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Abstract

Statistical learning of physical stimulus characteristics is important for the development of

cognitive systems like language and music. Rhythm patterns are a core component of both

systems, and rhythm is key to language acquisition by infants. Accordingly, the physical

stimulus characteristics that yield speech rhythm in “Babytalk” may also describe the hierar-

chical rhythmic relationships that characterize human music and song. Computational

modelling of the amplitude envelope of “Babytalk” (infant-directed speech, IDS) using a

demodulation approach (Spectral-Amplitude Modulation Phase Hierarchy model, S-AMPH)

can describe these characteristics. S-AMPH modelling of Babytalk has shown previously

that bands of amplitude modulations (AMs) at different temporal rates and their phase rela-

tions help to create its structured inherent rhythms. Additionally, S-AMPH modelling of chil-

dren’s nursery rhymes shows that different rhythm patterns (trochaic, iambic, dactylic)

depend on the phase relations between AM bands centred on ~2 Hz and ~5 Hz. The impor-

tance of these AM phase relations was confirmed via a second demodulation approach

(PAD, Probabilistic Amplitude Demodulation). Here we apply both S-AMPH and PAD to

demodulate the amplitude envelopes of Western musical genres and songs. Quasi-rhythmic

and non-human sounds found in nature (birdsong, rain, wind) were utilized for control analy-

ses. We expected that the physical stimulus characteristics in human music and song from

an AM perspective would match those of IDS. Given prior speech-based analyses, we also

expected that AM cycles derived from the modelling may identify musical units like crotch-

ets, quavers and demi-quavers. Both models revealed an hierarchically-nested AM modula-

tion structure for music and song, but not nature sounds. This AM modulation structure for

music and song matched IDS. Both models also generated systematic AM cycles yielding

musical units like crotchets and quavers. Both music and language are created by humans

and shaped by culture. Acoustic rhythm in IDS and music appears to depend on many of the

same physical characteristics, facilitating learning.
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1. Introduction

The potential parallels between language and music have long fascinated researchers in cogni-

tive science. In this paper, we examine whether a statistical learning approach previously

applied to understand the development of phonology as a cognitive system in language-learn-

ing infants and children may enable theoretical advances in understanding the acoustic basis

of rhythm in music. Infant language learning has been argued to begin with speech rhythm

[1], and infant-directed speech (IDS), also called Babytalk or Parentese, has been described as

sing-song speech. The particular prosodic or quasi-musical characteristics of IDS have been

suggested to explain both natural selection for human language from an anthropological per-

spective [2], and to facilitate infant learning of the phonological structure of human languages

[3]. Although language acquisition by human infants was once thought to require specialized

neural architecture, studies of infant statistical learning have revealed that basic acoustic pro-

cessing mechanisms are sufficient for infants to learn phonology (speech sound structure at

different linguistic levels such as words, syllables, rhymes and phonemes; e.g. [4]). Further, the

cognitive capacity of statistical learning is not restricted to verbal language, but extends to

non-linguistic sounds such as tones (e.g., [5, 6]), timbres (e.g., [7, 8]) as well as rhythm and

timing (e.g., [9–11]). Children who exhibit difficulties with phonological learning also exhibit

rhythm processing difficulties, with both speech and musical stimuli [12]. This implies that

there may be inherent common statistical properties shared by language and music, and that

such statistical properties contribute to the acquisition of both language and music [13].

Modelling of the speech signal aimed at understanding the potential sensory/neural statisti-

cal properties that underpin phonological and rhythmic learning in childhood has revealed a

novel set of acoustic statistics that underpin speech rhythm in infant- and child-directed

speech (IDS and CDS). These novel statistics are consistent across two different modelling

approaches, a spectral-amplitude modulation phase hierarchy (S-AMPH) approach based on

the neural speech encoding literature [14, 15], and probabilistic amplitude demodulation

(PAD, [16, 17]). The S-AMPH model was first applied to English nursery rhymes and subse-

quently to Babytalk [18]. The key parameter that emerged with respect to rhythm in both mod-

els and for both genres was the phase relations between a band of amplitude modulations

(AMs) centred on ~2 Hz, and a band of AMs centred on ~5 Hz. When both bands peaked

together, a strong syllable was heard. When a trough in the slower AM band (~2 Hz) coincided

with a peak in the faster AM band (~5 Hz), a weak syllable was heard. Adult listeners’ percep-

tion of vocoded English nursery rhymes could be shifted from a trochaic to iambic rhythm

simply by phase-shifting the slower AM band by 180 degrees. Related experimental work

using PAD showed that the phase relations between peaks and troughs in AM bands centred

on ~2 Hz and ~5 Hz was critical for perceiving rhythmic metrical patterning in nursery

rhymes (trochaic versus iambic, [14, 15, 18, 19]). These phase relations between peaks and

troughs in AM bands centred on ~2 Hz and ~5 Hz have also been revealed by statistical model-

ling of other languages like Portuguese and Spanish [20, 21]. For example, Pérez-Navarro et al.

[21] reported that CDS in Spanish was characterized by higher temporal regularity of the

placement of stressed syllables (phase synchronization of ~2 Hz and ~5 Hz AM bands) com-

pared to ADS in Spanish. Further, phase relations are statistical characteristics that describe

music as well as language, and phase relations appear relatively uniform regarding music from

different cultures [22, 23], as well as songs of different species [24]. Even prior to the acquisi-

tion of culture-specific biases of musical rhythm, infants are affected by ratio complexity [25].

Thus, phase hierarchies may be a universal aspect across music and language.

Accordingly, here we investigate the characteristics of music and child songs from the same

S-AMPH modelling perspective previously applied to English, Portuguese and Spanish. In
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particular, it is of interest to establish whether the phase dependency between bands of AMs

centred on ~2 Hz and ~ 5 Hz will relate to musical rhythm across different genres. Theoreti-

cally, it is plausible that the physical stimulus characteristics that describe rhythm patterns in

nursery rhymes and IDS may also describe the hierarchical rhythmic relationships that charac-

terize music and child songs. According to anthropological analyses [2], it was IDS that

emerged first, subsequently enabling the development of adult-directed speech (ADS, which is

notably not sing-song in nature). As primitive human cultures also developed music, the same

evolutionary adaptations that enabled Babytalk may underpin music as well. That is, it is possi-

ble that the AM hierarchy in music has similar structure to the AM hierarchy in IDS. The core

research question addressed here is whether music will exhibit similar salient bands of AMs

and similar phase dependencies between AM bands to IDS and English nursery rhymes

(child-directed speech, CDS).

The theoretical framework underpinning the AM modelling approach used for CDS and

Babytalk was Temporal Sampling theory (TS theory, [26]). TS theory was initially developed to

explain why children with language disorders show difficulties in AM processing, with the aim

of supporting musical interventions. TS theory now provides a systematic sensory/neural/cog-

nitive framework for explaining childhood language disorders [27]. TS theory proposes that

accurate sensory/neural processing of the amplitude envelope of speech is one foundation of

language acquisition, and that impairments in discriminating key aspects of the envelope such

as amplitude rise times at different temporal rates (which relate to speech rhythm) is one cause

of developmental language disorders [28]. The amplitude envelope of any sound is the slower

changes in AM (intensity or signal energy) that unfold over time. The amplitude rise time of

the vowel in any syllable is a core acoustic feature related to speech rhythm [29]. Amplitude

rise times are important for the perception of rhythm because they determine the acoustic

experience of “P-centers.” P-centers are the perceptual moment of occurrence (“perceptual

center”) of each musical beat or syllable for the listener [30, 31]. Amplitude rise times are typi-

cally called attack times in the musical literature [32, 33]. By TS theory, it is the rhythmic com-

ponents of musical therapies for children that explain the language gains that are found, for

example via the matching of the P-centers of syllable beats and musical beats [27, 34]. If musi-

cal remediation of developmental language disorders is to be optimised, then by TS theory the

rhythm structures that underpin language and music should be matched at the level of physical

stimulus characteristics. It is known that developmental disorders of both syntax and phonol-

ogy can be helped by musical interventions [35], but related modelling of the amplitude enve-

lope of the music used in such interventions (typically classical music) has yet to be carried

out. We present such modelling of classical music and also other Western genres here.

