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A B S T R A C T

As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and 
scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great po-
tential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease 
occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life 
science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward- 
looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary 
technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of 
AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug 
screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for 
LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to 
explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological 
models and the real human body, accurately predict human-related responses to external stimuli (cues and 
drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of 
patients.

1. Introduction

Since the end of 2022, the advent of an AI chatbot (ChatGPT) 
developed by OpenAI has caused a buzz around the world due to its 
human-like responses to text input. This technology is promoting re-
searchers to reorient the development direction of all walks of life and 
driving their scales to brand-new heights. Artificial Intelligence (AI), 
also known as machine intelligence, is a simulation model that provides 

targeted services for specific scenarios by highly reproducing complex 
human behaviors such as feeling, memory, generalizing, reasoning, 
creating, deciding, coping, and so on [1]. The emergence of big data has 
promoted the training of AI algorithms on large data sets, thus 
improving the performance of tasks. AI can be trained on large amounts 
of data to learn from experience, decouple and apply causality, make 
predictions, optimize strategies, classify objects, adapt to new situations, 
and perform complex tasks [2,3]. It contains machine learning, natural 
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language processing, language synthesis, computer vision, and robotics, 
etc [4]. It is worth noteworthy that machine learning, as a cutting-edge 
technology in the field of AI, has been widely applied to biological 
research, disease discover and drug screening in preclinical assay and 
clinical applications [5–8]. For instance, Hamamoto’s team was able to 
accurately predict integrated survival subtypes by training the 
reverse-phase protein array and distinguish between high-risk and 
low-risk patients [8]. Gulshan et al. created an algorithm by applying 
deep learning for automated detection of diabetic retinopathy and dia-
betic macular edema in retinal fundus photographs [7]. In the face of the 
2019 pandemic, deep learning could effectively distinguish normal 
versus abnormal chest radiographs [6].

Advances in stem cells, microfabrication and biomaterials have given 
rise to novel in vitro miniature organ models—living human organoids 
(LOs) [9]. In general, LOs refer to 3D living cell culture models origi-
nating from human primary tissues or stem cells, which present abun-
dant cell types, genotypes, histological features and functions similar to 
human real organs, especially human tissues-derived organoids [9,10]. 
Currently, various LOs (e.g., brain, retina, lung, intestine, tumor, and 
placenta, etc) have been established to explore the effects of matrix 
materials (e.g., types, stiffness and degradability) and signaling factors 
(e.g., BMP and WNT) on stem cells regulation and organoid develop-
ment [11–19]. For instance, Lutolf’s team showed that high matrix 
stiffness significantly enhanced intestinal stem cell proliferation through 
a yes-associated protein-dependent mechanism, whereas a soft matrix 
and laminin-based adhesion were required for stem cell differentiation 
and organoid generation [15]. Hofbauer et al. found that mesodermal 
WNT-BMP signaling directed cavity morphogenesis via HAND1 during 
the development of hiPS-derived cardioids [20]. Kotton and colleagues 
found that periodic regulation of Wnt signaling can induce rapid dif-
ferentiation of human stem cells into proximal lung organoids via 
NKX2-1+ progenitor cell intermediates. Furthermore, NKX2-1+ pro-
genitor cells had high levels of Wnt activation, but essentially responded 
to the decrease in Wnt signaling by rapidly entering the proximal airway 
spectrum at the expense of fate on the far side [18]. Emerging LOs, on 
the other hand, have been used in human pathophysiology studies such 
as developmental research, disease modeling, drug screening, tissue 
regeneration and personalized medicine [5,19,21–25]. Particularly, LOs 
can adapt local in vivo environment after transplantation, restore the 
expression of region-specific markers, assume different regional identi-
ties, finally realize cell-based therapy [26–34]. For example, Sampa-
ziotis et al. transplanted cholangiocyte organoids into a living human 
liver with extracorporeal thermostatic perfusion to repair the biliary tree 
and improve bile characteristics [30]. Of particular note, the FDA (US 
Food and Drug Administration) Modernization Act 2.0, approved in 
December 2022, eliminates the age-old requirement for animal testing 
of all drugs and will no longer require animal testing before entering 
clinical trials. This release is undoubtedly a high endorsement of orga-
noid technology, and it has also set off a wave of research on organoids 
in academia and enterprises. Recently, organoid technology ushered in 
an important milestone in the field of preclinical research and drug 
development: For the first time, the US FDA approved a drug (Sanofi 
sutimlimab) to apply for a new indication to enter clinical trials based 
solely on the preclinical efficacy data obtained in the organoid chip 
research, combined with existing safety data [35]. This is the first time 
the FDA has included organ-on-a-chip and microphysiological systems 
in the Act as a separate evaluation system for non-clinical trials of drugs. 
This breakthrough provides a new direction for the search and devel-
opment of rare disease drugs, and also provides a new idea for drug 
research and development enterprises to apply for drug clinical trials 
and new indications. Therefore, LOs provide valuable and effective 
models for drug screening and discovery to identify candidate treat-
ments to tackle rare and emerging diseases [36,37]. Chen and coworkers 
determined the effectiveness of FDA-approved drugs such as imatinib, 
mycophenolic acid and quinacrine dihydrochloride) in inhibiting the 
entry of SARS-CoV-2 into lung and colonic Los [38]. Overall, the rapid 

development of LOs in the biomedical field has broken the limitations of 
animal models and traditional cell cultures to a certain extent, bringing a 
new dawn to the biomedical research and pharmaceutical fields.

Despite the great potential of LOs, the establishment of organoid 
systems is highly human-dependent, and therefore time-consuming and 
laborious in the process of optimizing strategies, data analysis, and ef-
ficacy verification. From the perspective of construction, maturity, 
heterogeneity, variability and standardization remain the major factors 
restricting the development of LOs. These factors determine the fidelity, 
repeatability and rationality of in vitro organoid models, affect the ac-
curacy and reliability of evaluation results, as well as lead to poor 
comparability of different literature data. In terms of evaluation 
methods, multiple biosensors, imaging devices and omics analysis tools 
(e.g., genomics, single-cell omics and metabolomics) have become key 
assessment methods for LOs. However, due to the heterogeneity and 
multi-focus of LOs, it is difficult to quickly and accurately obtain the 
hierarchy and spatial features of organoids and dynamic behavior 
characteristics between organoids and microenvironments through 
image analysis. The functional analysis from multiple omics tests reveals 
a large amount of data, which poses a great challenge to analyze and 
decouple the complex network relationships. Therefore, a new paradigm 
for LO research is urgently needed to break the limitations of traditional 
systems, quickly optimize the establishment methods, efficiently parse 
data, precisely improve functional verification, and then modify the 
research strategy.

Therefore, we can’t help but think about how AI technology can 
accelerate the development of LOs in fundamental research and clinical 
therapy in biomedicine. In the context of technological innovation, re-
searchers at Johns Hopkins University in the United States have crea-
tively conceived a technology similar to human organs—“organoid 
intelligence (OI)”—brain organoids as hardware to develop bio-
computing [39]. In 2023, this team envisioned computers running on 
human brain organoids and announced related research plans [39]. In 
the rapid development of the information age, harnessing the power of 
AI for LO research, combined with gene editing, imaging analysis, and 
multi-omics sequencing, could aid in organoid system improvement, 
clinical decision-making and clinical trial performance analysis. AI can 
predict the differentiation pathway of stem cells, infer the production 
and development of LOs, and ameliorate the LO culture environment, 
attempting to build more sophisticated and authentic in vitro physio-
logical models in a highly human-relevant manner [40–43]. With the 
help of AI, researchers can efficiently and accurately analyze the struc-
ture and function of LOs through image-based training and sequencing 
[44,45]. Additionally, AI can be used to analyze big data from LO ex-
periments, allowing for in-depth parsing of the underlying mechanisms 
of biological behavior, forecasting disease occurrence and mimicking 
pharmacological action [4,46–48]. For instance, a machine-learning 
framework could identify translational biomarkers and predict drug 
responses to cancer patients by combining network-based analyses and 
pharmacogenomic data based on preclinical bladder LO models [48]. 
Overall, the rise of AI reduces tedious human labor, enhances the reli-
ability and validity of models, provides more comprehensive biological 
information. The integration of multidisciplinary technology has also 
driven a deep and comprehensive understanding of LOs. Undoubtedly, 
OI is a breakthrough product of the integration and collision of emerging 
HO and AI technologies and has epoch-making significance.

Here, we comprehensively summarize how AI aids in driving the 
revolutionary advances of LOs in life science, precision medicine and 
pharmaceutical science in an unprecedented way. Firstly, various con-
struction strategies such as the hanging-drop method, droplet micro-
fluidic technology, microfluidic organ chip, 3D bioprinting are 
introduced in detail, as well as their respective features and applications 
are also included. Secondly, we shed light on the state-of-the-art 
multidisciplinary techniques (e.g., image devices, biosensors, and 
multi-omics) for monitoring and analyzing in vitro LO models. Thirdly, 
we highlighted the cutting-edge achievements and the prospective 
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applications of AI in LOs, particularly in biological study (e.g., AI-guided 
system optimization and environmental control) and preclinical appli-
cations (e.g., disease occurrence, disease diagnosis and prediction and 
drug screening). More importantly, we shed light on the new research 
trends harnessing the power of AI for LO research in the context of 
multidisciplinary technologies. Moreover, current challenges of the 
integration of AI and LOs, as well as potential solutions and future 
development direction were discussed. Taken together, AI-driven LOs 
hold the promise of closing the gap between in vitro microphysiological 
models and the real human body, accurately predicting relevant human 
responses to external stimuli (cues and drugs), accelerating preclinical to 
clinical transformation, and ultimately improving patient health and 
well-being.

2. CURRENT construction strategues of in vitro LOs

Living human organoids (LOs)—prevailing in vitro 3D human orga-
notypic models—refer to the self-assembly of cellular clusters origi-
nating from human pluripotent stem cells (hPSCs), adult stem cells and 
tumor tissues. These 3D constructs replicate some traits of in vivo 
counterparts such as hereditary characters, complex spatial 
morphology, cell-cell/matrix interactions, and organ-specific function. 
Currently, LOs have been widely applied in biomedicine (e.g., tissue/ 
organ development, disease modeling, drug testing and precision med-
icine). In recent years, multiple engineering assembly strategies have 
developed to establish in vitro LOs (Fig. 1), aiming to improve the cor-
relation of the tissue/organ behavior between real human body and in 
vitro experiments. The core of these approaches is to reproduce the 
ecological niche of the native cells, such as pivotal biochemical and 

biophysical signaling from the bloodstream or neighboring cells, the 
formation of intercellular junctions, as well as interactions and func-
tional transduction with the ECM. These organoids display a variety of 
properties that should enhance their potential for biological computing. 
While efforts to abstract biological principles never stop, the creation of 
artificial LO systems is gaining increasing interest. On the other hand, 
researchers in tissue engineering are also actively carrying out research.

2.1. HANGING-DROP method

Historically, Harrison (1907) invented a hanging-drop technique for 
culturing nerve fibers [49]. Later, this method was used to produce 
spheroids and organoids. They took advantage of the surface tension to 
keep the overhanging drop in place, and gravity caused the cells at the 
bottom of the droplet to rapidly aggregate. The technique is easy to use 
and versatile, and can obtain a large number of uniform spheres in a 
relatively simple manner with an efficiency of about 100 % (one 
spheroid/drop). In addition, tightly packed spheroids are easier to 
generate than loose cell aggregates, but the morphology of spheroids 
depends on the cell type. Currently, various organoids can be formed by 
this method, including inner-ear organoids, proximal tubule organoids, 
mammary organoids, intestinal organoids, etc [50–54]. For instance, 
Parigoris et al. constructed tubuloids based on hanging drop possessed 
reversed polarity, in which the basolateral side faces inward, and the 
apical side is outward-facing. These organoids exhibited time- and 
dose-dependent responses to proteinuric conditions [51]. In addition, 
the use of commercial hanging drop array platforms (e.g., 96- and 
384-well plates) makes this method more broadly accessible than pre-
viously reported hanging drop systems and enables compatible with 

Fig. 1. Schematic of engineering strategies (e.g., droplet microfluidic, organ chip, 3D bioprinting, etc.) for the construction of in vitro human organoids in various 
biomedical applications.
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direct live microscopy imaging [55,56]. Another concern with this 
technique is that the culture media in the droplet evaporates, resulting 
in increased osmotic pressure, which limits the time for growth and 
analysis [57]. To overcome the limitation, Bashir’s group modified 
previous designs to cover the modular array of droplets encapsulated 
cells with mineral oil, effectively preventing culture media from evap-
oration and allowed for measuring response to drugs over time with 
real-time confocal microscopy [58].

