃

N KN . For W = (eh−KN )N∈N we set B′
�(Rd) := B′

W (Rd) and
O′

C,�(Rd) = O′
C,W (Rd). Clearly, these definitions are independent of the chosen sequence

(KN )N∈N. We are ready to state and prove our main theorem.

Theorem 5.7 Let ∅ �= � ⊆ R
d be open and convex. Then, S ′(�) = B′

�(Rd) = O′
C,�(Rd) as

locally convex spaces and S ′(�) is an ultrabornological (PLS)-space.
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Proof Let (KN )N∈N ⊂ CCS(�) be such that KN ⊆ KN+1 for all N ∈ N and � = ⋃

N KN .
Set W = (eh−KN )N∈N. Lemma 5.2 and Example 5.3 imply that W satisfies (2.1), (2.2) and
(2.3). Hence, in view of the reconstruction formula (3.1), the topological identity S ′(�) =
O′

C,�(Rd) follows from Proposition 4.1 and Proposition 5.4. Since W also satisfies (4.1)
(again by Lemma 5.2 and Example 5.3), the other statements are a direct consequence of
Theorem 4.2. ��
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