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Abstract 

Background:  The pathogenic mechanism of dilated cardiomyopathy (DCM) remains to be defined. This study aimed 
to identify hub genes and immune cells that could serve as potential therapeutic targets for DCM.

Methods:  We downloaded four datasets from the Gene Expression Omnibus (GEO) database: GSE141910, GSE3585, 
GSE42955 and GSE79962. Weighted gene coexpression network analysis (WGCNA) and differential expression analysis 
were performed to identify gene panels related to DCM. Meanwhile, the CIBERSORT algorithm was used to estimate 
the immune cells in DCM tissues. Multiple machine learning approaches were used to screen the hub genes and 
immune cells. Finally, the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) 
analysis. An experimental mouse model of dilated cardiomyopathy was used to validate the bioinformatics results.

Results:  FRZB and EXT1 were identified as hub biomarkers, and the ROC curves suggested an excellent diagnostic 
ability of the above genes for DCM. In addition, naive B cells were upregulated in DCM tissues, while eosinophils, M2 
macrophages, and memory CD4 T cells were downregulated in DCM tissues. The increase in two hub genes and naive 
B cells was validated in animal experiments.

Conclusion:  These results indicated that FRZB and EXT1 could be used as promising biomarkers, and eosinophils, M2 
macrophages, resting memory CD4 T cells and naive B cells may also affect the occurrence of DCM.
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Introduction
Dilated cardiomyopathy (DCM) is defined as left ven-
tricular (LV) dilatation and left ventricular systolic 
dysfunction in the absence of abnormal loading condi-
tions (hypertension, valve disease) or coronary artery 
disease sufficient to cause global systolic impairment 
[1]. DCM is one of the most common causes of heart 
failure, and its prevalence ranges from 1:250 to 1:2500 
in the general population [2, 3]. If patients are not 

promptly treated, the 1-year survival rate is 70–75% 
and the 5-year survival rate is as low as 50% [4]. Causes 
of DCM can be classified into two categories, genetic 
and nongenetic, but overlap exists within the two 
categories. Under the influence of various physico-
chemical factors, the most common reactive changes 
include inflammation (viral myocarditis or autoim-
mune disease), nutritive-toxic influences (alcohol, 
drugs, chemotoxins), and metabolic disorders. These 
changes finally lead to remodelling of the myocardium 
[5]. However, the molecular mechanism underlying 
remodelling is a complex network of cellular signalling 
pathways and is not fully understood. Genetic testing 
for cardiovascular disease has become more common 
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in recent years. The detection rate of hypertrophic car-
diomyopathy is approximately 60–70%, while that of 
dilated cardiomyopathy is much lower than 60%. It has 
been shown that among the genes encoding structural 
proteins, mutations are more frequent in genes encod-
ing structures such as the cytoskeleton, cardiomyo-
cyte sarcomere and nuclear membrane proteins [2, 6, 
7]. Therefore, it is essential to identify novel biomark-
ers significantly correlated with the DCM diagnosis to 
improve the effectiveness of therapeutic approaches.

The combination of myocardial inflammation (myo-
carditis) and dysfunction is termed inflammatory car-
diomyopathy. In patients with recent-onset DCM, the 
identification of myocarditis has important clinical 
implications due to the high potential for LV recovery. 
Circulating cardiac autoantibodies are more common 
in patients with dilated cardiomyopathy and myo-
carditis than in patients with noninflammatory heart 
disease.

Furthermore, in healthy relatives of patients with 
dilated cardiomyopathy, serum anti-heart autoantibod-
ies are independent predictors of disease progression 
[8]. Both innate and adaptive immunological aspects 
may play a role in affecting outcomes in laboratory ani-
mals and patients with viral myocarditis [9]. The failing 
myocardium can provide signals to assist in immune 
cell infiltration via upregulation or secretion of various 
cytokines, such as P-selectin, e-selectin, intracellular 
cell adhesion molecule-1, and vascular cell-adhesion 
molecule-1, which allows transendothelial migration of 
a range of immune cells into the myocardium, includ-
ing B cells, T cells, natural killer cells, monocytes, and 
platelets [10, 11]. If we can determine the most relevant 
type of immune cells, a novel treatment may be possi-
ble by interfering with a particular type of immune cell.

In this research, we examined 4 GEO datasets and 
found 3743 significant differentially expressed genes 
(DEGs) between normal and DCM samples. A weighted 
gene coexpression network analysis (WGCNA) was 
performed to evaluate the key module correlated with 
DCM. LASSO tenfold cross-validation was used to fur-
ther knockout redundant genes, and 38 potential genes 
were finally screened out. SVM machine learning, ran-
dom forest tree and logistic analyses were used to con-
duct in-depth screening, and FRZB and EXT1 were 
identified as hub biomarkers. In the screening set, ROC 
and difference analyses were performed on the above 
two genes. The results showed that the two genes had 
good predictive performance in the screening set. Ran-
dom forest tree analysis and the Wilcoxon rank-sum 
test were performed to identify core immune cells that 
may affect the occurrence of DCM, and four types of 
immune cells were ultimately selected.