2.2. Droplet microfluidic

Droplet microfluidics has been utilized as a versatile tool in molecule 
detection, single-cell analysis, multifunctional materials fabrication, 
tissue engineering, drug screening, etc [59]. It is a scientific technology 
to generate and manipulate nano-micron discrete droplets in micro-
channel structures by using the surface tension and shear force at the 
interface of dispersed phase and continuous phase, which has been 
widely used organoid carriers [60,61]. In general, stem cells or pro-
genitors are resuspended into the medium as a dispersed phase, and then 
cut to form the liquid drops by a continuous phase, and finally cell 
microcarriers are generated. Over time, cells self-organize, proliferate 
and sequentially differentiate into given LOs. The outstanding features 
are high throughput (up to thousands of Hertz), uniformity (size and 
shape), controllability (flow and component) and compartmentalization 

(independent bioreactor). Therefore, the construction of LOs using this 
technique requires consideration of the design of microfluidic channels, 
the size of the required spheroids, the type of gel used and the 
cross-linking method. The emergence of droplet microfluidics allows the 
production of organoids to break through the significant variability and 
low throughput of themselves [60]. Due to its small volume, droplet 
allows high-density cell encapsulation and increases cell paracrine 
signaling. Meanwhile, it precisely defines the heterogeneous cell 
composition in each small droplet and ensures inter-organoid consis-
tency, intra-organoid complexity and inter-batch reproducibility [62]. 
At present, this strategy used microfluidic droplets as structural tem-
plates and was used in functional organ fabrication, drug testing, organ 
transplantation in organoid research [61,63–65] (Fig. 2A). The human 
pancreatic islet organoids in droplet-filled hydrogel fibers created by 
Wang et al. contained four classical pancreatic-lineage cell types (α-,β-, 
γ, and δ-cells) that showed sensitive insulin secretion function [66] 
(Fig. 2B). Compared to the conventional organoid models, microfluidic 
droplet encapsulation-guided tumor organoid growth and organization 
promoted parental tumor phenotype recapitulation with high purity and 
high rates [62]. Certainly, different systems can also be designed ac-
cording to needs to achieve cell-cell interactions [67,68]. For instance, 
Dowbaj et al. coencapsulated isolated liver portal mesenchyme and 
ductal cell organoids into microgels, which recapitulate aspects of their 
cellular interactions in vitro [69] (Fig. 2C). Zhao’s group developed 

Fig. 2. Representative organoid systems based on droplet microfluidics. (A) Droplet microfluidic system for the formation of islet organoids. Reproduced from Liu 
et al. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) The human pancreatic islet organoids in droplet-filled hydrogel fibers were created. 
Copyright 2021, ACS Publications. (C) Isolated liver portal mesenchyme and ductal cell organoids were coencapsulated into microgels based on droplet microfluidic. 
Copyright 2023, Cell Press. (D) Human brain assembloids were composed of cortical, hippocampal, and thalamic organoids by coding microcapsules based on droplet 
microfluidic. Copyright 2023, Wiley-VCH GmbH [61,69,70].
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human brain assembloids composed of cortical, hippocampal, and 
thalamic organoids from human induced pluripotent stem cells (hiPSCs) 
by coding and fusing microcarriers on droplet microfluidics [70] 
(Fig. 2D). The produced assembloids showed active neural migration 
and interaction and good cell viability. This novel droplet-engineered 
organoid technology is expected to be a latest tool aimed at advancing 
the manipulation of neural circuits to recapitulate human-level brain 
function, including learning plasticity and memory. So far, the tech-
nology is still in its infancy. The engineering concept is not limited to the 
brain, but extends to reshaping the complex biomimetic multi-organoid 
systems (e.g., brain-spinal-muscle organoid axis) in vitro and exploring 
the physiopathologic interactions.

2.3. Organ CHIP

Organ chip is a transformative biomedical technology that has been 
born in recent years, and was listed as one of the “Top ten emerging 
technologies” by the World Economic Forum in Davos in 2016, and is 
also the core key technology to be overcome in the biomedical field. The 
organ chip is a miniaturized cell culture platform that comprises 
microchannels inhabited by living cells, evolving from microfabrication 
technologies and bioengineering strategies [71]. The outstanding 
advantage of organ chips is the controllable regulation and high inte-
gration of cell niche, so it is considered as a kind of in vitro micro-
physiological system with strong comprehensive ability. It can in vitro 
partially replicate organ-specific structures (e.g., villi, gas-liquid inter-
face, blood vessel, and neural networks, etc) and realize key functions (e. 
g., blood-brain barrier, rhythmic respiration, peristalsis, and angiogen-
esis, etc) [72–74]. At present, this technology has been successfully 
applied to recreate every system of the human body, including nervous, 
motor, digestive, respiratory, immune, urinary, reproductive and cir-
culatory [75–81]. Notably, state-of-the-art organ chip endows organoids 
with in vivo-like ecological niches (e.g., biochemical and biomechanical 
signals) in a controllable manner, termed organoids-on-chips (OOCs) 
technology [82]. Cutting-edge OOCs facilitate the near-physiological 
biological function of organoids, as well as advance their applications 
in the biomedical field by harnessing the power of microfluidic chips to 
improve the high fidelity of Los [82–87]. Homan et al. found that flow 

enhanced the vascularization and tubular morphological maturation (e. 
g., podocyte, endogenous pool, vascular network, perfusable lumen, 
cellular polarity and adult gene expression) of kidney organoids in vitro, 
displaying the formation of capillary loops abutting foot processes in the 
mammalian embryonic kidney, and mirror early stages of glomerular 
development in vivo [83] (Fig. 3A). The individual and collective 
behavior of cells can also be affected by geometric constraints, which 
lead to different dynamics of tissue evolution and influence organ 
development processes [88]. In another case, Lutolf’s team made full use 
of microstructure of the microfluidic chip, successfully induced intesti-
nal stem cells to organize tube-shaped epithelia with an perfused 
mini-gut lumen and a similar spatial arrangement of crypt- and 
villus-like domains to that in vivo [85] (Fig. 3B). Organ chips can provide 
a screening and research model closer to the real physiological and 
pathological conditions of human body for researching pharmacoki-
netics, as well as assessing the safety and efficacy of drugs and vaccines. 
Qin’s group used a liver-heart organoids-on-chip to simulate in vivo-like 
organ interaction such as function promotion during organ development 
and hepatic metabolism-dependent cardiotoxicity [89] (Fig. 3C). With 
the deepening of research on organoids-on-chip technology, a more 
superior alternative model can be constructed by using its unique 
properties, which provides a practical solution to many problems faced 
by disease modeling and drug evaluation [90].

Organ chips can also enhance the monitoring and analysis of LOs by 
integrating a variety of technologies, such as real-time imaging systems, 
automated sampling systems and biosensors [91–93]. Notably, Schuster 
et al. established an automated multiplexer control system for individ-
ual, combinatorial, sequential and dynamic drug testing and screening 
on tumor organoids from human tissues in a microfluidic system [94] 
(Fig. 3D). In the platform, similar personalized characteristics can be 
reproduced in vivo, that is, the individualized response of different 
patients-based organoids to drug treatment regimens [94]. Interestingly, 
temporarily revised treatment regimens could be more efficient than 
constant-dose monotherapy or combination therapy. Inspired by this 
work, it is noted that this strategy will need to be modified and inten-
sified. In other words, the whole process from early detection of the 
disease, effective treatment to full recovery is underway.

Fig. 3. Organ chip technology for the generation of human organoids. (A) An organ chip for enhancing the vascularization and tubular morphological maturation of 
kidney organoids. Copyright 2019, Spring Nature. (B) On-chip mini-intestines were realized by adopting scaffold-guided organoid morphogenesis. Copyright 2020, 
Spring Nature. (C) Liver-cardiac organoids on a chip, resembling human liver-heart axis for studying hepatic metabolism-dependent cardiotoxicity. Copyright 2021, 
The Royal Society of Chemistry. (D) An automated multiplexer control system for combinatorial and dynamic drug screening on human tissue-derived tumor 
organoids. Copyright 2020, Spring Nature [83,85,89,94].
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2.4. 3D bioprinting

Bioprinting is a rapid prototyping technique, also known as additive 
manufacturing, invented by Charles Hull Started 30 years ago [95]. It is 
a prospective bioengineering technique to precisely position the living 
cells, biomaterials and signal factors for the construction of objects 
layer-by-layer on a computer-supported basis [95]. An important type of 
3D printing is to autonomous self-assembly and construction of 
organ/tissue blocks that resemble the corresponding precise architec-
ture in time and space [96]. Notably, the lungs, with their multilayered 
dendrite structure and highly branched network of blood vessels, are 
vital tissues responsible for air exchange, which is difficult to recreate in 
vitro. Grigoryan et al. printed a space-filled mathematical topology to 
enable the creation of a bionic alveolar model with entangled vascular 
systems, showing the oxygenation and flow of human red blood cells 
during tidal ventilation and proximal airway dilation [97].

3D bioprinting allows for the precise design of physiologically rele-
vant organoids, including shape, structure, mechanical properties, 
cellular arrangement, and biological cues to mimic natural tissues [98]. 
The balance between complex structural patterns during the printing 
process and the self-organizing properties of organoids supported by a 
network that runs through the entire structure is crucial. A critical 
feature of 3D bioprinting is bioinks. Optimizing specialized bioinks to 
guide stem cell proliferation and differentiation, while increasing the 
resolution of phenotypic analysis as per defined geometries and pat-
terns, will further expand the range of possible bioprinted organoid 

models [99–101]. Indeed, 3D bioprinting can combine living cells, 
biomaterials, and bioactive factors to create 3D cellular structures that 
replicate the in vivo organ architecture [102]. Most importantly, in order 
to ensure cell survival, the automated rapid prototyping technology al-
lows complex tissues to be assembled in a very short time, thereby 
expanding the production of organoids and tissue constructs on a large 
scale. For instance, Lewis’s team rapidly patterned 
patient-specific-induced pluripotent stem cell-derived functional tissues 
with high cell density, maturation, and desired functionality. As an 
exemplar, they created a cardiac tissue derived from cardiac organoids 
that exhibited bulk perfusable vascularization and mature function such 
as fusion and beating synchronously over 7 days [103] (Fig. 4A). This 
strategy opened a new avenue to rapidly assemble organ-specific tissues 
with embedded vascular systems at therapeutic scales. Besides, 
personalized bioprinting of complex organs/tissues based on patients’ 
physiological data can be carried out according to the specific needs of 
patients. So, another potential direction of 3D bioprinting with high 
cellular density, bigger sizes and higher throughput is building delivery 
and transplantation systems of organoids in regenerative medicine. 3D 
bioprinting allows to generate of tissue-level cell densities, complexity, 
and automation in fabrication, which can fabricate functional and vas-
cularized whole organs [95,104]. For instance, Zhu et al. formed brain 
organoids with complex vascular networks by integrating brain orga-
noids, endothelial cells and fibroblastin hydrogel via 3D printing [105] 
(Fig. 4B). In vivo animal studies have shown functional neural connec-
tivity and nerve regeneration from graft to host, suggesting organ-level 

Fig. 4. The generation of organoids by 3D bioprinting. (A) As an exemplar, they created a cardiac tissue derived from cardiac organoids, exhibiting bulk perfusable 
vascularization and mature function. Copyright 2019, American Association for the Advancement of Science. (B) The construction of vascularized human brain 
organoids by 3D printing in neural tissue repair. Copyright 2021, Elsevier B.V. (C) Vascularized lung cancer organoid models for precise drug evaluation. Copyright 
2023, IOP Publishing Ltd [103,105,106].
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tissue repair. Therefore, it can resolve the huge challenges faced by 
clinical transplantation therapy such as insufficient supply of healthy 
donor tissues and immune rejection of the recipients, and it is expected 
to repair or replace dysfunctional tissues. Based on 3D bioprinting 
technology, Jang’s team successfully built a vascularized lung cancer 
model that integrates patient-derived lung cancer organoids, lung fi-
broblasts, and perfusable blood vessels to more accurately evaluate 
drugs for the underlying disease [106] (Fig. 4C). Undoubtedly, this 
disruptive technology will play a crucial role in comprehending disease 
mechanisms, and developing novel regenerative therapies over the next 
decade.