As a control for our prediction that the AM structure of music and IDS/CDS should be

highly similar, we also modelled other natural sounds that have quasi-rhythmic structure such

as wind, fire, river, storms, rain, as well as non-human vocal sounds, namely birdsong. A pri-
ori, we expect nature sounds to have a different AM structure to IDS and CDS. Nature sounds

such as rain and storms were originally used to derive PAD [16], and are characterized by AM

patterns correlated over long time scales and across multiple frequency bands. However, as

these sounds are not produced by humans nor shaped by human physiology and culture, there

is no reason a priori to expect them to be similar in AM structure to IDS and CDS. Birdsong

may be different, as it is more musically sophisticated and closer to human song than the other

nature sounds such as wind, fire, river, storms, and rain. Indeed, a previous study revealed that

the structure of nightingale rhythms, rather than other bird song rhythms such as zebra

finches, are similar to the structure of human musical rhythms [24]. Therefore, we also mod-

elled the corpus of nightingale’s song studied by Roeske et al. [24]. We expected the AM pat-

terns here to be more similar to IDS and CDS than the AM patterns for wind, rain etc. Other
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approaches to modelling hierarchical temporal relations in sound signals, such as the Allan Fac-

tor approach (which detects clusters of peaks in the amplitude envelope), have suggested that

thunderstorms and classical music have a similar hierarchical temporal modulation structure,

we would not predict this [36]. An Allan Factor approach only reveals the overall degree of clus-

tering found in a sound signal according to window lengths input by the modeller, which for

Kello et al. [36] varied from 15 ms to 15 seconds. In contrast, the S-AMPH modelling approach

utilizes the known characteristics of the human cochlea to determine its windows. Further, as

noted by Kello et al. [36] themselves, an Allan Factor approach does not throw light on the rela-

tionship between individual clusters that may be identified and linguistic units. This stands in

marked contrast to the S-AMPH approach to modelling infant and child language [15].

The S-AMPH model analyses the AM structure of the amplitude envelope of any sound by

separating the AM characteristics from the frequency modulation (FM) characteristics. This is

achieved by acoustic engineering methods for decomposing the amplitude envelope (demodu-

lation; [17]). Demodulation approaches to characterizing the physical stimulus structure of

IDS and CDS decompose the amplitude envelope into the same narrow bands imposed by the

human cochlea, and then seek systematic patterns of AM [15, 18]. The AM patterns are associ-

ated with fluctuations in loudness or sound intensity, a primary acoustic correlate of perceived

rhythm which is based on onset timing, beat, accent, and grouping [37]. In contrast, the FM

patterns can be interpreted as fluctuations in pitch and noise [16]. Prior analyses of the average

modulation spectra of Western musical genres have revealed a peak at ~2 Hz, consistent across

genres like jazz, rock and classical music [38]. This is theoretically interesting, as the 2 Hz peak

observed by Ding et al. [38] for music matches the modulation peak in IDS identified by

S-AMPH modelling [18]. It is notable that Allan Factor modelling, which identifies nested

clusters of peaks in the amplitude envelope, also finds differences between the temporal modu-

lation structure of jazz, rock and classical music respectively. Ding et al. [38] did not find such

differences in their modulation spectra approach. As the S-AMPH also takes a modulation

spectra approach (but governed by knowledge about cochlear function), here we expected that

the musical genres explored (which were adopted from [38]) would show a similar modulation

structure to each other, as well as to IDS and CDS.

The music listener also needs to identify discrete units to gain meaning, for example musi-

cal notes and phrasing. This is analogous to infants needing to identify discrete units like sylla-

bles, words and syntactic phrases from the prosodic rhythm structure of IDS. The systematic

patterns of AM nested in the amplitude envelope of both IDS and CDS, in five core spectral

bands, have been demonstrated to support the identification of these discrete units. For exam-

ple, application of the S-AMPH to English nursery rhyme corpora showed that the model

identified 72% of stressed syllables correctly, 82% of syllables correctly, and 78% of onset-rime

units correctly if a particular AM cycle was assumed to match a particular speech unit [15]. If

the nursery rhymes were chanted to a regular 2 Hz beat, then the model identified over 90% of

each type of linguistic unit. Accordingly, decomposition of the amplitude envelope of different

musical genres may identify similar hierarchical AM structures in predictable spectral band-

ings that provide a perceptual basis for perceiving rhythm patterns, musical notes and musical

phrasing. Whether music will exhibit similar salient bands of AMs, similar spectral banding

and similar phase dependencies between AM bands to IDS and CDS is currently unknown.

It should also be noted that the modulation statistics of adult-directed speech (ADS) as

revealed by the S-AMPH modelling approach are markedly different to IDS [18, 20]. ADS has

significantly weaker phase synchronization between the slower bands of AMs centred on ~2

Hz and ~5 Hz compared to IDS, probably reflecting the fact that ADS is not sing-song or

rhythmic. However, ADS has significantly stronger phase synchronization of bands of AMs

centred on ~5 Hz and ~ 20 Hz compared to IDS. These different modulation statistics for ADS
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can be interpreted as increasing the salience of acoustic information related to the phonemes

in syllables [20]. The differences in statistical AM structure of the amplitude envelope of ADS

vs IDS have been hypothesized to reflect the acquisition of literacy [20]. This was because the

phase synchronisation between bands of AMs centred on ~2 Hz and ~5 Hz, and also ~5 Hz

and ~ 20 Hz, in natural conversational adult speech increased parametrically with literacy lev-

els (illiterate, low literate, high literate, see [20]). The acquisition of literacy remaps phonology

in the human brain [39]. Music and language are ubiquitous in human societies [22], but liter-

acy is a relatively recent cultural acquisition, so arguably the AM structure of music is more

likely a priori to match IDS than to match ADS. Wind, rain, storms and birdsong have also all

been present since early hominid times, but their statistical structure has not been constrained

by the human brain. It was thus expected a priori that the range of nature sounds would show

different statistical AM structures to music, with the possible exception of nightingale song.

Two contrasting mathematical approaches to demodulation of the amplitude envelope of

music, song and nature sounds were employed, the S-AMPH [15], and PAD [16, 17]. Both

models parse the amplitude envelope of the signals into an hierarchy of AM bands, but the

principles underpinning their operation are different. The S-AMPH simulates the frequency

decomposition known to be carried out by the cochlea [40–42], thereby aiming to decompose

the amplitude envelope of music in the same way as the human ear. PAD infers the modulators

and carriers in the envelope based purely on Bayesian inference, thereby carrying out ampli-

tude demodulation on a neutral statistical basis that makes no adjustments for the human

hearing system. PAD is thus a “brain-neutral” approach, but the use of Bayesian statistics

means that it may reveal priors relevant to human neural learning [43]. Our expectation that

the perception of musical meter may depend on the temporal alignment of AM bands centred

on ~2 Hz and ~5 Hz also relates to linguistic theory [44–46]. Classically, hierarchical linguistic

structures like the phonological hierarchy of prosodic, syllabic, rhyme and phoneme levels

nested within speech rhythm are represented as a tree that captures the relative prominence of

units [46, 47]. Such tree representations may also provide a good model regarding the core

principles of metrical structure in music [48]. In the tree representation, a “parent” node (ele-

ment) at one tier of the hierarchy encompasses one or more “daughter” nodes at a lower level

of the hierarchy. The adjacent connection between the parent and daughter nodes are indi-

cated as “branches” in the tree. To give an example from CDS, a parent node such as the trisyl-

labic word “pussycat” in the nursery rhyme “Pussycat pussycat where have you been,” which is

also the prosodic foot, would have 3 daughter nodes at the next hierarchical level, comprising

the three syllables. From the prior S-AMPH modelling, the level of the prosodic foot would be

derived from the cycles of AM at the ~2 Hz rate. Two AM cycles would encompass all three

daughter nodes in “pussycat”, while the individual syllables would be derived from the cycles

of AM at the ~5 Hz rate. The phase alignment of the ~2 Hz and ~5 Hz AM cycles would then

determine metrical structure. When modelled with the S-AMPH, English nursery rhymes with

different metrical structures like “Jack and Jill went up the hill” (trochaic rhythm), “As I was

going to St Ives” (iambic rhythm) and “Pussycat pussycat where have you been” (dactyl

rhythm) all showed the same acoustic hierarchical AM structure, with three core AM bands

centered on ~2 Hz, ~5 Hz, and ~20 Hz. Which metrical structure was perceived by the listener

depended on the temporal alignment of AM peaks in the two slower AM bands identified by

the S-AMPH, centred on ~2 Hz and ~5 Hz [14].

We note that in the previous S-AMPH research the terms “delta-rate” and “theta-rate” AM

bands were adopted to describe the results of the speech demodulation analyses (see also [18]).

The band of AMs centred on ~2 Hz was designated the delta-rate AM band, and the band of

AMs centred on ~5 Hz was designated the theta-rate AM band. This was because TS theory

was based in part on the neural oscillatory bands that track human speech in adult cortex [49–
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55]. The AM bands in the speech signal revealed by the S-AMPH modelling equate temporally

to electrophysiological rhythms found across the brain at the oscillatory rates of delta, theta

and beta-low gamma. It is known that human speech perception relies in part on neural track-

ing of the temporal modulation patterns in speech at different timescales simultaneously.