Materials and methods
Datasets and data preprocessing
The GSE141910 dataset (FPKM format) based on the 
GPL16791 platform (166 healthy myocardial tissue sam-
ples and 166 DCM samples), which is the original RNA-
seq dataset downloaded from the GEO database [12], was 
used as a screening set.

In addition, the GSE3585 dataset (GPL96, 5 nor-
mal samples and 7 DCM samples), GSE42955 dataset 
(GPL6244, 5 normal samples and 12 DCM samples), and 
GSE79962 dataset (GPL6244, 11 normal samples and 
9 DCM samples) were collectively defined as an exter-
nal verification set, and the sva package[13] was used 
to perform background correction, normalization and 
expression calculation on the original data (Addtional file 
1: Figure S1).

Screening of hub biomarkers
The limma package [14] was used to identify differentially 
expressed genes (DEGs) in the screening set, and |log2-
fold change FC|> 0.5 and adj. P value < 0.05 were selected 
as cut-off criteria. In the WGCNA [15], all DEGs were 
used as input, and topological calculations were per-
formed with a soft threshold value of 1 to 20. According 
to the optimal soft threshold value, the relation matrix 
wasis converted into an adjacent matrix and then con-
verted into a topological overlap matrix (TOM). Average-
linkage hierarchical clustering was performed, related 
modules were classified according to the TOM, the num-
ber of genes in each module was not less than 50, and 
similar modules were merged. Then, the Pearson method 
was used to calculate the correlation between the merged 
module and DCM. Among the core modules screened by 
the WGCNA, LASSO tenfold cross-validation was per-
formed to knockout redundant genes (glmnet package) 
[16]. Subsequently, the support vector machine-recursive 
feature elimination (SVM-REF) [17, 18] method (taking 
the lowest point feature of the RSM), the random forest 
tree method (taking the genes with the top 10 weights), 
and the single-factor logistic regression method (taking 
the top 3 OR values) were adopted to screen the nonre-
dundant genes. Ultimately, the genes identified with the 
above methods were overlapped to identify the final core 
gene.

Enrichment analysis
GO enrichment analysis is a commonly used bioinfor-
matics method for searching comprehensive information 
of large-scale genetic data, including BP, CC, and MF. In 
addition, KEGG pathway enrichment analysis is widely 
used to understand biological mechanisms and functions. 
Furthermore, DO enrichment analysis can explore the 
diseases in which the relevant genes are mainly involved. 
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The GOplot [19] package was used to visualize the GO, 
KEGG pathways, and DO analysis. Finally, the cluster-
profile package [20] and GSVA package [21] were used to 
further explore the important signalling pathways related 
to core genes. The h.all.v7.4.symbols gene set was down-
loaded from MSigDB [22], and GSEA was performed on 
the gene set and gene expression matrix to explore the 
regulatory pathways that may be involved.

Construction of regulatory network
First, the mirDIP database [23] was used to predict 
potential miRNAs targeting hub genes and identify miR 
regulatory networks. The TF-core gene interaction pair 
with P < 0.05 in the TRRUST database [24] was selected 
to establish an upstream regulatory network. Then, we 
searched the Comparative Toxicogenomics database [25] 
for compounds that may be potentially related to core 
genes. Finally, the Network Analyst database [26] was 
used to visualize the core gene regulation network.

CIBERSORT algorithm
The CIBERSORT algorithm [27] calculates the propor-
tion of different immune cell types based on the expres-
sion levels of immune cell-related genes. The output 
results of 22 infiltrated immune cells were integrated to 
generate a matrix of immune cell components for analy-
sis (CIBERSORT package).

Screening of hub immune cells
The Wilcoxon test was used to investigate the differences 
in the content of immune cells in different tissues. Mean-
while, the randomForest package was used to construct 
a random forest tree of 22 kinds of immune cells, deter-
mine the points with the smallest error, sort the immune 
cells according to their importance, and then select the 
immune cells with an importance score greater than 10. 
Ultimately, the immune cells identified with the above 
method were overlapped, and the core immune cells that 
regulate the occurrence of DCM were screened out.

Experimental mouse model of dilated cardiomyopathy
Male C57/BL6 mice aged 6–8 weeks were used in accord-
ance with the animal protocol specifically approved for 
this study by the Wuhan University Animal Care and Use 
Committee.

The mice in the DCM group were intraperitoneally 
administered Dox solution at a dose of 5 mg/kg using a 
1  mL sterilized syringe once a week. The control group 
was treated with the same amount of saline solution 
according to the same method.

The body weights of the two groups of mice were meas-
ured to adjust the injection dose for a total of 4  weeks, 
with a cumulative dose of 20 mg/kg.