2.5. Electrospinning

Electrospinning is a process that uses electrical forces to fabricate 
fibrous 2D or 3D fine scaffolds ranging from 2 nm to several micrometers 
in scale from polymer solutions [107,108]. Over the past decade, the 
emergence of electrospinning-based cell culture platforms with various 
geometries has shown immense capabilities in replicating bionic ECM 
and topological morphology for guiding cell alignment, migration, dif-
ferentiation and regeneration [109–112]. In general, electrospun scaf-
folds are valuable for heart regeneration because they provide an 
environment capable of providing synchronous beating of heart muscle 
cells, promoting the anisotropic structure and the systolic function of the 
heart tissue in vivo [113]. Ritzau-Reid et al. used melt electrospinning 
writing to make tuneable geometric scaffolds that could guide lume-
nogenesis and the formation of interconnected and spatially discrete 
brain organoids derived from embryoids [114]. This methodological 
development has opened up new opportunities for constructing physi-
ological in vitro organotypic models. However, electrospinning tech-
niques have often been criticized for denaturing biomolecules due to 
conformational changes in organic solvent environments [114]. This 
shortcoming can be overcome by selecting the chemistry of the polymer 
skeleton to effectively enable and regulate the degradation profile 
[115].

3. Developing multidisciplinary techniques for assessing LOs

In general, developmental biology has inspired organoid engineering 
strategies to build in vivo-like organoid physiology in vitro. Verifying the 
success of LO model, i.e., evaluating various biochemical and physical 
parameters in OOC devices, is crucial. Accurate assessment of the LO 
function is also crucial, affecting the reliability of the established 
models. In the following part, we will introduce the developing multi-
disciplinary techniques for assessing LOs in detail. In addition, we have 
summarized the construction techniques of organoids and the multi-
disciplinary evaluation technologies in Table 1.

3.1. Live imaging techniques

High-quality images are necessary for reliable analysis of 3D LO 
systems. At present, multiple microscopy such as optical, electron, 
fluorescence, multiphoton and laser scanning confocal microscopy are 
the most common detection ways [130]. Optical imaging is ideal for 
evaluating LO behavior because of its subcellular resolution, depth of 
penetration throughout the LOs, and functional endpoints [133]. 
Mahamid’s group realized correlative imaging from the light micro-
scopy millimeter scale of entire organoids to the nanometer-scale vol-
ume electron microscopy that captures subcellular ultrastructure [131]. 
Fluorescence microscopy and laser scanning confocal microscopy have 
great advantages for visualization of 3D multi-scaled LOs, character-
ization of the cell types of LOs and phenotypic similarity between in vitro 
LOs and their original tissues (Fig. 5A). demonstrated organoids [130] 
Multiphoton microscopy is characterized by optical sectioning and deep 
imaging, which greatly promote the deep understanding of intact living 
organoids.

Unlike histological analyses that reconstruct organ developmental 
processes by fixing multiple specimens at different times, live imaging 
techniques provide a more direct way to dynamically characterize organ 
behavior online. They provide insights into LOs in terms of structure and 
function during growth in vitro, including morphological parameters (e. 
g., size, number, etc.), multi-scale phenotypic analysis, as well as 
metabolic changes. For instance, Viasnoff and colleagues developed a 
3D single-objective light-sheet imaging device that integrated a micro-
array LO culture module, beam steering module, laser control and 
acquisition software in a standard commercial inverted microscope 
[132] (Fig. 5B). It could perform 3D live imaging up to 300 LOs/hour at 
subcellular resolution, enhancing user-friendliness with maximum 
automated manipulations. In this work, the authors monitored the 
development of neuroectoderm LOs by using stem cells expressing 
fluorescent proteins and capturing one z stack of 70 optical planes/15 
min over 8 days. Based on the local cell arrangements, it was easy to find 
that Sox2+/Pax6+ rosette structures began to appear in LOs after 4–5 
days. In addition, high-resolution imaging systems enabled rare event 
detection in LOs such as the localization of rare cellular clusters 
composed of a few cells expressing specific markers [132]. Browne et al. 
detected increased glycolytic activity and accumulation of retinol and 
retinoic acid in human stem-cell-derived retinal organoids, using fluo-
rescence lifetime imaging microscopy and hyperspectral imaging, 
respectively, which coincided with the occurrence of photoreceptors 
[125]. In vivo, two-photon imaging displayed that human brain 
organoid-resident microglia actively participated in the monitoring of 
the human brain environment and reacted to local and systemic 
inflammatory perturbation [134] (Fig. 5C).

Another interesting domain of 3D imaging is conducting patient- 
specific drug testing, which can allow the clinic to move from watch-
ing and waiting to predict treatment decisions to making informed 
treatment plans based on how patient-specific LOs respond to treatment 
[133]. For instance, using image-based assays, Badder et al. demon-
strated that morphometric analyses can capture subtle alterations in 
colorectal cancer organoid responses to Wnt inhibitors that are consis-
tent with activity against a cancer stem cell subpopulation [121] 
(Fig. 5D). 3D imaging analysis based on patient-derived tumor organoid 
platforms could aid in quantify apoptotic and tumor-stroma regulation 
profiles and measure responses to standard-of-care regimens in indi-
vidualized cancer treatment [133,135]. Overall, 3D imaging can 
reserved as a valuable phenotypic readout to quantitatively asses 
drug-intervened effects in relevant preclinical models.

Although Live imaging techniques have been widely applied in 
organoid research, there are still some limitations. Firstly, organoids are 
difficult to image because of the limited penetration depth of high- 
resolution microscopes and depth-dependent light attenuation, which 
can limit the understanding of signal transduction pathways and char-
acterization of intimate cell-extracellular matrix (ECM) interactions. 
Super-resolution imaging permitted to visualization of the organoids- 
extracellular matrix (ECM) interactions by identifying the localization 
of ECM proteins secreted by cells. For example, the Anseth team from 
the University of Colorado Boulder developed a photo transfer by allyl 
sulfide exchange-expansion microscopy (PhASE-ExM). It combined two 
technologies: 1) propoly(ethylene glycol) hydrogels suitable for intes-
tinal organoid growth and organoid crypt formation by reversible 
addition-fragmentation chain transfer reaction mediated by a radical 
cleavage of allyl sulfide, and 2) photo-expansion microscopy relied on 
swellable hydrogels generated with thiol-acrylate mixed-mode photo-
polymerization. COLIV accumulated at hinge regions of differentiated 
organoids alongside regions of thick ITGB1, with discontinuous COLIV 
and minimal ITGB1 at crypt base regions [122]. Secondly, most of im-
aging techniques-based analysis remain semi-automatic. After the data 
is generated by image acquisition methods, it is necessary to manually 
analyze the image with the help of image identification tools (e.g., 
ImageJ, Matlab languages, etc) [136]. Thirdly, the amount of generated 
data is becoming challenging to analyze manually. Organoids are large 
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Table 1 
The summary of AI-enabled LOs in biomedicine.

Organoid types Cell sources Extracellular 
matrix

Construction 
methods

Assessment techniques Key results

Brain [70,105,
114,116–118]

hiPSCs [70,105,114,118]; 
hESCs [114,116,118]

Matrigel [105,114,
117,118]; 
NaA [70,105]; 
Laminin [116,
117]; 
CMC [70]; 
Fibronectin [105];

Droplet 
microfluidic [70,
105]; 
3D bioprinting 
[105]; 
Hanging drop 
[116–118]; 
Electrospinning 
[114]

SEM [70,114,117]; HIM 
[116]; 
FM [70]; CM [162]; 
CLSM [105,116–118]; 
Calcium imaging [70,
105]; 
Glutamate biosensor 
[116]; scRNA-seq [168];

1. Efficient generation of human brain 
assembloids with functional neural 
connectivity and neuroregenerative capacity 
[70,105,114]

2. Development of electrochemical biosensors 
for the detection of glutamate [116]

3. Inferring and perturbing cell fate regulomes 
in human brain organoids [117,118]

Pancreas [61,66,
94]

Pancreatic ductal 
adenocarcinoma tissue [94]; 
hiPSCs [61,66]

Matrigel [94]; 
NaA [61,66]; 
PEG [66]

Organ chip [94]; 
Droplet 
microfluidic [61,
66]

FM [61,66,94]; SEM [66]; 
Time-lapse imaging [94]

1. Dynamic and combinatorial drug screening 
of human pancreatic tumor organoid 
responses to different drug treatments [61,
94]

2. Droplet microfluidic systems to fabricate 
biomaterials enabling stem cell organoid 
engineering [66]

Kidney [51,83,
119,120]

hiPSCs [51,119,120]; 
Primary renal proximal tubule 
epithelium [83]

Geltrex [83,119,
120]; 
Matrigel [51]

Organ chip [83]; 
Hanging drop [51,
119,120]

CLSM [83,119,120]; 
FM [51,83,119]; SEM 
[83]; 
TEM [83]; 
ATP/ADP biosensor 
[119]; 
RNA-sequencing [51,119,
120]; scRNA-seq [120]; 
Proteomics [120]

1. Fluid shear enhances vascularization and 
maturation of kidney organoid [83]

2. Integrated biosensor and omics map for drug 
nephrotoxicity assessment and disease 
modeling [51,119,120]

Intestine [85,
121–123]

Intestinal stem cells [85,122,
123]; 
Colorectal tissue [121]

Collagen I [85]; 
Matrigel [85,121,
122]; 
PEG [122]; 
BME [123]

Organ chip [85]; 
Hanging drop 
[121–123]

CLSM [85,121,122]; 
SEM [85]; FM [121]; 
TEM [85,123]; 
Calcium sensor [123]; 
scRNA-seq [85,123]; 
RNA-sequencing [122]; 
Whole exome-seq [121]

1. Promoting organoid morphogenesis with in 
vivo-like villus-crypt axis and perfusable 
lumen by 3D topology [85]

2. Exploring the interaction between organoids 
with the extracellular matrix, as well as drug 
responses [121,122]

3. Revealing human enteroendocrine cells 
subtype characteristics, hormone expression 
and secretion patterns [123]

Lung [106,124] Lung tissue [106]; 
Lung carcinoma cell lines 
[124]

LudECM hydrogel, 
Matrigel [106]; 
Collagen I, 
Methylcellulose 
[124]

3D bioprinting 
[106]; 
Hanging drop 
[124]

CLSM, SEM, FM [106]; 
Electrical impedance 
sensor [124]; 
Proteomics [106]

Modeling the complex microenvironment of 
lung cancer and lung fibrosis, as well as dynamic 
monitoring of drug effects

Retina [125,
126]

hiPSCs [125,126]; 
hESCs [126]

Matrigel [151] Hanging drop [125,
126]

FLIM, IM, OCT [125]; 
SEM, CLSM, FM [126]; 
HSpec, Tomography 
[126]; 
Electrochemical 
biosensor, 
Impedance sensors, 
oxygen sensors [151]

1. Revealing changes in metabolic activity 
during differentiation of retinal organoids by 
live imaging [125]

2. Simulating intraocular drug delivery [126]

Liver [69,127] Primary hepatocytes [127]; 
Portal mesenchymal cells; 
Ductal epithelium [69]

GleMA [127]; 
Matrigel [69]

3D bioprinting 
[127]; 
Droplet 
microfluidic [69]

CLSM [69]; 
Electrochemical biosensor 
[127]

1. Continual monitoring of cell secretomes 
[127]

2. Reconstruction of cellular interactions in the 
periportal region of the liver [69]

Breast [128] Normal and cancer tissue BME Hanging drop Multispectral 3D imaging; 
scRNA-seq

Revealing dynamic behaviour and killing 
mechanisms of engineered T cells in patient- 
derived cancerous organoids

Heart [97] hiPSCs Geltrex Electrospinning CLSM Randomly oriented microfibre scaffolds 
promote survival and angiogenesis of 
cardiomyocytes and endothelial cells

Liver-heart axis 
[89,129]

Primary hepatocytes [129]; 
hiPSCs [89,129]

GelMA [129]; 
Matrigel [89]

Organ chip CLSM [89]; 
Electrochemical sensor, 
pH sensor, Oxygen sensor 
[129]

Continuous in situ monitoring of organoid 
behaviors and assessing drug safety

Liver-islet axis 
[90]

hiPSCs Matrigel Organ chip CLSM; 
RNA sequencing

Recapitulating human liver-islet axis in normal 
and type 2 Diabetes

Brain, heart, 
kidney [103]

hiPSCs Collagen I; 
Matrigel

3D bioprinting FM; CLSM; 
Calcium imaging

Biomanufacturing of organ-specific tissues with 
vascularized networks

Lung, colon, 
kidney, liver, 
breast [130]

Mammary glands; 
Organoid biobank

BME; 
Matrigel

Hanging drop CLSM; LSFM; FM; 
Super-resolution confocal; 
Multiphoton and light- 
sheet microscopy

Capturing and quantifying 3D structure and 
cellular composition of organoid

Breast, intestine 
[131]

Mammary glands; 
Colorectal cancer tissue

Matrigel Hanging drop Deep learning; CNNS; 
FIB-SEM

Quantitative analysis of subcellular structures

Intestine, liver, 
brain [132]

hESCs; 
Primary hepatocytes

Matrigel Organ chip LSFM; CLSM; Deep 
learning; 
Time-lapse imaging; 
Multi-scale imaging

Multiscale phenotypic quantification of 
organoids
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structures with high phenotypic complexity and are imaged on a wide 
range of platforms, from simple benchtop stereoscopes to high-content 
confocal-based imaging systems. The large volumes of images, result-
ing from hundreds of organoids cultured at once, are becoming 
increasingly difficult to inspect and interpret.