These temporal modulation patterns are then bound into a single speech percept, “multi-time

resolution processing” [49–51, 56]. This neural tracking (also described as phase alignment,

temporal alignment or entrainment) relies on acoustic components of the speech signal such

as the amplitude rise times of nested AM components phase-resetting oscillatory cortical activ-

ity. In adult work, neural (“speech-brain”) alignment has been shown to contribute to parsing

of the speech signal into phonological units such as syllables and words [56]. For language,

delta, theta, and beta/gamma oscillators in auditory cortex appear to contribute to the percep-

tion of prosodic, syllabic, and phonetic information respectively [49, 55, 57–60]. For music,

oscillatory rhythms may align with rhythmic features of the acoustic input such as crotchets or

musical beats [61–65]. However, possible correspondences between different oscillators and

different musical units like crotchets and quavers have yet to be investigated.

Finally, there are mechanistic phase dependencies in the neural system which mirror the

acoustic phase dependencies between AM bands revealed by the S-AMPH modelling of IDS, CDS

and ADS. The biological evidence shows that the adjacent-band neural oscillators are not inde-

pendent of, but interdependent on, each other [59, 66]. For example, the phase of delta oscillators

modulates the phase of theta oscillators, and theta phase modulates beta/gamma power [59]. To

date, despite a number of studies of music encompassing brain-based analyses [61, 63, 67–69], no

studies have examined the temporal correlates of musical rhythm from an amplitude demodula-

tion perspective. Our prior speech modelling suggests that it is biologically plausible to propose

that rhythm perception in music and language may depend on neural entrainment to the AM

hierarchies nested in the amplitude envelope of music versus IDS/CDS respectively, and that pars-

ing of units in language and music may be an automatic consequence of neural entrainment to

this hierarchy. Regarding musical signals, there are already relevant data. For example, it has been

shown that neural phase locking to periodic rhythms present in musical tempi is selectively

enhanced compared to frequencies unrelated to the beat and meter [65, 68]. Further, Di Liberto

and colleagues revealed that musical expertise increases the accuracy of cortical tracking [62].

However, to date the amplitude envelope of different musical inputs has not been decomposed

in order to discover whether beat and meter are systematically related to adjacent bands of AMs

that are physically connected by mutual phase dependencies. These phase dependencies between

AM bands should be consistent across different beat rates falling within each AM band, as like

electrophysiological bandings the AM bands span a range of temporal rates (e.g., S-AMPH ‘delta’

AM band, 0.9–2.5 Hz, ‘theta’ AM band, 2.5–7 Hz, see Supplementary Figure, Table c in S4 Appen-

dix). This enables the phase dependencies to be maintained across environmental variations such

as speaker rate or musical tempo. Given the biological evidence that each neural oscillator modu-

lates the adjacent-band oscillator during speech perception [59, 66], and our prior acoustic model-

ling data with the S-AMPH, we also hypothesized that the adjacent tiers in the temporal

hierarchies of music would be highly dependent on each other compared with non-adjacent tiers,

particularly for delta-theta AM coupling. By hypothesis, phase locking to different bands of AM

present in the amplitude envelope of each musical genre may enable parsing of the signal to yield

the perceptual experience of musical components such as minim, crotchet, and quaver (half, quar-

ter, and eighth notes). The acoustic structure of the amplitude envelope should also contribute

systematically to the perceptual experience of beat, tempo, and musical phrasing.

Note finally that our modelling approach is theoretically distinct from models that seek to

identify the tactus or beat markers in singing [70], models of pulse perception based on neural

resonance [71], oscillatory models of auditory attention based on dynamic attending [72], and
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models of temporal hierarchical structure based on the Allan Factor approach [36, 73]. Ours is

the only modelling approach to analyze the modulation structure of the amplitude envelope

and further to make specific a priori predictions concerning expected key temporal AM rates

and key hierarchical AM phase relations related to the perception of musical rhythm structure

and the parsing of musical units. We predict that the phase dependency between bands of

AMs centred on ~2 Hz and ~ 5 Hz will relate to musical rhythm across different genres, and

that music will show similar hierarchical AM structures in predictable spectral bandings to

IDS, structures that can provide a perceptual basis for perceiving musical notes and musical

phrasing. The amplitude envelope is recognized as core to speech processing by speech engi-

neers [29]. Our modelling decomposes the amplitude envelope of music instead of speech and

then relates the resulting AM bands and their phase relationships to individual musical units.

In principle, this approach provides a novel acoustic perspective on musical rhythm, motivated

by our prior novel acoustic analyses of Babytalk.

2. Materials and methods

The music samples for modelling consisted of the music corpora used in the study by Ding

et al. [38], with the addition of 23 children’s songs in order to characterize more general prop-

erties of modulation spectra across musical genres. The final samples consisted of over 39 h of

recordings (sampling rate = 44.1 kHz) of Western music (Western-classical music, Jazz, adult

song, and children’s songs) and musical instruments (single-voice, Violin, Viola, Cello, and

Bass; multi-voice, Piano and Guitar). In addition, a range of natural sounds like birdsong

(nightingale), wind and rain were extracted from sound files available on the internet (https://

mixkit.co; https://www.zapsplat.com; https://www.xeno-canto.org/). The sample size and

number of items in each category is provided in S1 Appendix.

The acoustic signals were normalized based on z-score (mean = 0, SD = 1). The spectro-

temporal modulation of the signals was analyzed using two different algorithms for deriving

the dominant AM patterns: Probability Amplitude Demodulation based on Bayesian inference

(PAD; [16]) and Spectral Amplitude Modulation Phase Hierarchy (S-AMPH; [15]). The PAD

model infers the modulators and a carrier based on Bayesian inference. PAD is biologically

neutral and can be run recursively using different demodulation parameters each time to iden-

tify potential “priors” in the input stimulus. The S-AMPH model is a low-dimensional repre-

sentation of the auditory signal, using an equivalent rectangular bandwidth (ERBN) filterbank,

which simulates the frequency decomposition by the cochlea [40, 42, 74]. The number and the

edge of bands are determined by principal component analysis (PCA) dimensionality reduc-

tion of original high-dimensional spectral and temporal envelope representations of the input

stimuli (for detail, please see Fig a in S2 Appendix). This modulation filterbank can generate a

cascade of amplitude modulators at different oscillatory rates, producing the AM hierarchy.

The model generates an hierarchical representation of the core spectral (acoustic frequency

spanning 100–7,250 Hz) and temporal (oscillatory rate spanning 0.9–40 Hz) modulation hier-

archies in the amplitude envelopes of speech and music.

2.1 Probability Amplitude Demodulation (PAD) model based on Bayesian

inference

Amplitude demodulation is the process by which a signal (yt) is decomposed into a slowly-

varying modulator (mt) and quickly-varying carrier (ct):

yt ¼ mt � ct ð1Þ

PLOS ONE Amplitude modulation structure of music matches Babytalk

PLOS ONE | https://doi.org/10.1371/journal.pone.0275631 October 14, 2022 7 / 27

https://mixkit.co/
https://mixkit.co/
https://www.zapsplat.com/
https://www.xeno-canto.org/
https://doi.org/10.1371/journal.pone.0275631


Probabilistic amplitude demodulation (PAD) [17] implements the amplitude demodulation

as a problem of learning and inference. Learning corresponds to the estimation of the parame-

ters that describe these distributional constraints such as the expected time-scale of variation

of the modulator. Inference corresponds to the estimation of the modulator and carrier from

the signals based on the learned or manually defined parametric distributional constraints.