3.2. Biosensors

LOs may experience physiological signal alternation from their 
development and aging or responses to external stimuli such as toxins, 
drugs, and microbial invasion. These signals are usually vital in 

maintaining functions such as gastrointestinal including pH regulation, 
electrolyte balance, and barrier functions [137,138]. So, targeting spe-
cific signals, biosensor technology can help us learn more about the 
status of organoids such as development, metabolism, and microenvi-
ronment, providing continuous data on organ-specific responses in 
human physiopathology [139]. Today, a variety of biosensors (electro-
chemical, mechanical and optical biosensors) have been used to enable 
in-situ and real-time monitoring of pivotal cues.

Currently, 2D multi-electrode arrays have been used to enable a 
noninvasive and long-term stable bioelectronic interface with LOs in 
vitro for monitoring of electrophysiological properties of LOs. LOs are 

Human Induced Pluripotent Stem Cells (hiPSCs); Human embryonic stem cells (hESCs); Fluorescence microscope(FM); Confocal laser scanning microscope (CLSM); 
Confocal microscopy (CM); Scanning electron microscopy (SEM); Transmission electron microscopy (TEM); Inverted microscope (IM); Focused ion beam-scanning 
electron microscopy (FIB-SEM); Light-sheet fluorescence microscopy (LSFM); Optical coherence tomography (OCT); Hyperspectral imaging (HSpec); Fluorescence 
lifetime imaging microscopy (FLIM); Scanning helium ion microscopy (HIM); Single-cell sequencing (scRNA-seq); Sodium alginate (NaA); Basement membrane extract 
(BME); Poly(ethylene glycol) (PEG); Gelatin methacryloyl (GelMA); Sodium carboxymethyl cellulose (CMC); Lung-derived decellularized extracellular matrix 
(LudECM hydrogel); *N.A. indicates that the specified feature has not been measured or reported.

Fig. 5. Representative achievements of live imaging technique in studying organoids. (A) The visualization of 3D multi-scaled organoids by high-resolution 3D 
imaging. Copyright 2019, Springer Nature. (B) A 3D single-objective light-sheet imaging device that integrated microarray LOs culture module, beam steering 
module, laser control and acquisition software. Copyright 2022, Springer Nature. (C) Two-photon imaging revealed that human brain organoid-resident microglia 
actively. Copyright 2023, Elsevier Inc. (D) 3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors. Copyright 2022, Wiley-VCH GmbH 
[121,130,132,134].
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typically cultured above a microelectrode array, which detects action 
potentials, mechanical signals, and biochemical activities at the bottom 
of the LOs, thereby transmitting these signals to an external amplifica-
tion system for continuous signal recording [126]. Rapid firing rates and 
network bursting events could be observed via a multi-electrode array 
platform, providing important insights into the differentiation, devel-
opment, and electrophysiological maturation of brain organoids [140]. 
Biosensors can be used to monitor changes in biochemical substances 
during the organoid culture for assessing cellular metabolism and 
response to external stimuli [116,119,124,141]. For instance, Nasr et al. 
exploited functionalized borosilicate glass capillaries as an electro-
chemical sensors to monitor glutamate release in cerebral organoids 
produced by human embryonic stem cells (hESC) that different regions 
of the brain [116]. Susa et al. employed reporter kidney organoids 
generated with an ATP/ADP biosensor for drug nephrotoxicity assess-
ment [119] (Fig. 6A). Wu et al. simultaneously test the drug anticar-
cinogen inhibition and side effects of on lung-heart-liver cancer 
spheroids platform can be quantitatively evaluated by a connected 
multiwell interdigitated electrode array [124]. In summary, biosensors 
based on 3D tumor spheroids have high predictive value for drug drug 
screening and discovery, and are expected to be well used in pharmacy 
and clinical medicine. Biosensors can detect specific biomarkers in 
complex biological environments (e.g., medium), which often contain 
excessive amounts of nonspecific proteins and interfering substance, but 
trace amounts of biomarkers of interest. For instance, Khademhosseini’s 
team integrated a label-free electrochemical biosensor on a microfluidic 

chip for long-term continual measuring of cell-secreted soluble bio-
markers (e.g., albumin and glutathione-S-transferase-alpha GST-α) with 
an LOD of 0.023 and 0.01 ng/mL from primary hepatocyte organoids 
under drug exposure by fully automated manner [127]. Notably, the 
biosensor has been designed with regenerative process capability, 
capable of long-term monitoring at up to 25 regenerates without any 
significant loss of sensor sensitivity [127]. A similar sensing method, 
using a more complex biological system, was proposed by Zhang et al., 
who combined liver and cardiac organoids to detect cardiac biomarker 
secretion following the addition of acetaminophen (paracetamol) and 
doxorubicin [129].

In addition, other biosensors such as bioelectrochemical, mechano-
biological, chemical and optical sensors have been coupled to develop 
accurate, physiologically relevant organoid models to study organ be-
haviors, disease occurrence, organ dysfunction and drug intervention 
[129,139,142]. Notably, Khademhosseini’s team assembled modular 
physical, biochemical and optical sensors on an organoid chip that could 
sense microenvironment factors in real-time as well as the organ’s dy-
namic response pharmaceutical compounds over time [129] (Fig. 6B). 
Mechanobiology biosensors will demonstrate powerful measurements of 
forces to better understand the mechanobiology of cell-cell/matrix 
interplay, and how mechanical forces affect the biological behavior of 
Los [142,143].

Although recording physiological signals via 2D microelectrode ar-
rays is an often-used means of assessing organ function, network 
communication, and response to chemicals and biologicals, the 

Fig. 6. Representative achievements of biosensors in studying organoids. (A) Kidney organoids were generated with an ATP/ADP biosensor for drug nephrotoxicity 
assessment. Copyright 2023, Frontiersin.org. (B) Modular physical, biochemical and optical sensors on an organoid chip, sensing microenvironment factors and the 
organ’s dynamic response to pharmaceutical compounds over time. Copyright 2017, PNAS. (C) Multielectrode arrays-brain organoids interface to allow electro-
physiological output recording. Copyright 2022, American Association for the Advancement of Science. (D) Three-dimensional, multifunctional neural interfaces for 
cortical spheroids and engineered assemblies. Copyright 2021, American Association for the Advancement of Science [117,119,129,145].
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accessibility to 3D LOs is poor due to the planar structure limitations (e. 
g., limited recording contact area) of 2D microelectrode arrays [139]. 
Recently, 3D flexible bioelectronics with shape-matched multiple metal 
electrodes covering the entire scalp, allowing sampling of electrical 
signals from all over its 3D geometries, which have demonstrated their 
promising applications in the latest electrophysiological measurements 
of LOs [144]. Notably, Gracias’s group developed multielectrode arrays 
(MEA)-brain organoids interface to allow electrophysiological output 
recording [117] (Fig. 6C). Guided by mechanics simulations, the 
self-folding polymer shells covered with patterned multielectrode 
nanostructures and probes could capture electrophysiological recording 
across the entire organoid surface for up to 4 weeks and the responds to 
glutamate stimulation in an ultra-high-resolution 3D spatiotemporal 
manner [117]. The groundbreaking interfaces can be integrated with the 
aforementioned microfluidic chips, supporting the scalability and 
durability of the platform as well as biochemical signals through spatial 
patterns and gradients. Together, they create a robust biosystem to gain 
an iterative, in-depth understanding of organoid behavior and responses 
to a range of highly modifiable environmental and input stimuli, which 
in turn will allow us to explore their ability to generalize the molecular 
mechanisms of learning and memory formation, and ultimately to 
realize their computational potential for stimulation. Rogers and co-
workers designed a 3D multifunctional neural interface with optical, 
electrochemical, and thermal sensing modules to a cortical spheroid, 
capturing multimodal stimulation and recordings such as 3D spatio-
temporal mapping of spontaneous neural activity [145] (Fig. 6D). Of 
note, a deformable framework that completely covers the entire 4 Π 
solid angle allows for mechanical deformation to accommodate changes 
in organoid size during neural growth [145].

3.3. Multi-omics

With the progress of scientific research, it has been found that the 
simple study of a certain direction (genome, proteome, transcriptome, 
etc.) cannot explain all biomedical problems. Scientists have proposed to 
reflect the function and metabolism of human organs/tissues through 
the study of the interaction between genes, proteins and their molecules 

from a holistic perspective. It provides new avenues for exploring organ 
development, studying pathology and discovering potential therapeutic 
strategies. At present, proteomics, transcriptomics, genomics and 
metabolomics have been widely applied in the functional analysis of 
LOs.

Often-used omics tools are classical bulk sequencing and single-cell 
profiling, which can reveal cellular and molecular changes. Bulk RNA 
analysis and qPCR provide simple transcriptomic readouts with limited 
resolution, while single-cell RNA sequencing (scRNA-seq) offers the 
possibility of identifying cell diversity, identities, differentiation tra-
jectories, gene regulatory networks, phenotypic landscape and even 
transcriptional biases in LOs under different regimens [146–149]. 
Single-cell technologies and LO systems can be leveraged to reconstruct 
human developmental events. Treutlein and partners revealed distinct 
regulome and effectors of dorsoventral telencephalon specification in 
the brain organoid from a single-cell multiome view [118]. Notably, two 
distinct GLI3 regulome are critical to telencephalic fate decisions: one 
regulated the dorsoventral mode with HES4/5 as a direct GLI3 target, 
and the other controlled ganglionic eminence diversification in late 
development [118] (Fig. 7A). Apart from transcriptional profiling, 
organoid genomic atlas at single-cell resolution have also been incor-
porated to uncover human-specific traits such as epigenetic landscape 
[150,151]. By comparing cell-type transcriptome maps of in vitro human 
retinal organoids and in vivo retinal tissues developed in vitro, it is 
possible to map disease-related genes to specific cell types [152]. In 
addition, the combination of large-scale proteomic and transcriptional 
profiling contributes to a fuller understanding of the disease process. For 
instance, Lassé et al. uncovered the cellular origins of proteins using 
organoid proteome-transcriptome integration. Proteome alterations in 
cytokine stressor (TNFα)-induced organoids help stratify diseased 
human kidney tissue [120] (Fig. 7B). Large-scale transcriptome mapping 
is also a promising technique for characterizing behavioral phenotypic 
heterogeneity in cellular immunotherapies as well as potentially deci-
phering and optimizing personalized solid tumor-targeted cell therapies 
[128] (Fig. 7C). Dekkers et al. established a 3D imaging-transcriptomic 
system to explore the dynamic interactions of T cells and patient-derived 
tumor organoids [128]. Of note, type I interferon could initiate resistant 

Fig. 7. Representative achievements of multi-omics in studying organoids. (A) Distinct regulomes and effectors of dorsoventral telencephalon specification from the 
perspective of single cell multiomics. Copyright 2022, Springer Nature. (B) Proteome alterations in cytokine stressor (TNFα)-induced organoids help stratify diseased 
human kidney tissue. Copyright 2023, Springer Nature. (C) An integrated organoid omics map extends deciphering and optimizing personalized solid tumor-targeted 
cell therapies. Copyright 2023, Springer Nature. (D) High-resolution mRNA and Secretome Atlas for revealing hormone levels secreted by human intestinal endocrine 
cell organoids. Copyright 2020, CellPress [118,120,123,128].
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organoids for engineered T cell-mediated killing. Besides, secretomics 
can reveal the landscape of secreted products such as hormone levels 
secreted by human intestinal endocrine cell organoids [123] (Fig. 7D). 
With the integration of multiple disciplines, a variety of techniques (e.g., 
Raman microspectroscopy and nuclear magnetic resonance) are widely 
used to investigate enzymatic activity and drug efficacy [153–155].

4. Overview of AI and AI-enabled LOs

4.1. Challenges of LO research

Undoubtedly, the development of LOs has propelled researchers to 
gain a deeper understanding of health, disease mechanisms, and drug 
efficacy. However, LOs still face certain limitations in their construction 
and assessment technologies. In terms of the in vitro construction of LOs, 
LOs rely heavily on animal-derived matrix gels such as Matrigel, which 
have poor reproducibility, high batch-to-batch variability, and potential 
immunogenicity problems [156]. Although various biomaterials have 
been tried to replace animal-derived substrates, such as polyethylene 
glycol (PEG), polylactic-glycolic acid (PLGA), polyacrylamide (PAm), 
etc. [157], the development of biomaterials with appropriate properties 
remains challenging due to the complex composition of the native ma-
trix and its dynamic changes with organ development and disease pro-
gression. Therefore, it is extremely difficult to develop high-fidelity 
biomaterials relying solely on traditional experimental methods of trial 
and error. Similarly, optimization strategies for each component of the 
LO culture process (such as cell type, growth factors, cell response 
behavior to external stimuli, etc) are mostly derived from labor exper-
iments. In the emerging field of intelligence, this traditional optimiza-
tion model is very undesirable, and it is inevitable to be replaced.

Comprehensive and accurate assessment of organoid function is also 
extremely important. Yet there is much room for improvement. On the 
one hand, when processing a large amount of data generated by orga-
noids, it is difficult to obtain high-quality data, and insufficient sample 
size and completeness may also affect the reliability of data. On the 
other hand, data analysis lacks standardized protocols and real-time 
monitoring technologies, resulting in large organoid variability, and 
manual processing and subjective interpretation increase uncertainty. In 
addition, the lack of automation in the current organoid culture and data 
analysis process limits the efficiency and accuracy of high-throughput 
screening, and affects the practical application of organoid models in 
clinical transformation.

4.2. Snapshot of AI

4.2.1. Definition and development history
AI is a sub-discipline of computer science. Technically, the term AI is 

named as a model proposed to figure out a specific problem or offer a 
particular service. As early as 1950, Alan Turing proposed the Turing 
Test as a standard to determine whether a machine has intelligence 
[158]. The term AI was first introduced by John McCarthy during the 
Dartmouth Conference in 1956, which is widely recognized as the 
inception of AI as an academic discipline [159]. This pivotal event 
marked the beginning of the study of machines simulating human 
cognitive processes, thus laying the foundation for the field of artificial 
intelligence as we understand it today. The 1950s–1970s were the early 
stages of AI development, with the emergence of symbolism, early 
reasoning systems, early neural networks, and expert systems [160,
161]. Fueled by the booming World Wide Web, the 1980s to 2000 
ushered in a second wave of development that marked advances in 
machine learning, speech recognition, and neural networks for pattern 
recognition [158]. The popularity of the internet and the emergence of 
big data have provided new data resources and application scenarios for 
AI. Until now, deep learning, machine learning, convolutional neural 
networks, and generative adversarial networks have achieved signifi-
cant advancements and impacts. Although it is difficult to accurately 

trace the specific time point when artificial intelligence began to be 
applied to organoid research, it can be determined that with the 
breakthrough of artificial intelligence technology in the early 21st 
century, and the important progress of organoid technology in 2009, the 
application of artificial intelligence in organoid research began to 
become more extensive and in-depth. The authors have shown very 
detailed details [161], so I won’t go into too much detail here.

4.2.2. Types of machine learning
In the past decade or so, AI has developed rapidly. With the help of AI 

technology, computers can efficiently process and analyze large 
amounts of biomedical data. Machine learning is a core area of AI and 
the basis for most AI applications today. It enables the computer system 
to automatically learn and summarize the rules and knowledge con-
tained in the data, and train AI models for efficient prediction and 
analysis, so as to replace the manual completion of complex tasks or 
forward-looking predictions, and assist in the promotion of clinical 
diagnosis and treatment and scientific experiments.

Currently, there are three main types of machine learning, including 
supervised learning, unsupervised learning, and reinforcement learning, 
which can be targeted to solve different problems. Specifically, super-
vised learning entails the training of algorithms by analyzing labeled 
training datasets, intending to enable the prediction of outputs for pre-
viously unseen data [161]. Commonly utilized algorithms in this domain 
include linear regression, logistic regression, decision trees, random 
forests, support vector machines (SVM), neural networks, and con-
volutional neural networks (CNNs). In contrast to supervised learning, 
unsupervised learning employs algorithms to process unlabeled data to 
uncover underlying structures and patterns within the dataset 
[162–167]. Clustering and association rule mining are prevalent tasks in 
unsupervised learning. Reinforcement learning focuses on developing 
optimal behavioral strategies through the interaction of algorithms with 
the environment [168]. The algorithms learn to perform actions based 
on feedback from the environment, in the form of rewards or penalties, 
to maximize long-term cumulative rewards. Common algorithms in the 
field of reinforcement learning include Q-learning, Deep q-network 
(DQN), State-action-reward-state-action (SARSA), Monte carlo tree 
search (MCTS), etc.

In general, machine learning endows AI systems with the capacity for 
learning and adaptation, enabling them to extract knowledge from 
historical data, confront unforeseen challenges, manage extensive 
datasets, and continuously improve their efficacy, performing complex 
tasks that were previously unattainable. As the core impetus of the 
current AI wave, machine learning is anticipated to maintain an 
important role in the ongoing advancements.

4.2.3. Models of machine learning
Common machine learning models and algorithms exhibit different 

performance and applicability on different problems and data sets. The 
selection of a particular model often depends on the specific needs of the 
task, the characteristics of the data, and the expected performance of the 
model. For example, a CNN has excellent performance in image data 
processing and can automatically extract image features, so it is mainly 
used for efficient recognition of medical images and videos, histological 
analysis, and diagnosis of diseases [167,169]. Recurrent neural network 
(RNN) is well-suited for time series prediction, performing natural lan-
guage processing tasks in healthcare systems (e.g., the generation of 
health reports), however, the model may struggle to capture 
long-distance dependencies [166]. Decision tree (DT) is tailored for 
dealing with classification and regression problems, and their biggest 
advantages are clear logic, intuition, and strong interpretability [170]. 
However, they are easy to overfit and sensitive to noisy data constraints. 
Therefore, pruning and other strategies may be needed to optimize 
model performance in practical applications. SVM can effectively pro-
cess high-dimensional data and is compatible with image recognition 
and disease classification based on gene expression data [163]. 
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Unfortunately, SVM may encounter computational efficiency problems 
when dealing with large data sets, and kernel function and parameter 
selection have significant effects on model performance, requiring 
careful adjustment. Overall, different models can be adapted to diverse 
tasks in the field of medicine, covering many aspects from disease 
diagnosis, patient risk stratification, treatment effect prediction, and 
medical risk assessment. In addition, researchers can also take full 
advantage of the differences between different models for the same task, 
to build a more powerful model, which is a hybrid model. For example, 
medical images can be analyzed and features extracted based on CNN, 
and then diseases can be classified according to the features of medical 
images using SVM to achieve automatic diagnosis.

4.2.4. Advantages and limitations
In today’s society, AI is becoming essential because it can solve 

complex problems in a highly efficient way. The advantages of AI in the 
biomedical field include its ability to process and analyze large amounts 
of complex data, the ability to quickly identify patterns and associations, 
improve the accuracy and efficiency of disease diagnosis, and innovative 
applications in drug discovery and genomics research [171]. However, 
its limitations lie in its reliance on high-quality, accurately labeled data, 
possible data bias and interpretative difficulties, and ethical and legal 
issues in clinical practice, including patient privacy protection and 
algorithmic transparency [172]. In addition, there are still challenges in 
the ability of AI systems to generalize, cope with unknown situations, 
and collaborate with human experts [171]. We will describe in detail 
how to overcome these limitations in our conclusions and future 
outlook.

4.3. Overview of AI-enabled LOs in biomedicine

The combination of organoids and AI is a new field of organoid 
research, which has great application potential in biomedical applica-
tions. Firstly, AI can help optimize every component of the LO culture 
process (e.g., cell types, growth factors, matrix gels, and cell behaviors in 
response to external stimuli, etc.). Secondly, the advent of AI, a new 
paradigm, has accelerated data extraction and analysis of LOs, predicted 
morphogenetic dynamics from images, and identified and interpreted 
complex biological patterns and processes, enabling spatial control of 
multicellular models and better LO design. AI can effectively process the 
large amount of omics data generated in organoid research, including 
genomics, metabolomics, single-cell omics, etc., thereby improving the 
efficiency and accuracy of data analysis. Thirdly, By simulating the 
microstructure and function of human organs, artificial intelligence LO 
can provide accurate in vitro models for disease modeling, disease pre-
diction, drug screening, and toxicity testing, to reduce the cost of drug 
research and development and accelerate the process of new drugs to 
market. In personalized medicine, patient-derived LOs are used for 
disease model reconstruction and treatment plan customization to 
improve the pertinence and effectiveness of treatment. This interdisci-
plinary integration opens new avenues for disease mechanism research, 
precision medicine, and regenerative medicine, although there are still 
challenges in technology integration, data interpretation, and ethical 
regulations.

5. Advances in AI-enabled LOs in biomedicine

AI originates in computer science and aims to highly replicate 
complex human behaviors such as feeling, memory, summarizing, 
reasoning, creating, deciding, coping, etc. Today, AI has drove LO 
research in the biomedical field. It is most exciting to see what the holds 
of AI are for these rapidly growing LOs.

5.1. AI-guided optimization of LO culture system

Machine learning is a subset of AI that uses algorithms to learn from 

data iteration to decision-making and prediction in an automated 
manner [173]. The learning potential of in vitro LOs can be optimized by 
manipulating intrinsic cell paradigms (e.g., gene editing, complex organ 
composition and vasculature) and external environmental stimuli (e.g., 
electrical, chemical and optogenetic cues). That is, AI will input complex 
biological signals to LOs, in turn, LOs will perceive them and output 
results to AI through implantable biosensors, high-resolution imaging 
and real-time measurement technologies. These outputs can be used as 
biofeedback to facilitate organoid learning or directly for computation 
purposes, realizing biological computing solutions based on AI, machine 
learning, living organoid systems and big data management. Specif-
ically, AI can help deal with every component of LO (cell types, growth 
factors, matrix gels, cell behaviors in response to external stimuli, etc.).