This information is encoded probabilistically in the likelihood: P(y1:T|c1:T, m1:T, θ), prior distri-

bution over the carrier: p(c1:T|θ), and prior distribution over the modulators: p(m1:T|θ). Here,

the notation x1:T represents all the samples of the signal x, running from 1 to a maximum value

T. Each of these distributions depends on a set of parameters θ, which controls factors such as

the typical time-scale of variation of the modulator or the frequency content of the carrier. For

more detail, the parametrized joint probability of the signal, carrier and modulator is:

Pðy1:T; c1:T; m1:T jyÞ ¼ Pðy1:T jc1:T;m1:T ; yÞ�pðc1:T jyÞ�pðm1:TjyÞ ð2Þ

Bayes’ theorem is applied for inference, forming the posterior distribution over the modula-

tors and carriers, given the signal:

Pðc1:T ; m1:T jy1:T ; yÞ ¼ Pðy1:T; c1:T; m1:T jyÞ=Pðy1:T jyÞ ð3Þ

The full solution to PAD is a distribution over possible pairs of modulator and carrier. The

most probable pair of modulator and carrier given the signal is returned:

m�1:T; c�1:T ¼ argmax Pðc1:T ; m1:T jy1:T ; yÞ ð4Þ

The solution takes the form of a probability distribution which describes how probable a

particular setting of the modulator and carrier is, given the observed signal. Thus, PAD sum-

marizes the posterior distribution by returning the specific envelope and carrier that have the

highest posterior probability and therefore represent the best match to the data. As noted,

PAD can be run recursively using different demodulation parameters each time, thereby gen-

erating a cascade of amplitude modulators at different oscillatory rates [16]. The positive slow

envelope is modelled by applying an exponential nonlinear function to a stationary Gaussian

process. This produces a positive-valued envelope whose mean is constant over time. The

degree of correlation between points in the envelope can be constrained by the timescale

parameters of variation of the modulator (envelope), which may either be entered manually or

learned from the data. In the present study, we entered the PAD parameters manually to pro-

duce modulators below 40 Hz because it is known that the core AM frequencies that contrib-

ute to speech rhythm lie below 40 Hz [15]. The carrier is interpreted as components including

noise and pitches whose frequencies are much higher than the core modulation bands in

phrasal, prosodic, syllabic and other phonological components. After extracting the modula-

tors below 40 Hz, continuous Wavelet Transform (CWT) was run on each AM envelope. The

procedure is depicted in Fig 1 via heat maps, which show an example of the demodulation out-

puts from CWT for an example of each stimulus type. Next, the demodulation outputs were

normalized between 0 and 1, and averaged across all samples in each genre (instrumental

music, song, and nature sounds).

2.2. Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model

2.2.1. Signal processing: Spectral and temporal modulations. This study used the same

methodologies and parameters as a previous study based on CDS by Leong and Goswami [15]

(for wiki, please see https://www.cne.psychol.cam.ac.uk). To establish the patterns of spectral

modulation, the raw acoustic signal was passed through a 28 log-spaced ERBN filterbank span-

ning 100–7250 Hz, which simulates the frequency decomposition by the cochlea in a normal
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human [40, 42]. For further technical details of the filterbank design, see Stone and Moore

[76]. The parameters of the ERBN filterbanks and the frequency response characteristics are

provided in S2 Appendix. Then, the Hilbert envelope was obtained for each of the 28 filtered-

signals. Using the 28 Hilbert envelopes, the core spectral patterning was defined by PCA. This

can identify the appropriate number and spacing of non-redundant spectral bands, by detect-

ing co-modulation in the high-dimensional ERBN representation. To establish the patterns of

temporal modulation, the raw acoustic signal was filtered into the number of spectral bands

that were identified in the spectral PCA analysis. Then, the Hilbert envelope was extracted

from each of the spectral bands. Further, the Hilbert envelopes of each of the spectral bands

were passed through a 24 log-spaced ERBN filterbank spanning 0.9–40 Hz. Using the 24 Hil-

bert envelopes in each of the spectral bands, the core AM hierarchy was defined by PCA. This

approach clarifies co-activation patterns across modulation rate channels.

To determine the number and the edge of the core spectral (acoustic frequency spanning

100–7,250 Hz) and temporal (oscillatory rate spanning 0.9–40 Hz) modulation bands, PCA

was applied separately for spectral and temporal dimensionality reductions. PCA has previ-

ously been used for dimensionality reduction in speech studies (e.g., [77, 78]. The present

study focused on the absolute value of component loadings rather than the component scores.

The loadings indicate the underlying patterns of correlation between high-dimensional chan-

nels. That is, PCA loading was adopted to identify patterns of covariation between the high-

dimensional channels of spectral (28 channels) and temporal (24 channels) modulations, and

to determine groups (or clusters) of channels that belonged to the same core modulation

bands.

2.2.2. PCA to find the core modulation hierarchy in the high-dimensional ERBN repre-

sentation. In spectral PCA, the 28 spectral channels were taken as separate variables, yielding

a total of 28 principal components. Only the top 5 principal components (PC) were considered

for the further analysis, because these already cumulatively accounted for over 58% (on

Fig 1. Scalograms depicting the amplitude modulation (AM) envelopes derived by recursive application of PAD. We depict music (classical), IDS

(naturalistic conversation), ADS (naturalistic conversation, [75]), bird song (nightingale), nature sounds (averaged) and a man-made rhythmic sound (a

machine) using Continuous Wavelet Transform (CWT), which was run on each AM envelope from randomly chosen 30-s excerpts of music, IDS, ADS, bird

song, nature sounds, and machine sounds. Note that similar scalograms cannot be generated for S-AMPH because of the use of cochlear filterbanks, which

means that boundary frequencies would disappear. The x-axis denotes time (30 s) and the y-axis denotes modulation rate (0.1-40Hz). The maximal amplitude is

normalized to 0 dB. The demodulation outputs are shown as a heat map. It should be noted the low frequency structure (<5 Hz) visible in music and IDS is

absent for the nature and machine sounds and weak for ADS and bird song. That is, systematic patches of red can be seen recurring at low frequencies for speech

and music (~2 Hz and ~5 Hz), but not for nature sounds or mechanical sounds. Comparison of the temporal structures of these sounds for the low-frequency

modulation rates (0–5 Hz) shows that only music and speech show strong delta- and theta-AM band patterning. The nested structure of AM patterning across

the higher modulation bands (12-40Hz) is also clearly visible for the quasi-rhythmic sounds found in nature. This patterning is clearly absent for the man-made

rhythmic sound of a machine.

https://doi.org/10.1371/journal.pone.0275631.g001
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average) of the total variance in the original sound signal. In temporal PCA, the 24 channels in

each of the spectral bands were entered as separate variables. Only the top 3 were considered

for further analysis, because these cumulatively accounted for over 55% of the total variance in

the original sound signal. Each PC loading value was averaged across all samples in each genre

(Western-classical music, Jazz, adult and children’s song, nature sounds, birdsong) and musi-

cal instruments (single-voice: Violin, Viola, Cello, and Bass; multi-voice: Piano and Guitar).

The absolute value of the PC loadings was used to avoid mutual cancellation by averaging an

opposite valence across samples [14]. Then, peaks in the grand average PC loading patterns

were taken to identify the core modulation hierarchy. Troughs were also identified because

they reflect boundaries of edges between co-modulated clusters of channels. To ensure that

there would be an adequate spacing between the resulting inferred modulation bands, a mini-

mum peak-to-peak distance of 2 and 5 channels was set for the spectral and temporal PCAs,

respectively. After detecting all the peaks and troughs, the core spectral and temporal modula-

tion bands were determined based on the criteria that at least 2 of the 5 PCs and 1 of the 3 PCs

showed a peak for spectral and temporal bands, respectively. On the other hand, the boundary

edges between modulation bands were determined based on the most consistent locations of

“flanking” troughs for each group of PC peaks that indicated the presence of a band. More

detailed methodologies and examples can be found in Leong and Goswami [15] and Fig a of

the S2 Appendix.

2.3. Mutual information between different modulation bands

We also examined whether one tier of the temporal hierarchy of music may be mutually

dependent on the timing of another tier by conducting mutual information (MI) analyses. MI

is a measure of the mutual dependence between the two variables. The MI can also be

expressed as

I X;Yð Þ ¼
P

x;yp x; yð Þlog
pðx; yÞ
pðxÞpðyÞ

� �

¼
P

x;yp x; yð Þlog
pðx; yÞ
pðxÞ

� �

�
P

x;ypðx; yÞlogpðyÞ

¼
P

x;ypðxÞpðyjxÞlogpðyjxÞ �
P

x;ylogpðyÞpðx; yÞ

¼
P

xpðxÞð
P

ypðyjxÞlogpðyjxÞÞ �
P

ylogpðyÞð
P

xpðx; yÞÞ

¼ �
P

xpðxÞHðYjX ¼ xÞ �
P

ypðyÞlogpðyÞ

¼ � HðYjXÞ þ HðYÞ

¼ HðYÞ � HðYjXÞðbitÞ

ð5Þ

where p(x,y) is the joint probability function of X and Y, p(x) and p(y) are the marginal proba-

bility distribution functions of the X and Y respectively, H(X) and H(Y) are the marginal

entropies, Η(X|Y) and Η(Y|X) are the conditional entropies, and Η(X,Y) is the joint entropy

of X and Y [79].

This analysis should reveal whether a certain oscillatory rhythm X (i.e., delta, theta, alpha

and beta) is dependent on another oscillatory rhythm Y. Given prior evidence regarding the

interdependence of neuronal oscillatory bands [59, 66], we hypothesized that the adjacent tiers

that connect via so-called “branches” in the AM hierarchy would be mutually dependent on

each other, but non-adjacent tiers would not. If so, the results may support a hierarchical “tree-
based” structure of musical rhythm, highlighting the applicability of an AM hierarchy to music

as well as speech.
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To explore this, we manually entered the PAD parameters to produce the modulators at

each of five tiers of oscillatory band (i.e., delta: -4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, beta: 12–

30 Hz, and gamma: 30–50 Hz) (see S3 Appendix). Note that manual entry of these parameters

does not predetermine the results, rather it enables exploration of whether there is a prominent

peak frequency observed in each oscillatory rate band regardless of any tempo variations (such

as speeding up or slowing down) that may depend on the performer or the particular music.