First, it is key to offer optimal culture conditions for the development 
of LOs, as this largely determines the structural and functional charac-
teristics of organ models in vitro. Many elements, such as PH, growth 
factors, oxygen levels, temperature, matrix property, biochemical fac-
tors and mechanical parameters have profound effects on cell viability, 
proliferation and differentiation. Unfortunately, the optimization and 
development of traditional cell culture schemes are highly dependent on 
artificial trial and error, which to a large extent hinders the rapid 
development of science and technology. Leveraging big data analysis, 
machine learning algorithms open up new avenues for experimental 
design to build more efficient and higher quality LO models. Camacho- 
Gomez et al. developed a framework that combined agent-based 
modeling and deep learning to unravel cell coordination and repro-
duce tumor organoid morphogenesis by self-organizing in different 
modes according to certain culture conditions [174]. In the context of 
big data, AI can be used to predict how microenvironmental conditions 
affect cell behaviors (e.g., proliferation, differentiation and migration) 
and accelerate organoid development [161,174,175]. Generally, the 
optimal parameters were found by repeating the candidate proposal, 
execution, validation, and prediction. For example, Kanda et al. pre-
sented a robotic AI platform that used a batch Bayesian optimization 
algorithm to autonomously guide stem cells to effectively differentiate 
into retinal pigment epithelial cells [176]. The system performed cell 
cultures under 143 different conditions from 200 million possible 
parameter combinations over 111 days, with a differentiation rate of up 
to 88 % in terms of pigmentation scores compared to pre-optimized 
cultures [176]. Singaraju et al. identified key determinants of cell dif-
ferentiation and cardiac organoid formation, such as cardiac growth 
factors, by training a lasso-regularized linear regression algorithm 
[177]. Zhu’s group proposed a deep neural network model to prospec-
tively recognize the differentiated cell types from neural stem into 
neurons [175]. Remarkably, neurotrophic factors, hormones and 
nanoparticles were taken into account, highlighting the great potential 
of the AI-enabled strategy in screening cell culture protocols [175,178].

In addition, matrix gel is a pivotal part of the construction of in vitro 
LOs, which supplies physiologically relevant microenvironments. At 
present, Matrigel and decellularized extracellular matrices (dECM) are 
still the main sources of native matrix gels due to their good biocom-
patibility and bioactivity [179,180]. However, their heterogeneity, 
batch-to-batch variability and undefined protein components may result 
in the uncontrollability of the microenvironment and low reproduc-
ibility of Los [156]. Although a variety of biomaterials, such as synthetic 
and composite hydrogels, have been explored as alternatives to the 
animal-derived matrix, including polyethylene glycol (PEG), 
polylactic-glycolic acid (PLGA), polyacrylamide (PAm), etc. [157], there 
has been considerable difficulty in developing realistic biomaterials. On 
the one hand, the component of the native matrix is extremely compli-
cated. On the other hand, with the development of organs and the 
occurrence of diseases, matrix properties (such as components, hard-
ness, mechanics and biological cues) will also change dynamically. 
Therefore, it is extremely difficult to develop high-fidelity biomaterials 
with inherent complexity based only on traditional experimental 
methods. The advent of AI, a new paradigm, has provided new 
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perspectives and feasible solutions for aiding the design and develop-
ment of novel matrix gels. It can automatically analyze existing data 
sets, capture key information and identify feasible patterns, providing a 
powerful framework for predictive analysis and hypothesis generation. 
AI, as a powerful tool, is being applied to elucidate the relationships 
among structures, properties, processes and performances, discover the 
formation and degradation mechanisms of matrix gels, especially 
decoupling multidimensional communication between matrices/LO-LO. 
Verheyen et al. exploited modular machine learning to optimize and 
fabricate alginate bioblocks with tunable morphology, rheological and 
injectable characteristics [181] (Fig. 8A). Combined with nested and 
grouped cross-validation with multimetric evaluation, the data-driven 
models were utilized to evaluate predictability and modify design fun-
damentals to guide subsequent phases of development [181]. Li et al. 
calculated the physicochemical traits of more than 2000 polypeptides 
using quantitative structure-property relationships and applied machine 
learning algorithms to correlate their structure with self-assembly 
behavior [182]. Notably, the stiffness of AI-designed hydrogels is 
related to the diameter and crosslinking degree of the nanofibers. 
Combined with large-scale data computation, AI can screen the reaction 
conditions for novel material design in a high-throughput manner [183]. 
Ao et al. demonstrated an automated platform for screening 
immunocyte-solid tumor interplay, dynamically tracking T-cell infil-
tration and cytotoxicity within tumor spheroids (Fig. 8B). By recourse to 
a clinical data-driven deep learning and drug library, this system found 
an epigenetic modulator (lysine-specific histone demethylase 1 

inhibitor) that, in combination with an immune checkpoint inhibitor 
such as anti-programmed cell death protein 1, effectively promoted T 
cell tumor invasion and improved immunotherapy in vivo [184].

In vivo, the human organ can perceive and respond to external stimuli 
[185]. In vitro LO models should also be constructed to mimic or 
reproduce key functional properties of human organs as much as 
possible. External stimuli such as eelectricity, light, machinery and 
drugs are also an important elements in regulating the behaviors, 
development and maturity of LOs. The rapid development of AI tech-
nology has shown great potential to optimize these stimuli and monitor 
physiological parameters in LO research. For example, Huang’s team 
characterized human embryonic stem cells (hESCs)-derived brain 
organoid behaviors from electrical signals with machine learning [186] 
(Fig. 8C). Machine learning and deep learning could characterize 
changes over time in local field potential (LFP) signals specific to 
chromodomain helicase DNA binding protein 2 (CHD2) mutated brain 
organoids. In combination with support vector machine method and 
convolutional neural network, LFP signatures could be applied suc-
cessfully to distinguish CHD2-mutant LOs from controlled LOs [186]. So 
et al. integrated piezoresistive sensor with a deep learning-aided data 
process to advance in the precise evaluation of various stimuli (strength, 
hardness and shape) to human skin with high accuracy (96.9 %) [187]. 
Overall, solving an intricate and high-dimensional optimization issue 
remains a challenge. AI-guided optimization of the LO culture systems, 
such as the target experimental scheme, microenvrionment parameters 
and functional verification, is reaching LO research to a new milestone. 

Fig. 8. AI-guided optimization of the LO culture system. (A) Optimization and fabrication of alginate bioblocks with tunable morphology, rheological and injectable 
characteristics by machine learning. Copyright 2023, Cell press. (B) Deep learning for cancer immunotherapy screening. Copyright 2022, PNAS. (C) Characterizing 
stem cell-derived organoids from electrical signals with machine learning. Copyright 2019, IEEE [181,184,186].
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The construction of miniaturized LO models with high fidelity of in 
vivo-like organs is helpful to comprehend the pathophysiology of the 
human body at the organ scale.

5.2. AI-accelerated the data extraction and analysis of LOs

Accurate and efficient analysis of LO images is essential for the 
functional evaluation of LOs. Up to now, rapid and effective extraction 
of multi-dimensional characteristics of LOs from batch images remains a 

major challenge in the biomedical field. In general, tracking organoid 
behaviors at the single cell level is beneficial for elucidating cellular 
spatiotemporal dynamics, as well as understanding developmental 
processes and homeostasis [188]. LO image acquisition is generally on a 
single focal plane, and it is difficult to restore the 3D scale of LOs in 
terms of morphology (size and shape) and function (biomarker distri-
bution and regional signal). Even 3D confocal microscopy can not pro-
duce large amounts of image data and can not adequately capture the 
complexity of organoid structures. Although endowed fluorescent 

Fig. 9. AI accelerated the data extraction and analysis of LOs. (A) A new deep neural network was developed to dynamically capture and track trajectories of 
organoids over time during culture based on the dataset of high-throughput organoid images. Copyright 2021, Elsevier Ltd. (B) Data-driven feature learning has the 
ability to classify, cluster and visualize 3D images, as well as rapidly quantitative phenotyping analysis of LOs. Copyright 2021, The Company of Biologists Ltd. (C) 
Data-driven cell segmentation-free machine learning recorded the phenotypic responses of dense cortical neurons to pharmacological inhibition of anti-apoptotic 
proteins. Copyright 2021, PLoS [44,190,191].
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signals for cells via gene modification is a common method to promote 
image segmentation and tracking, this process may alter the cell dy-
namics of the original tissue [161]. Because manual information 
acquisition is time-consuming, laborious, complex and lower accuracy, 
automated cell-tracking algorithms based on computer programs is the 
inevitable trend of development in LO research. The AI systems not only 
accelerate the exploration of experimental search space, but also effec-
tively strengthen the data extraction and analysis of multi-dimensional 
LOs. Firstly, AI can evaluate the characteristic changes and visualize 
spatial patterns of LOs, including cell division, movement, growth, 
development and death according to segment images without the need 
for fluorescence or transgenic labeling [161,189]. Luo’s team is the first 
to establish the first dataset of high-throughput organoid images for time 
organoid detection and tracking and proposed a new deep neural 
network that dynamically captures and tracks trajectories of organoids 
over time during culture, including irregular movement, morphological 
changes and growth kinetics [44] (Fig. 9A). AI can detect the infra-
structure of organoids frame-by-frame, extract features, pair adjacent 
frames by identifying captured sequential images, and ultimately realize 
the detection and tracking of living organoids with the aid of the pro-
posed dataset. It is also a problem to quantitatively and accurately 
analyze complex structures within LOs without compromising the 
quality of phenotypic measurements. AI, especially machine learning 
algorithms can be trained on large data sets of LO images, learning to 
recognize and quantify LO characteristics. Data-driven feature learning 
has the ability to classify, cluster and visualize 3D images, as well as 
rapid quantitative phenotyping analysis of LOs [190,191] (Fig. 9B). For 
instance, Mergenthaler et al. investigated the phenotypic responses of 
dense cortical neurons to pharmacological inhibition of anti-apoptotic 
proteins and the effects of oncogene on morphological alterations in 
human mammary acinar organoids [190] (Fig. 9C). In addition, the 
machine learning algorithm contributes to monitoring stem cell-derived 
islet organoid grafts labeled with particles and provides quantitative 
information about their presence in vivo [192].

As we all know, diverse analytical approaches facilitate a compre-
hensive understanding of biological data, elucidating how gene regu-
lation influences biodiversity and functionality. Omics sequencing 
technologies (e.g., genomics, transcriptomics, metabolomics, etc) are 
continually emerging, providing foundational tools for understanding 
complex biological events during organogenesis. However, omics data 
encompass a variety of unstructured, semi-structured, and heteroge-
neous features, with an immense volume that poses a significant chal-
lenge to regular analytical modes. Therefore, high-throughput multi- 
omics data analysis based on traditional methods is arduous and intri-
cate due to the diversity of data patterns and inherent limitations [161]. 
Also, traditional methods not only consume a significant amount of re-
searchers’ time and energy but also struggle to keep pace with the 
rapidly expanding volumes of data and the emergence of complex 
datasets. Consequently, there is a need for more efficient novel ap-
proaches to facilitate the realization of analysis tasks. In recent years, the 
synergistic potential of AI and omics technologies has advanced our 
understanding of biological complexity, such as the relationship be-
tween phenotypes and omics. Of note, a deep learning network, by 
integrating various tasks such as multi-modal fusion and cross-modal 
analysis, has the ability to analyze high-dimensional single-cell data 
(e.g., DNA, RNA accessibility, and proteins) with high accuracy in data 
integration and prediction [193]). Also, the proposed model is expected 
to directly assess the relationship between gene expression and other 
cell-specific patterns, aiding in the discovery of cell-specific regulatory 
dynamics. Another example is that an information barrier to single-cell 
RNA sequencing is the accurate labeling of data sets due to the complex, 
multi-dimensional, and ephemeral nature of cell states. Pioneering work 
by Wu’s team introduced devCellPy, a high-precision (>90 %) machine 
learning model capable of automatically predicting cell types across 
complex multi-dimensional annotations, developmental datasets and 
species [194].

Consequently, AI can facilitate the analysis and mining of data across 
multi-scales and multi-modes, enhancing the signal-to-noise ratio, and 
thereby yielding LO data with superior spatiotemporal resolution. As 
biomedical research enters the era of big data, the adoption of efficient 
technological and analytical methods to support scientific conclusions 
and decision-making becomes increasingly critical. It must be 
acknowledged that the rapid advancement of AI is further bolstering 
biomedical research, creating a new interdisciplinary research paradigm 
of ‘AI for Science’. Despite the extensive integration of AI with omics 
technologies, which has yielded a plethora of innovative research find-
ings, there are still some limitations and challenges. Notably, the pre-
vailing algorithms frequently encounter difficulties in providing 
intelligible and discernible explanations in a biological context for the 
outputs of certain models. This may hinder the thorough elucidation of 
the underlying mechanisms governing the biological phenomena that 
occur throughout the LO developmental process. Therefore, there is an 
urgent need to develop new AI models and algorithms to drive the 
development of LOs.

5.3. Preclinical applications

AI-driven LO research is revolutionizing preclinical applications by 
providing near-physiological models for disease study and drug testing. 
It accelerates the understanding of complex biological processes and 
disease mechanisms and improves the efficiency of drug development. 
Herein, we summarize the preclinical applications of AI-enabled LO 
research (Table 2).

5.3.1. Disease modeling, diagnosis and prediction
In addition to biological research, the convergence of AI and LOs will 

show promise in disease modeling, diagnosis and risk prediction. 
Especially in patients with malignant tumors, which presents late with 
poor outcomes and high lifetime risk. Recently, Sander and colleagues 
successfully applied cutting-edge AI tools to predict the occurrence of 
pancreatic cancer 3 years before diagnosis based on disease codes, 
clinical datasets and disease trajectories of 9 million patients from two 
different healthcare systems: the Danish National Patient Registry 
(DNPR) and the United States Veterans Affairs (US-VA) [201]. Placido 
et al. trained a deep learning model in the cross-application of the 
Danish model with the US-VA dataset and showed enhanced perfor-
mance (area under the receiver operating characteristic curve = 0.78) in 
the case of 3-year cancer occurrence. In a realistic surveillance program 
[201]. Placido et al. excluded diagnoses within 3 months prior to model 
training for pancreatic cancer diagnoses. Unexpectedly, among 0.1 % of 
highest-risk patients over 50 years of age who were predicted within 12 
months of diagnosis, there was a large difference in relative risk between 
DNPR (58.7) and US-VA (33.1) [201]. This hinted that an absolute risk 
framework and/or retraining for a given clinical dataset might help 
improve the accuracy of risk predictions. Unfortunately, current 
research has mainly focused on clinical patient cases. Due to insufficient 
big data, and small treatment windows for advanced diseases, it is 
difficult to propose effective treatment plans for patients with specific 
diseases. LOs are excellent models and tools, which can remodel 
near-physiological human tissues in terms of structure and function [85,
202]. Therefore, LOs can be served as in vivo substitution models for 
providing datasets, analyzing human pathology and highlighting the 
potential for AI applications. For instance, Feng et al. proposed a ma-
chine learning label transfer model that integrated hiPSC-derived heart 
organoids with the experimental and computational analysis, which 
allowed us to model heart development in normal and disease states. 
Notably, the model could characterize differentiated cells from 
hiPSC-derived heart organoids carrying an Ebstein’s anomaly-associated 
genetic variant in NKX2-5, successfully establishing the congenital heart 
defects [203] (Fig. 10A). Schwamborn’s team quantified the number of 
dopaminergic neurons and neuronal complexity in midbrain organoids 
derived from patients with Parkinson’s disease, and used this data to 

H. Wang et al.                                                                                                                                                                                                                                   Bioactive Materials 42 (2024) 140–164 

155 



establish a machine learning classifier to optimize data processing 
strategies. The cell atlas analysis and toxicity prediction in brain orga-
noids under the neurotoxic compound exposure could also be obtained 
by machine learning [47] (Fig. 10B). Living organoid biobank is a 
unique biological system, which centralized stored various organoids for 
clinical therapy of diseases and academic research in life science. 
Notably, patients-derived tumor organoid living biobanks contain a 
mass of data (genetic backgrounds, mutant multiformity, and individ-
ualized properties) of specific diseases, and offer powerful biosystems 
for disease discovery, drug testing and personalized treatment in pre-
cision medicine [204–206]. Conventional in vitro models are frustrated 
to preserve the cellular fidelity and mutant diversity of parental tumors, 
as well as require a longer production time, which may delay treatment 
time. Currently, patient-derived tumor organoid biobanks have been 
established to capture tumoral and disease heterogeneity, as well as 
genotype-phenotype mapping [204,206,207]. Overall, the living orga-
noid biobank, especially patients-derived tumor organoid living bio-
banks, will help scientists conduct disease research and treatment, and 
promote human health.

5.3.2. Drug testing and disease treatment
Since our understanding grew, with technology driving scale.in the 

rapid development of the information age, AI has Notably, harnessing 
the power of AI for living organoid research, combined with drug testing 
and multi-omics sequencing, could aid in clinical decision-making and 
clinical trial performance analysis. Of particular note, the FDA 
Modernization Act 2.0, approved in December 2022, eliminates the age- 
old requirement for animal testing of all drugs and will no longer require 
animal testing before entering clinical trials. This release is undoubtedly 
a high endorsement of organoid technology, and it has also set off a 
wave of research on organoids in academia and enterprises. It offers a 
unique opportunity for LOs to explore pathological traits and drug re-
sponses, discover innovative drugs, and give targeted therapies [196,
197,208]. Combining large-scale AI-based omics analysis with diseased 
LO models allows for the identification of targets in preclinical and 
clinical trials and accurately assess the probability of a target passing a 
efficacy test. For example, by analyzing pharmacogenomic data from 
colorectal and bladder organoids, Kim and colleagues identified bio-
markers associated with drug response that accurately predicted the 
patients’ response to anti-cancer drugs [48]. In another case, 
network-based selection of PRKAB1 agonists were first-pass targets for 
intestinal barrier therapy that could effectively protect mucosal 

homeostasis and restore the leaky barrier in colon organoids [209]. In 
addition, AI can systematic pre-screen drug combinations at the 
pre-clinical stage to accelerate drug discovery. Julkunen et al. leveraged 
a comboFM framework to identify dosing combination effects of crizo-
tinib and bortezomib in lymphoma cells to support lymphoma therapy 
[210]. Ghosh’s team found that PRKAB1 agonists designed to 
up-regulate gene clusters on the healthy side of the network, combined 
with FDA-approved anti-inflammatory agents that inhibit 
pro-inflammatory gene expression on the diseased side, may show a 
synergistic therapeutic effect on inflammatory bowel disease (IBD) 
[209]. Notably, the inclusion of emerging organoid biobanks will help 
AI technology rapidly capture genotype-phenotype mapping of diseases 
in a short period, match with established disease databases, and develop 
alternative therapeutic options. Deben’s team revealed clinically rele-
vant response heterogeneity and invasive subclones in patients with 
pancreatic ductal adenocarcinoma at the organoid level [211]. Zhang’s 
team used a tumor organoid biobank established in 144 liver cancer 
patients to perform a full-spectrum analysis of intra-tumor heterogene-
ity and a large-scale drug sensitivity screening [212]. Up to 75 % of 
drugs in clinical trials fail to make it to market due to safety and efficacy 
issues [213]. Imaging-Based Machine Learning Analysis of 
Patient-Derived Tumor Organoid Drug Response), indicating the urgent 
need for improved preclinical screening methodologies to advance the 
development of drugs.AI technology possesses the capability to 
construct sophisticated in silico drug screening paradigms, which 
facilitate the rapid triage of suboptimal compounds. These models are 
adept at engineering superior chemical entities, augmenting the 
enrichment of molecules with therapeutic potential, thereby attenuating 
the temporal and fiscal expenditures associated with the drug discovery 
process [196,197,200]. Using an AI-enabled approach, the researchers 
designed and synthesized a new compound, PKUF-01, which combined 
Lenvatinib and the c-Jun inhibitor veratramine, showing significant 
synergistic effects. Nowak-Sliwinska’s group designed personalized 
treatment regimens for patients with colorectal cancer by combining 
patient-derived organoid efficacy tests and mathematical models based 
on outcomes [214] (Fig. 10C). The four low-dose combinations of rife-
nib, vemurafenib, palbocinb and lapatinib could inhibit cell viability by 
up to 88 %, signifcantly better than the clinical dose of FOLFOXIRI. AI 
models help predict human-related biological behaviors at the organoid 
level, quickly identifying potential pathways, proteins, mechanisms, and 
targets associated with disease [195,199]. It is worth considering that 
the establishment of organoid biobanks for different cancers, such as the 

Table 2 
A summary of the preclinical applications of AI-enabled LO research.

Organoid types Cell resources Disease types AI tools Study objectives

Brain [47] hiPSCs Parkinson Machine learning; 
Random forest

Neurotoxicity prediction and phenotypic characterisation monitoring

Pancreas [195] Patient pancreas 
tissue

Ductal adenocarcinoma Deep learning Accurate identification and monitoring of pancreatic ductal 
adenocarcinoma carcinoid responses to chemotherapy and 
immunotherapy

Bladder [196,
197]

Bladder cancer cell 
lines [196,197]

Bladder cancer Deep learning [196,197]; 
Convolutional neural 
networks [197]

Improving image segmentation accuracy and drug screening efficiency

Colorectum [46,
198]

Adult stem cells [46]; 
Colorectal tissue 
[198]

Colorectal cancer Machine learning 1. Performing morphological analysis of organoids based on an AI-based 
classifier [46]

2. Assessing the dynamic changes of patient-derived colorectal tumour- 
like organs in responses to drugs [198]

Islet [192] hiPSCs Type 1 diabetes Machine learning Achieving quantitative, long-term, and in vivo monitoring of human islet 
organoid transplantation

Liver [199] N.A. COVID-19 Machine learning Baricitinib has an anti-inflammatory effect and anti-COVID-19 viral 
activity

Lung, 
Pancreas 
[200]

Lung and pancreatic 
tissues

Lung cancer; 
Pancreatic ductal 
adenocarcinoma cancer

Deep learning; 
Convolutions neural 
networks

Validating AI’s advantages in partitioning cell arrest and cytotoxic drug 
responses

Colorectum; 
Bladder [48]

Colorectal and 
bladder tissues

Colorectal cancer Machine learning Identifying biomarkers to accurately predict the response of cancer 
patients to 5-fluorouracil and cisplatin drugs

Human Induced Pluripotent Stem Cells (hiPSCs); Corona Virus Disease 2019 (COVID-19); *N.A. indicates that the specified feature has not been measured or reported.
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culture system, is not standardized [215]. Overall, AI-enabled LO 
research is warranted to predict drug responses, provide a new thera-
peutic strategy, and guide clinical decision making. It is expected to 
transform the drug approval process, allowing biopharmaceutical 
companies to enter the drug development field directly through 
AI-enabled LO research.

Certainly, AI can also help doctors assist the consultation, assist 
analysis of images and electrical data, and make surgical plans, identify 
hard-to-detect traces, analyze clues, and more [198]. For example, Mao 
et al. improved the performance of medical inquiry by optimizing the 
algorithm model, and the accuracy rate of medical consultation reached 
90.15 % [216]. An AIdecision support system with expert knowledge 

quality control algorithms can identify blood glucose patterns in the 
type 1 diabetes with the same accuracy as the board-certified endocri-
nologists [217]. Specifically, Jacobs’s team generated 51,831 glucose 
observations to train the decision support engine performance in 
discerning high or low glycemic factors and to predict user-specific in-
sulin adjustments from multiple potential recommendations [217]. 
After 12 weeks of continuous use, there were substantial improvements 
in blood glucose outcomes in virtual adults, adolescents and children. 
Importantly, the AI-based engine system can similarly identify insulin 
dosing problems in real-world human data, showing great application 
value in managing and improving glucose levels in type 1 diabetes. 
Vermeulen et al. achieved diagnostic turnaround times of less than 90 

Fig. 10. Preclinical applications of the convergence of AI and LOs in disease modeling, diagnosis and prediction, as well as drug testing and disease treatment. (A) 
Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency. Copyright 2022, Springer Nature. (B) Machine 
learning-assisted neurotoxicity prediction in human midbrain organoids. Copyright 2020, Elsevier Ltd. (C) Machine learning for genetics-based classification and 
treatment response prediction in cancer of unknown primary. Copyright 2023, Springer Nature [47,203,214].
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min in 25 surgeries by applying transfer-learned neural networks [218]. 
Notably, the diagnosis rate was as high as 72 %. Cancer Institute and the 
Massachusetts Institute of Technology (MIT) exploited a machine 
learning model called OncoNPC to predict the origin of cancer with an 
average accuracy of 80 percent, rising to 95 percent accuracy for tumors 
with high confidence predictions (about 65 percent of the total) [219]. 
The carcinoma of unknown primary focus (CUP) patients treated with 
the OncoNPC predictive approach had significantly longer survival than 
those treated with the inconsistent approach [219]. In a word, 
AI-assisted systems can assist decision-making and promote the imple-
mentation of personalized treatment, which is of great significance for 
doctors to formulate appropriate and accurate treatment strategies and 
avoid additional surgeries. For patients with pre-existing conditions or 
underlying risk factors, the next generation of technology will predict 
the onset of disease and intervene in a timely manner, ultimately 
achieving human health. We want to push the frontiers of artificial in-
telligence and organoid science to explore together how AI can better 
serve the study of human intelligence, inspire the development of arti-
ficial general intelligence, and provide innovative solutions to the 
challenges of organ function and disease.