Accordingly, this method determines the frequencies that comprise the core temporal modula-

tion structure of each musical genre. In each of the music samples, the modulators (envelopes)

of the five oscillatory bands were converted into the frequency domain by the Fast Fourier

Transform (FFT). That is, PAD is run recursively using different demodulation parameters

each time, and this generates a cascade of amplitude modulators at different oscillatory rates

(i.e., delta, theta, alpha, beta, and gamma), forming an AM hierarchy. We adopted the phase

angle “θ” of the core temporal modulation envelopes corresponding to delta, theta, alpha and

beta/gamma waves that were detected by PAD. In the S-AMPH modelling, the 5 spectral enve-

lopes (see S2 Appendix) were passed through a second series of band-pass filters to isolate the

4 different AM bands based on the results of temporal PCA (channel edge frequencies: 0.9, 2.5,

7, 17 and 30 Hz). The phase angles were then calculated using each of the 4x5 temporal modu-

lation envelopes. Then, using the phase angle values derived from S-AMPH and PAD respec-

tively, the MI between different temporal modulation bands was measured.

2.4. Phase synchronization analyses

Based on the findings of MI, we further investigated possible multi-timescale phase synchroni-

zation between bands by computing the integer ratios between “adjacent” AM hierarchies (i.e.,

the number of parent vs. daughter elements in an AM hierarchy). This analysis addressed how

many daughter elements a parent element encompasses in general in a particular musical

genre. We adopted the core temporal modulation envelopes corresponding to delta, theta,

alpha and beta/gamma waves detected by each of the S-AMPH and PAD modelling

approaches. In the S-AMPH model, the five spectral envelopes were passed through a second

series of band-pass filters to isolate the four different AM bands based on the results of the

temporal PCA (channel edge frequencies: 0.9, 2.5, 7, 17 and 30 Hz). In the end, the total num-

bers were 4x5 temporal modulation envelopes in the S-AMPH model. In contrast, in the PAD

model, we made use of the four core modulators (envelopes) corresponding to delta, theta,

alpha, and beta/gamma bands, respectively.

The Phase Synchronization Index (PSI) was computed between the adjacent AM bands in

the S-AMPH representation for each of the five spectral bands and in the corresponding AM

bands in the PAD representation (i.e., delta vs. theta, theta vs. alpha, alpha vs. beta, beta vs.

gamma phase synchronizations). The n:m PSI was originally conceptualized to quantify phase

synchronization between two oscillators of different frequencies (e.g., muscle activity; Tass

et al., 1998) [80], and was subsequently adapted for neural analyses of oscillatory phase-locking

[81]. For example, if the integer ratio is 1:2, then the parent element encompasses 2 daughter

elements for the rhythm. The PSI was computed as:

PSI ¼ je1ðny1� my2Þj ð6Þ

n and m are integers describing the frequency relationship between lower and higher AM

bands, respectively. An n: m ratio for each PSI was defined as n & m < 10, and 1< n/m< 3.

The values θ1 and θ2 refer to the instantaneous phase of the two AMs at each point in time.

Therefore, (nθ1–mθ2) is the generalized phase difference between the two AMs, which was

computed by taking the circular distance (modulus 2π) between the two instantaneous phase
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angles. The angled brackets denote averaging of this phase difference over all time-points. The

PSI is the absolute value of this average, and can take values between 0 and 1 (i.e., no to perfect

synchronizations) [18]. A sound with a PSI of 1 is perceived as being perfectly rhythmically

regular (a repeating pattern of strong and weak beats), whereas a sound with a PSI of 0 is per-

ceived as being random in rhythm.

To investigate whether the resulting outputs truly represented systematic characteristics of

natural musical rhythm, we conducted simulation analyses. We generated synthesized sounds

that consisted of four temporal modulation envelopes (i.e., modulator) and one spectral fre-

quency (carrier). That is, 2 Hz, 4 Hz, 8 Hz and 16 Hz sine waves were summarized to synthe-

size one compound tone waveform. The compound tone waveform was, then, multiplied by a

200 Hz sine wave. The synthesized waveform was assumed as a sound that includes temporal

information of delta, theta, alpha and gamma rhythms, and spectral information of a pitch

around to natural human voices. It is important to note that all of the temporal envelopes com-

prised simple sine waves with frequencies of a power of 2. Hence, we can hypothesize that 1:2

integer ratios should clearly and consistently appear compared with other integer ratios. If the

PSIs of music show different findings from these artificial sounds, then the results may indicate

that natural musical rhythm has systematic integer ratios in an AM hierarchy.

3. Results

3.1. Amplitude modulation properties of Western musical genres, song,

and nature sounds from PAD

The modelling outputs from PAD are considered first, as this modelling is “brain-neutral”,

implementing amplitude demodulation by estimating the most appropriate modulator (enve-

lope) and carrier based on Bayesian inference and ignoring the logarithmic frequency sensitiv-

ity of human hearing (for more detail, see Methods). Accordingly, PAD provides a good test of

the hypothesis that there is a systematic hierarchy of temporal modulations underpinning

both Western music and (English) IDS, but not nature sounds, with the possible exception of

birdsong. Further, PAD is exempt from the possibility that the filterbank used in the S-AMPH

modelling may have partially introduced artificial modulations into the stimuli through

“ringing”.

The PAD results are presented in Fig 2. The modelling showed that the AM bands in music

matched those previously found in IDS, but the AM bands in the nature sounds did not. In

particular, in panel 2d strong peaks in the delta and theta bands are clearly visible for instru-

mental music (red line, mean peak: delta 1.1Hz and 2.2Hz, theta 4.7Hz) and IDS (black line,

mean peak: delta 1.8Hz, theta 3.3Hz), but not for nature sounds (blue line). Although the delta

and theta peaks occur at slightly different temporal points, they are within close range of each

other. Further, there are two matching peaks at delta and theta rates between IDS (black line in

Fig 2D) and child song (light green in Fig 2D), but not in adult song, birdsong, and nature

sounds. As predicted, therefore, the demodulation results for Western music match prior stud-

ies of English CDS and IDS [14, 15, 18], suggestive of shared statistical temporal characteristics

of the acoustic input, to which the brain can entrain.

3.2. Amplitude modulation properties of Western musical genres, song,

and nature sounds from S-AMPH

To investigate whether a demodulation approach based on an equivalent rectangular band-

width (ERBN) filterbank (which simulates the frequency decomposition by the cochlea) would

yield similar AM bands, we applied the S-AMPH model to the same materials. We expected to
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find a similar modulation structure to that revealed by PAD. Based on the a priori criteria (see

Methods), the spectral PCA provided evidence for the presence of 5 core spectral bands in the

spectral modulation data (300, 500, 1000, 2500 and 5500 Hz), with at least 2 out of 5 PCs showing

peaks in each of these 5 spectral regions. This is shown in Fig a in S4 Appendix, which shows the

grand average as well as the loading patterns and cumulative contribution ratios for each musical

genre and instrument. Furthermore, we consistently observed 4 boundaries between these 5

spectral bands (350, 700, 1750 and 3900 Hz). Table a in the S4 Appendix provides a summary of

these 5 spectral bands and their boundaries. It is noteworthy that these 5 spectral bands, which

were consistent across musical instruments and the human voice, are proportionately-scaled

with respect to the logarithmic frequency sensitivity of human hearing. As predicted, these

results are similar to the spectral bands previously revealed by modelling IDS and CDS using the

S-AMPH approach [14, 15, 18]. It can also be noted that the loading patterns for the 5 PCA com-

ponents showed roughly similar characteristics across the genres, although there was some indi-

vidual variation at each spectral modulation band (see Fig a in S4 Appendix).

Fig 2. Core temporal modulation rates in PAD. The raw data (panel a, sound waveform of a part of the 33 Variations

on a waltz by Anton Diabelli, Op. 120 by Ludwig van Beethoven) are demodulated using PAD to yield an AM

envelope, shown in panel b. Individual lines in panels c represent different speakers, musical genres, and nature

sounds. Panel c shows the similar acoustic statistical properties of IDS and Music: for example, hierarchical peaks in

lower frequencies (~5Hz) for IDS and music, but not for nature sounds. The average of the normalized power of

scalograms of Continuous Wavelet Transforms of the AM envelopes across infant-directed speech (IDS, black lines),

music (red lines), nature sounds (blue lines), birdsong (yellow lines), child song (light green), and adult song (thick

green) are shown in panel d. Panel d shows 2Hz and 5Hz peaks in both IDS and child song, but not in adult song, bird

song, and nature sounds.

https://doi.org/10.1371/journal.pone.0275631.g002
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Based on the a priori criteria (Methods), the temporal PCA provided evidence for the pres-

ence of 4 core bands with 3 boundaries across the different musical genres and instruments.