6. Conclusion and future perspectives

Developing AI has displayed huge utilization potentiality in LO 
research, but AI-enabled LO models are still some limitations. In this 
part, we will present existing deficiencies, potential solutions, and future 
directions to advance the development of state-of-the-art in vivo LO 
systems.

6.1. Standardization

Undoubtedly, multiple self-assembly and engineering strategies have 
emerged to construct in vitro LOs, aiming to recapitulate the in vivo-like 
ecological niche of the human native organs. The road from LOs to 
general AI is still full of opportunities and challenges. In summarizing 
what has been achieved so far, some of the potential limits of AI-enabled 
LOs in the biomedical and biopharmaceutical fields have become 
apparent. We should understand how the human organ works and apply 
these principles to the development and innovation of general AI- 
enabled LOs. The standardization of LOs has always been a headache, 
which determines the normalization, conformity, recognition and 
extensibility of the field. In my opinion, several efforts can be made in 
the following aspects. Firstly, the current organoid systems still lack 
deficiencies such as coherent and mature blood systems, maturity 
functions, immune systems, complete life systems, dynamically chang-
ing microenvironments, as well as in vivo-like sensitivity and respon-
siveness to external stimulus (e.g., electrical, light, mechanical, and drug 
stimulation). These will limit the signal transmission (e.g., the mismatch 
between real input and actual input signals), identification and detec-
tion of AI. In particular, vascularized LOs show significant performance 
in connecting the circulatory system to support organ-organ communi-
cation and maintain systemic physiological function. To construct more 
bionic LOs, isolated organoids, microbiome, and immune cells should 
stem from human biopsies, blood and feces. A defined matrix should be 
developed to target the decellularized extracellular matrix in vivo. Be-
sides, organ-organ interaction is important for organ development and 
maturity. For instance, the simple brain organoid model can not meet 
the needs of neuroscientific research to reveal the functional charac-
teristics of the brain and to understand the mechanism of neuropsy-
chiatric diseases [220–223]. Also, the complex dynamic interplay 
between numerous cell types and regions ensure that the brain operates 
on well-defined neural circuits. It is exciting that the leading assembly 
technology developed in the last two years has brought new light to the 
complexity and functionality of LOs, especially in the development of 
whole brain organoids with network structures. Therefore, it is neces-
sary to construct complex tissues with high fidelity. In recent decades, 

emerging organ chips have enabled to connection of different organ-
s/tissues through precise fluid manipulation. Also, the mismatch be-
tween the size of the miniature LOs and the size of authentic human 
tissues is a problem. Herein, 3D bioprinting can remodel big-scale 3D 
tissues with an in vivo-like hierarchical structure to resolve this problem. 
In addition to improving their own systems of LOs, the compatibility of 
LOs and AI is also a point worth focusing on. That is, 3D and even 
all-round LO-AI interfaces should be flexible, and can sense the changes 
in size, hardness, biomarkers, and secretions over time during culture 
and make appropriate adjustments to monitor the development of LOs. 
Secondly, hierarchical classification of different diseases should be 
established to constrain the criteria of in vitro LO models. It is worth 
mentioning that the LO biobank opens up new ways to build physio-
logical and pathological models relevant to humans in basic and clinical 
applications. Especially, as a rich resource, the establishment of tumor 
organoid biobanks contributes to obtaining mass data on specific dis-
eases and further realizing personalized therapy. In my opinion, stan-
dardized research systems determine whether the subsequent function is 
widely recognized. Thirdly, to match the rapid development of clinical 
medicine and advance the preclinical to clinical transition, emerging 
tumor organoids-on-chip technology has been applied to in vitro orga-
noid behavior monitor, disease modeling, and drug screening. The 
state-of-the-art chip devices are expected to be integrated into the 
AI-enabled LO systems to take advantage of their advantages. At the 
same time, multidisciplinary efforts are needed to establish standardi-
zation and guidelines in biology, including biomaterials and media 
formulations, sample collection, and operation specification. Various 
real-time readout systems integrated into organ-on-a-chip devices will 
enhance quality control processes and improve efficiency, standardiza-
tion and repeatability.

6.2. Automation and individuation

Current technological development provides great opportunities to 
harness the power of AI for specific disease research and has great po-
tential to give personalized treatment plans for patients. High-integrated 
systems involving AI, machine learning, living human organoids, 
microfluidics, genetic editing, biosensors, multi-omics, high-resolution 
imaging, soft materials, and more hold promise to advance AI-enabled 
LO models for biological research and personalized therapy. It must be 
done collaboratively by workers with different disciplinary back-
grounds. In recent years, gene-editing systems like CRISPR/Cas9 have 
shown remarkable efficacy in identifying oncogenes, the study of drug- 
gene Interactions and the evaluation of drug-targeting treatment [223]. 
By accurately regulating the gene profiles of tumor organoids through 
gene editing, scientists could parse the correlation between gene mu-
tations and anti-tumor drug sensitivity, gain insight into the mechanisms 
of development at the molecular level, and discover potential bio-
markers and innovative drugs [224]. It is worth noting that automated 
microfluidic LOs-on-chips have advantages in high throughput and 
precise analysis of cells, but are not yet compatible with AI. The 
emerging systems may drive LO models to screen and reflect real-world 
patient treatment processes, and potentially facilitate treatment de-
cisions for personalized treatment. Until these platforms are used more 
widely, an important next step is to evaluate how surveillance strategies 
designed for patients such as those at-risk groups can promote early 
disease detection in clinical trials and improve survival, while mini-
mizing overdiagnosis and potential harm.

The essence of the algorithm is based on the analysis of massive data, 
constantly improve the accuracy of the models, help doctors and med-
ical institutions enhance efficiency and lower the error rate. However, 
big data is constantly generated and endless, which means that the data 
obtained from a certain sector or a certain region is very limited, and the 
algorithm improved by this data is difficult to be universal, which also 
means that artificial intelligence is easier to have an advantage in the 
data with certainty, rather than real-time dynamic adjustment of the 
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data. From a medical perspective, although evidence-based medicine is 
widely applied in the treatment process, the treatment of many complex 
diseases requires comprehensive data analysis, and patients are 
different, complex diseases need personalized treatment, algorithms can 
only provide auxiliary reference on data, and can not replace decision- 
making. User compliance is highly dependent on their living and 
eating habits, such a service essentially needs more personalization, that 
is, more human intervention, and the versatility of the algorithm is 
difficult to get the desired effect. This leaves digital therapy Mired in a 
paradox of its own creation, with the universality of algorithms strug-
gling to cope with dynamic and uncertain data. In the future, researchers 
can enrich data sets with LOs, not just clinical samples, and make more 
attempts on other tasks, further pushing biomedical advances.

6.3. Regulatory situation

Research on organoids supported by artificial intelligence is making 
breakthroughs in biomedicine and life sciences. The so-called opportu-
nities and challenges coexist. In particular, there are some regulatory 
and legal challenges and risks that we need to face and address, such as 
how to ensure its smart safety and control, how to ensure that it is ethical 
and responsible, and how to do economic restraint and regulation. 
Notably, patient-specific tumor organoid models are admirable in terms 
of ethical principles associated with reducing animal use, but their scale- 
up and clinical translation still face significant ethical issues. Due to 
rapid advances in technology, it is difficult to foresee the possible future 
use and storage of these models, which has led to concerns about 
obtaining informed consent from donors. The prowess of AI is under-
pinned by its capacity to aggregate and integrate a broad spectrum of 
disparate datasets, thereby facilitating tailored medical approaches and 
enabling ongoing learning processes. Nonetheless, this proficiency is 
contingent upon the utilization and governance of LO data from human 
tissues, which inherently intersects with issues on the privacy of patients 
[225]. Investigators are obliged to deliberate upon these concerns and 
establish a framework of guidelines that are designed to foster and up-
hold the principles of responsible research conduct [172]. For example, 
establishing cryptographic protocols or digital signatures can prevent 
data theft, tampering, or corruption. Differential privacy technology can 
also be used to process data in a privacy-preserving manner, ensuring 
that an attacker cannot identify specific information about any indi-
vidual in the data set through the analysis results. In addition, ethical 
guidelines on commercialization are needed to ensure a fair distribution 
of benefits among donors/patients, researchers, commercial parties and 
other stakeholders involved in generating these models. The ethical 
concerns raised by LO research have partly focused on questions about 
creating entities that could potentially exhibit consciousness. Of course, 
AI-based organoid solutions are only for better service of humans for life 
sciences and effectively reducing the burden on public medical service. 
The computer will be built from human cells and is designed to mimic 
the complex processes in living organisms to enable efficient, intelligent 
computing. Overall, the construction of AI-enabled LO model systems 
and their research in biomedicine have just started, and still need to be 
further explored. AI-powered LOs have the potential to dramatically 
improve the way we approach medicine, and it’s a heart-stirring field 
that deserves continued attention and investment.

6.4. Commercialization

A multitude of corporations globally, including Hubrecht Organoid 
Technology (HUB), Emulate, DaXiang Technology, and D1Med, have 
catalyzed the commercial progression of organoid technologies via 
diverse commercial strategies. This spectrum encompasses the provision 
of direct pharmaceutical services, technological licensing, product sales, 
and cooperative research endeavors. The 2019 signified a pivotal stage 
in the commercialization of organoids, witnessing the inception of six 
enterprises [226]. Organome and HUB are devoted to the establishment 

of organoid biobanks in a non-profit mode within the organoid realm, 
whereas their counterparts are focused on the manufacture, commer-
cialization, or other organoid-centric services. Of note, SUN Biosciences 
and System1 Biosciences are pioneering the utilization of robotic auto-
mation for organoid fabrication. Recently, MIMETAS has declared a 
partnership with HUB to commercialize organoids integrated within 
microfluidic chips. In parallel with these organoid-focused companies, 
the collaborative venture between the US Type Culture Collection and 
the Human Cancer Model Initiative to cultivate patient-derived cancer 
organoids is also an important advance in the commercialization of 
organoids. For organoid companies, the road to commercialization 
needs further validation and exploration. Firstly, companies providing 
professional services need to establish a standardized service system and 
identify scalable application scenarios, so as to promote the commer-
cialization process of the company. Secondly, the maturity of the tech-
nology platform largely determines the quality of organoids, which will 
become an important determinant of the competitive landscape of the 
industry. Thirdly, the inherent opacity of AI models, often referred to as 
their “black box” feature, can lead to challenges in model interpret-
ability, thus limiting the widespread deployment of such models in 
organoid commercialization. Therefore, enhancing the interpretability 
of AI models helps to increase the confidence of scientific researchers 
and clinical practitioners in the prognostic insights generated by AI al-
gorithms. Besides, computational resource requirements, ethical con-
siderations, validation, and reproducibility are also factors to consider. 
Finally, advancing the commercialization of AI in organoids requires 
interdisciplinary research and collaboration among scientific re-
searchers in the fields of biology, medicine and AI.

Overall, the research on AI-enabled LOs has just started, and there is 
a lot of room for development to improve the system. By integrating AI 
systems, researchers can in-depth understanding of human organ 
development, disease occurrence, and drug responses. The proposed AI 
systems have great potential for directing cell behavior and controlling 
cell niches (matrix gel and environment stimuli), enabling researchers to 
investigate the biological processes of LOs on a single-cell or cluster 
scale. Researchers can rapidly and precisely capture changes in pheno-
type, genotype and biological activity of LOs over time. This information 
can be used to train machine learning algorithms and further predict 
future development direction. Living imaging techniques, biosensors, 
and multi-omics advance the comprehensive assessment of LOs from 
multiple perspectives. Due to the difficulty of analyzing large amounts of 
data, AI is driving the evaluation of these technologies in an unprece-
dented way to match the rapid development of LOs in an automated and 
high-throughput mode.
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