This is shown in Fig 3. These AM bands in music matched those previously found in IDS, but

the AM bands in the nature sounds did not (see PC3 in Fig 3B). Further statistical detail is

given in the Table b in the S4 Appendix. Fig b in S4 Appendix shows the grand average loading

patterns (absolute value) for each genre for the first three principal components arising from

the temporal PCA of each of the 5 spectral bands determined in the spectral PCA. Fig b in

S4 Appendix also shows the temporal loading patterns and cumulative contribution ratios for

each music genre and each instrument. Table c in the S4 Appendix provides a summary of

these 5 spectral bands and their boundaries. Fig e in S4 Appendix shows the grand average for

the modulation spectra of FFT as well as the loading patterns and cumulative contribution

ratios for each music genre and instrument along with individual variation. Perceptually,

cycles in these AM bands may yield the experience of crotchets, quavers, demiquavers and

onsets, as shown in Table d in S4 Appendix.

0.4

Lo
ad

ing

PC1

 Delta  Theta  Alpha  Beta-LowGamma

Instrumental Music
Infant-Directed Speech

Child song

0.4

Lo
ad

ing

PC2

 Delta  Alpha Theta  Beta-LowGamma

1 5 10 20 30Hz

0.4

Lo
ad

ing

PC3

 Delta  Alpha Theta  Beta-LowGamma

Adult song
Bird's song
Nature

0.4

Lo
ad

ing

PC1

 Delta  Theta  Alpha  Beta-LowGamma

0.4

Lo
ad

ing

PC2

 Delta  Alpha Theta  Beta-LowGamma

1 5 10 20 30Hz

0.4

Lo
ad

ing

PC3

 Delta  Alpha Theta  Beta-LowGamma

ba

Fig 3. Core temporal modulation rates in S-AMPH. Grand average absolute value of the core temporal PCA component loading patterns in the S-AMPH.

(a) Individual lines represent each of speakers (gray scale), musical genres (red scale) and nature sounds (blue scale). (b) Individual lines represent average of

each speaker (black), music (red), child song (light green), adult song (dark green), bird song (yellow) and nature sound (blue). For detailed information

about the core temporal bands and their flanking boundaries, please see Table c in S4 Appendix.

https://doi.org/10.1371/journal.pone.0275631.g003
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In summary, the strong peaks in the delta and theta bands visible in Fig 3, along with the

strong flanking trough between these bands, are clearly visible for instrumental music, human

song (adult and child songs), bird song, and infant-directed speech compared to nature

sounds. As predicted, therefore, the results of the temporal PCA for music essentially matches

prior studies of CDS and IDS [14, 15, 18]. The one difference observed compared to the PAD

modelling is for birdsong, which to the human ear (i.e., to a decomposition based on the

cochlear filterbank) sounds more similar to human song, at least for the corpus of the 47 night-

ingale songs (see, S1 Appendix) analyzed here.

3.3. Mutual information in both models

To examine whether mutual dependencies between AM bands in the temporal modulation

structure of different musical genres was more similar to the dependencies identified in IDS by

prior S-AMPH modelling [18], a MI analysis method was employed. As noted earlier, prior

modelling of IDS and CDS has revealed a significantly higher phase dependency between

delta- and theta-rate AM bands compared to ADS. ADS by contrast shows a significantly

higher phase dependency between theta- and beta/low gamma rate AM bands compared to

IDS. Accordingly, for music we expected to find significantly higher phase dependency

between delta- and theta-rate AM bands than between any other pair of AM bandings. We did

not expect to find this for nature sounds. Please note that birdsong was not included in the

nature sound MI analyses as the previously-presented modelling shows that the AM properties

of birdsong differ with the modelling technique applied (see 3.1, 3.2 –the AM structure of bird-

song is more similar to Babytalk when a model that mimics the human cochlea is utilized). For

music and nature sounds (e.g., fire, river), we investigated whether higher phase dependency

between delta- and theta-rate AM bands would only be detected in music, thereby matching

prior studies of IDS.

When MI analyses were applied for PAD in music, four peak frequencies were detected at

~2.4 Hz, ~4.8 Hz, ~9 Hz and 16 Hz. Both delta-theta and theta-alpha mutual dependency were

consistently greater than other dependencies. The MI for nature sounds looked different, with

little apparent variation in MI associated with different pairings of bands. In particular, the

mutual dependence between delta- and theta-rate AM bands of natural sounds was similar to

non-adjacent tiers. Further detail is given in Fig d in S5 Appendix.

The MI results for the S-AMPH model showed that adjacent tiers of the AM hierarchy were

mutually dependent on each other compared with nonadjacent tiers for the musical genres

and for child songs. S5 Appendix shows the MI for each music genre and instrument, revealing

high consistency between Western music genres, instrument and child song. Accordingly the

S-AMPH model yielded similar findings to PAD, detecting peak frequencies in AM bands cor-

responding temporally to neural delta, theta, alpha and beta/gamma neural oscillatory bands.

Further, mutual dependence between delta- and theta-rate AM bands was the strongest of all

mutual dependencies detected in music, for both models. This stronger AM phase dependence

matched the results of the prior speech-based modelling with IDS and CDS rather than ADS

[14, 15, 18]. Accordingly, both PAD and S-AMPH MI modelling suggests that metrical struc-

ture, a feature shared by both music and speech, depends on the same core delta-theta AM

phase relations in both domains.

3.4. Multi-timescale phase synchronization in both models

The demonstration of mutual dependency does not by itself capture metrical structure, as each

AM cycle at a particular timescale may encompass one or more AM cycles at a faster timescale.

To identify how many daughter elements a parent element could encompass in general, we

PLOS ONE Amplitude modulation structure of music matches Babytalk

PLOS ONE | https://doi.org/10.1371/journal.pone.0275631 October 14, 2022 15 / 27

https://doi.org/10.1371/journal.pone.0275631


next investigated the integer ratios between adjacent AM bands. For example, if the integer

ratio is 1:2, then the parent element encompasses 2 daughter elements for the rhythm. An

example from speech would be a tongue twister like “Peter Piper picked a peck of pickled pep-

pers,” which follows a 1:2 ratio (two syllables in each prosodic foot). To assess the integer ratios

for each pair of mutually dependent AM bands in our selected musical genres, we used PSI

indices (please see S6 Appendix for the PSI for each musical genre and instrument). The PSI

analyses revealed high consistency between musical genres for the phase synchronization indi-

ces generated by both S-AMPH and PAD models. Further analysis focused on the grand aver-

age (shown in Fig 4).

Fig 4. Phase synchronization index between different tiers in the amplitude modulation hierarchy for music. Both

S-AMPH (a) and PAD models (b) showed that the simpler integer ratios (i.e., m/n) synchronize their phase with each

other. The inverted dissonance curve (c) was obtained by including the first five upper partials of tones with a 440 Hz

(i.e., pitch standard, A4) fundamental frequency in calculating the total dissonance of intervals [82]. It is of note that

the peaks of PSI demonstrated by PAD correspond to those of the dissonance curve.

https://doi.org/10.1371/journal.pone.0275631.g004
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The PSI of the S-AMPH model suggested that the PSI of 1:2 integer ratios is the highest in

all of the adjacent oscillatory bands. The PSIs of 1:3 and 2:3 integer ratios for the S-AMPH

modelling were also higher than the other integer ratios, suggesting that the simpler integer

ratios (i.e., m/n) were likely to synchronize between adjacent bands. For spoken languages, the

m/n ratio between two adjacent AM bands tends to vary with linguistic factors such as how

many phonemes typically comprise a syllable (e.g. 2 phonemes per syllable for a language with

a consonant-vowel syllable structure like Spanish, hence a theta-beta/low gamma PSI of 1:2,

but 3 phonemes per syllable for a language with largely consonant-vowel-consonant syllable

structures like English, hence a theta-beta/low gamma PSI of 1:3). For music, the dominance

of PSIs 1:3 and 2:3 across genres and instruments suggests more tightly controlled rhythmic

dependencies than for speech.

The PSIs generated by the PAD model were similar to the S-AMPH, but PAD was more

sensitive to the simple integer ratios. In PAD, the PSIs of not only the 1:2 integer ratios, but

also those of the 2:3, 3:4 and 4:5 integer ratios were notably higher than the other integer ratios,

particularly for the delta-theta AM band pairing (see Fig 4). The differences between models

may have arisen because the filterbank used in the S-AMPH model may partially introduce

some artificial modulations into the stimuli through “ringing.” However, the ERBN filterbank

in the S-AMPH model is the filtering process that reflects the frequency decomposition by

cochlear function in the normal human ear. Hence, the different findings between S-AMPH

and PAD models regarding multi-timescale phase synchronization may imply that there are

differences between the physical stimulus characteristics of musical rhythm as perceived by the

human brain and the purely physical and statistical structure of music.

Nevertheless, as shown in Fig 4, the PSI between delta- and theta-rate AM bands was

consistently the largest PSI in both the S-AMPH and PAD models. Again, this finding is

consistent with our prior findings for IDS and rhythmic CDS [15, 18]. As a further check,

we also examined the PSI of sounds found in nature. The human hearing system has been

receiving these quasi-rhythmic sounds at least as long as it has been receiving language and

music, but unlike language and music, these sounds have not been produced by humans

and shaped by human physiology and culture. Accordingly, it would not be expected that

the temporal modulation structure of these natural sounds would be shared with IDS and

CDS. The results showed that compared with music, the PSI between delta- and theta-rate

AM bands was not consistently the largest PSI (S6 Appendix). This shows that the strong

phase dependence between slower bands of AMs revealed for music and for IDS/CDS is not

an artifact of the modelling approaches employed, but a core physical feature of their rhyth-

mic structure.

Accordingly, the strong rhythmic character and acoustic temporal regularity of both infant-

and child-directed speech, child song and Western music appears to be influenced by AMs in

the delta band (a 2 Hz modulation peak, in music reflecting a 120 bpm rate) and by delta-theta

AM phase alignment. Our modelling data for temporal frequency (i.e., “rhythm”) also map

nicely to the Plomp and Levelt [82] modeling of the dissonance curve for spectral frequency

(i.e., “pitch”) (shown in Fig 4, Bottom). This may imply that these physical properties of fast

spectral frequencies are also involved in very slow temporal modulation envelopes below 40

Hz. In sum, both modelling approaches showed that the PSI of 1:2 integer ratios is the highest

in all the AM band pairings, and the other simpler integer ratios (1:3, 2:3., etc) are also higher

than non-integer ratios. Fig 5 provides a schematic example of the 1:2 integer ratio regarding

the likely AM hierarchy in music. The figure shows in principle how musical rhythm could be

hierarchically organized based on note values (i.e., crotchets, quavers, demiquavers and onsets,

Fig 5, left) and the AM hierarchy (Fig 5, right).
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3.5. Simulation analyses

Finally, to investigate whether the detected (dissonance curve-like) characteristics revealed by

the MI and PSI analyses really represent systematic features of natural musical rhythm, we

conducted simulation analyses with synthesized rhythmic but non-musical sounds. The final

synthesized waveform comprised a sound that included clear rhythmic information at delta

(2Hz), theta (4Hz), alpha (8Hz) and gamma (16Hz) timescales, and spectral information at a

pitch around that of natural human voices (200 Hz) (for the figure, see S6 Appendix). The

resulting percept was similar to a harsh rhythmic whisper. The sound is available from here

https://osf.io/6s8kp/. As all of the temporal envelopes were comprised of simple sine waves

with frequencies of a power of 2, PSI analyses of these artificial sounds should clearly and con-

sistently reveal only 1:2 integer ratios compared with other integer ratios. This was the case.

Thus, the simulation analyses revealed that the PSIs for natural Western musical genres were

different from those for artificial rhythmic sounds. This suggests that natural musical rhythm

has covert and systematic integer ratios (i.e., 2:3, 3:4 and 4:5 as well as 1:2) within the AM hier-

archy, at least when considering Western musical genres.

4. Discussion

Here we explored the possibility that the hierarchical rhythmic (statistical AM) relationships

that characterize both English Babytalk and children’s nursery rhymes would also characterize

Allegro

crotchet

minim

quaver

waveform

musical score

MUSICAL NOTE HIERARCHY
(musical score)

AM HIERARCHY
(sound waveform)

Fig 5. Schematic depiction of the hierarchical AM structure yielding Rhythm in music. Left and right are the representation by musical score and the

corresponding sound waveform of a part of the 33 Variations on a waltz by Anton Diabelli, Op. 120 (commonly known as the Diabelli Variations) by Ludwig

van Beethoven. In principle, musical rhythm could be hierarchically organized based on note values (left) matched to nested amplitude modulations (AM,

right) in bandings spanning different temporal rates (for example, green ~2 Hz, blue ~4 Hz, red ~8 Hz, matching Table d in S4 Appendix). In the framework of

Temporal Sampling theory, the AM bands (right) equate temporally to neural oscillatory rhythms. Auditory rhythm perception relies in part on neural tracking

of the AM patterns at different timescales simultaneously (e.g., neural tracking of the green, blue, and red AMs in Fig 5 by neurophysiological delta, theta and

alpha bands). This neural tracking is triggered by acoustic components of the sound signal such as the amplitude rise times (musical attack times) of the nested

AM components which phase-reset oscillatory cortical activity. There are of course a large range of tempi used in music, for example slow ballads and fast

dance songs. However, as shown by the black lines in the musical note hierarchy (left) and the dotted vertical lines in the AM hierarchy (right), the adjacent

tiers of the hierarchy (i.e., green & blue and blue & red AM pairs) are dependent on each other compared with non-adjacent hierarchical relations (i.e., green-

red AM pairing) and thus the hierarchy itself will expand or contract to fit the tempo.

https://doi.org/10.1371/journal.pone.0275631.g005
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Western music [15, 18, 38]. We tested the prediction that the physical stimulus characteristics

(acoustic statistics) that describe the amplitude envelope structure of IDS and CDS from a

demodulation perspective would also describe Western music and child song. If child language

and human music depend on the same acoustic statistics, this should facilitate initial neural

learning of these culturally-determined systems. Decomposition of the amplitude envelope of

IDS and CDS has previously revealed that (a) the modulation peak in IDS is ~2 Hz [18], (b)

that perceived rhythmic patterning depends on three core AM bands in the amplitude enve-

lope centred on ~2 Hz, ~5 Hz and ~20 Hz that are found systematically across the spectral

range of speech [15], and (c) that varying metrical patterns such as trochaic and iambic meters

can be identified by the phase relations between two of these bands of AMs (delta- and theta-

rate AMs, ~2 Hz and ~5 Hz) [14]. The phase alignment (rhythmic synchronicity) of these rela-

tively slow AM rates represents a unique statistical clue to rhythmic patterning in speech, rele-

vant to language acquisition [83]. We predicted a priori that this statistical parameter (delta

rate-theta rate AM phase alignment) would be present in music and human song, but not in

nature sounds such as wind and rain. The physical stimulus characteristics of the amplitude

envelope of different musical genres and of music produced by different instruments was

expected to yield similar acoustic statistics, with classical, rock and jazz music all producing

similar modulation structures. The acoustic statistics describing nature sounds were expected

a priori to be different, as these sounds are not created by humans nor dependent on human

physiology and culture. A possible exception could be the non-human-created rhythms of

birdsong. Nightingale song, which has been shown to be more similar in structure to human

music than other birds’ song by Roeske et al. [24], was thus also modelled from a demodula-

tion perspective.

Our demodulation analyses indeed revealed an hierarchy of temporal modulations that sys-

tematically described the acoustic properties of musical rhythm for a range of Western musical

genres and instruments, as well as child song (Fig 1). Our modelling indicated highly similar

acoustic statistical properties to IDS and CDS: a 2Hz modulation peak (Fig 2, panel d and Fig

3, panel b), particularly strong phase alignment between delta- and theta-rate AM bands across

musical genres and human song (Mutual Information analyses), and a distinct set of preferred

PSIs that indicated multi-timescale synchronization across different AM bands (Fig 4). As the

brain begins learning language using IDS, and consolidates this learning via the rhythmic rou-

tines of the nursery (CDS), the present findings are consistent with the theoretical view that

perceiving rhythm in both music and language may (at least early in development, prior to

acquiring expertise) rely on statistical learning of the same physical stimulus characteristics.

Although not tested directly here, it is likely that similar neural oscillatory entrainment mecha-

nisms are used for encoding this hierarchical AM structure in both domains [61, 63, 67, 68].

The natural sounds analysed here have also been present since early hominid times, but their

statistical structure has not been constrained by the human brain. Accordingly, learning their

AM structure is less critical for human communities, and their acoustic temporal modulation

structure is somewhat different to that of Babytalk and music.

Indeed, the multi-timescale synchronization found here was systematic across Western

musical genres and instruments (see S6 Appendix), suggesting that this AM hierarchy contrib-

utes to building perceived rhythmic structures. The nested AM hierarchies in music may yield

nested musical units (crotchets, quavers, demiquavers and onsets), just as nested AM hierar-

chies in CDS yield linguistic units like syllables and rhymes [15]. This possibility is depicted in

Fig 5. Our modelling shows that acoustically-emergent musical units can in principle be parsed

reliably from the temporal modulation spectra of the different musical genres examined, and

that these units are reflected in each of delta-, theta-, alpha- and beta/gamma-rate bands of

AM (Table d in S4 Appendix). To the best of our knowledge, our modelling is the first to reveal
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a set of temporal statistics related to the perception of different musical units. Just as cycles of

AM in IDS and CDS relate to prosodic patterns (e.g. trochaic versus iambic) and to identifying

stressed syllables, syllables and rhymes, cycles of AM in music may relate to metrical structures

and to units such as crotchets, quavers and demi-quavers. It is of note that these hierarchical

statistical temporal dependencies should be consistent across different tempi. The dependen-

cies refer to temporal bandings of AMs, hence the hierarchical dependencies should simply

adjust to fit the tempo used in the music, for example slow ballads and fast dance songs. In

similar fashion, it has been demonstrated that the hierarchical AM dependencies in speech

adapt to speech rate (see [18]). Indeed, the current modelling revealed statistically strong

mutual dependence (using MI estimates) between adjacent bands in the AM hierarchy across

musical genres (Western classical, jazz, rock, children’s songs) and musical instruments

(piano, guitar, violin, viola, cello, bass, single-voice, multi-voice). This strong mutual depen-

dence was not observed in nature sounds (shown in S5 Appendix), although birdsong was not

included in these latter analyses.

In particular, regarding music the mutual dependence between delta- and theta-rate bands

of AM was the strongest dependence identified by both models. Stronger mutual dependence

between delta- and theta-rate AM bands could not be detected in the other nature sounds

(river, fire, wind, storms, rain), even though these natural sounds are also quasi-rhythmic. The

current modelling thus suggests that for Western music, delta-theta phase alignment of AM

bands may underpin metrical rhythmic patterns, matching the acoustic structure of IDS and

CDS. Convergent results from the phase synchronization analyses further showed that multi-

timescale synchronization between delta- and theta-rate AM bands was always higher than the

other PSIs regardless of the integer ratios. This was not replicated for nature sounds. The

phase alignment of delta- and theta-rate bands of AM has been suggested to be a key acoustic

statistic for the language-learning brain [83, 84], reflecting the placement of stressed syllables,

which governs metrical patterning in speech (e.g., trochaic, iambic and dactyl meters). The

present findings concerning mutual dependence and phase synchronization indicate that

music may share these properties: phase alignment between delta- and theta-rate AM bands

may contribute to establishing musical metrical structure as well.

Accordingly, our findings differ from a prior study using the same Western music materi-

als, which claimed that the rhythmic properties of music and language are distinct [18]. In

their speech corpora, the modulation spectrum for music peaked at 2 Hz and the modulation

spectrum for speech peaked at 5 Hz. The analyses presented here suggest that the apparent dis-

similarity between music and speech arises from the exclusive reliance of the speech modelling

on ADS, coupled with the absence of further investigation of the AM structure of each musical

genre. By contrast, our demodulation modelling approaches show better matching with tem-

poral data from studies of IDS and CDS, where the modulation spectrum also peaks at 2 Hz

(Figs 2 and 3), as well as a similar set of phase relations between AM bands (as noted, the latter

were not explored by [18]). We would predict that these statistical regularities in temporal

modulation may be the same for other forms of music, and for IDS and CDS in other lan-

guages, this remains to be explored. The demonstration that temporal modulation bands play

a key role in rhythm hierarchies in music as well as in speech may also suggest that the same

evolutionary adaptations underpin both music and language.

Another interesting result from the phase synchronization analyses regarding music was

the appearance of systematic integer ratios within the AM hierarchy. These ratios were rela-

tively uniform for nature sounds, whereas for music and child song, the 1:2 integer ratio was

strongest for both models. The PSIs for 1:3 and 2:3 were also higher than the other integer

ratios explored for music, for both models. For the PAD modelling approach, which does not

make any adjustments for the cochlea, the 2:3, 3:4 and 4:5 integer ratios were also prominent.
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This statistical patterning appears to reflect the tightly-controlled rhythmic dependencies in

music, and may offer an acoustic model for capturing the different metrical structures and

integer ratios that characterize music from different cultures [22, 23], as well as the songs of

different species [24]. For example, even prior to the acquisition of culture-specific biases of

musical rhythm, young infants (5-month-olds) are influenced by ratio complexity [25]. Our

modelling further suggests that the AM bands in music are related by integer ratios in a similar

way to the integer ratios relating notes of different fundamental frequencies that create harmo-

nicity (see the similarity between the PSIs for the two models shown in Fig 4 and the disso-

nance curve measured by Plomp & Levelt, [82]). Converging prior modelling of speech has

shown that the probability distribution of amplitude–frequency combinations in human

speech sounds relates statistically to the harmonicity patterns that comprise musical universals

[85]. Our modelling appears to suggest that the simple integer ratios (i.e., 1:2, 1:3, and 2:3) in

the AM hierarchy comprise a fundamental set of statistics for musical rhythm perception. This

fits well with prior data from Jacoby and McDermott [86], who demonstrated that certain inte-

ger ratios are prominent across music from both Western and non-Western cultures. Our

acoustic modelling suggests that AM phase hierarchies may play as strong a role as harmoni-

city regarding universal aspects of human hearing that are important for both music and

language.

The modelling presented here also converges conceptually with past studies designed to

detect pulse based on neural resonance theory [71]. Pulse is the perceptual phenomenon in

which an individual perceives a steady beat. Large et al. [71] suggested that the perception of

pulse emerges through nonlinear coupling between two oscillatory networks, one representing

the physical properties of the stimulus and a second network that integrates inputs from the

sensory system. The nonlinear interactions between the two give rise to oscillatory activity not

only at the frequencies present in the physical stimulus, but also at more complex combina-

tions, including the pulse frequency. Consistent with this view, Tal et al. [87] reported phase

locking for the adult brain at the times of a missing pulse, even though the pulse was absent

from the physical stimulus. This suggests that neural activity at the pulse frequency is (for

adults) internally generated rather than being purely stimulus-driven. From this perspective,

our modelling (i.e., S-AMPH and PAD) is capturing the physical stimulus characteristics (the

modulation structure of the amplitude envelope and its internal phase relations) rather than

capturing internally-generated oscillatory activity. To our knowledge, missing pulse phenom-

ena have not yet been studied in infants. It may be that early learning of hierarchical phase

relations from the amplitude envelopes of musical inputs may be required for the internal gen-

eration of missing pulse phenomena. On the other hand, ERP studies show that even new-

borns can detect beat violations in oddball paradigms, where occasionally a deviant rhythm

with a missing downbeat is heard in place of a standard metrical rhythm [88]. Further studies

with infants may also be able to investigate the phase relationships between missing pulses or

beats and higher hierarchical units such as musical phrasing or prosody.

The modelling presented here is also relevant to the remediation of childhood language dis-

orders. The possible utility of musical interventions for children with disorders of language

learning such as developmental language disorder (DLD) and developmental dyslexia has long

been recognized [35, 89–91]. Such interventions are likely to be most beneficial when the tem-

poral hierarchy of the music corresponds to the temporal hierarchy underpinning speech

rhythm [27, 83]. Careful consideration of the statistical rhythm structures characterizing

speech in different languages may thus lead to better remedial outcomes. For example, our

findings suggest that for children with disorders of English language learning, interventions

using Western music should be beneficial via the shared temporal hierarchy with English IDS

and CDS. Further, it is possible that such interventions could be beneficial for second language
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learners. A caveat is that here we modelled musical genres that could be designated WEIRD

corpora (originating from Westernized, educated, industrialized, rich and democratic socie-

ties). Accordingly, further studies are necessary to understand how music interventions can

contribute to improving speech processing in other languages.

In conclusion, the present study revealed that the acoustic statistics that describe rhythm in

music from an amplitude envelope decomposition perspective match those that describe IDS

and CDS. The physical stimulus characteristics that describe nature sounds are different. The

modelling demonstrates a core acoustic hierarchy of AMs that yield musical rhythm across the

amplitude envelopes of different Western musical genres and instruments, with mutual depen-

dencies between AM bands playing a key role in organizing rhythmic units in the musical hier-

archy for each genre. Accordingly, biological mechanisms that exploit AM hierarchies may

underpin the perception and development of both language and music. In terms of evolution,

the novel acoustic statistics revealed here could also explain cross-cultural regularities in musi-

cal systems [23]; this remains to be tested.
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