Quantitative RT–PCR
RNA was isolated using the RNA prep fast pure tissue kit 
(TsingKe Biotechnology). cDNA was synthesized using 
the RevertAid First Strand cDNA Synthesis Kit (Thermo 
Fisher Scientific). Quantitative RT–PCR was performed 
by Bio-Rad CFX96 Touch using a SYBR green (Roche)-
based assay. GAPDH was employed as an internal con-
trol. Quantitative RT–PCR was performed with the 
specific primers shown in Table 1.

Echocardiography
Echocardiography was performed to evaluate the heart 
condition of mice with a Vevo 2100 imaging system (Vis-
ualSonics). The data were obtained from M-mode with a 
stable heart rate from 500 to 600 bpm.

Immunofluorescence
First, the heart sections were washed with PBS, and the 
primary antibody was diluted in FACS buffer and added 
into a hydrated chamber (anti-CD19 rabbit pAb [Service-
bio]) overnight at 4 °C. Afterwards, sections were washed 
with PBS and stained with secondary antibody diluted 
in PBS for 1  h at 4  °C (Cy3 conjugated goat anti-rabbit 
IgG [Servicebio]). Sections were subsequently washed 
with PBS and incubated with DAPI solution for 10 min 
at room temperature. The sections were washed again 
with PBS, and then spontaneous fluorescence quench-
ing reagent was added and the sections were incubated 
for 5  min. Finally, the sections were washed in running 
tap water for 10 min.  Immunofluorescence images were 
obtained under a microscope (Olympus) at 400 times 
magnification and analysed with Image-Pro Plus 6.0 
software.

Table 1  Primer sequences for the target gene for RT–qPCR

Gene Primer sequence

EXT1

Forward TGC​CAC​TTT​CTG​TCT​GGT​TCCT​

Reverse AAT​CAC​TTC​GGA​GAA​TGG​CAAC​

Frzb

Forward TAA​ACA​TTC​CAA​GGG​ACA​CCGT​

Reverse AGA​GCC​TTC​TAC​CAA​GAG​TAA​CCT​G

GAPDH

Forward CCT​CGT​CCC​GTA​GAC​AAA​ATG​

Reverse TGA​GGT​CAA​TGA​AGG​GGT​CGT​
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Statistical analysis
All statistical analyses were performed with GraphPad 
9.0, and statistical significance was considered at P < 0.05.

Results
Differentially expressed genes
Differentially expressed genes (DEGs) were analysed 
in the screening set, and 3743 DEGs  (Additional file  2) 
were ultimately identified. The heatmap shows the top 
20 DEGs (Fig. 1A). The volcano map shows 1861 upregu-
lated genes and 1882 downregulated genes (Fig. 1B).

WGCNA
The clinical information and genes were correlated, and 
a WGCNA was performed. The clustering situation 
of each sample was favourable, with no outlier sample 
(Fig. 2A), and the optimal soft threshold was determined 
to be 6 (Fig.  2B). The modules were classified accord-
ing to the soft threshold and the TOM, and the number 
of genes in each module was not less than 50 (Fig. 2C). 
Similar gene modules were merged, and 8 modules were 
finally identified (Fig. 2D). By calculating the correlation 
between module genes and clinical traits, it was found 
that the black module containing 1078 genes had the 
highest positive correlation with the occurrence of DCM 
(r = 0.85), and the red module containing 265 genes had 

the highest negative correlation with the occurrence 
of DCM (r = − 0.64). Using both as core modules, 1343 
potential core genes were finally identified, including 834 
upregulated genes and 509 downregulated genes  (Addi-
tional file 3).

Enrichment analysis
To explore the potential biological mechanism of DCM, 
enrichment analysis was performed on 1343 potential 
core genes. DO analysis revealed the types of diseases 
that may have common pathogenesis, such as bacte-
rial infectious disease, tuberculosis and sarcoidosis 
(Fig. 3A). Further GO analysis showed that T-cell activa-
tion, regulation of immune effector processes, positive 
regulation of leukocyte activation and other processes 
were significantly enriched (Fig. 3B). In addition, KEGG 
also described specific pathways, such as Th1, Th2 
and Th17 cell differentiation and viral protein interac-
tion with cytokines and cytokine receptors (Fig.  3C). 
The above results indicate that immune-related factors 
may affect the occurrence of DCM. Ultimately, GSEA 
was performed on the gene set and expression matrix, 
and the results showed that INTERFERON_ALPHA_
RESPONSE, INTERFERON_GAMMA_RESPONSE and 
other pathways were significantly enriched (Fig.  3D). 

Fig. 1  A Heatmap of the 20 DEGs between DCM and normal samples (generated by ggplot2); B Volcano plot visualizing DEGs between normal 
and DCM samples
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In summary, the strong chain of evidence indicates the 
important role of immunity in the pathogenesis of DCM.

Exploring hub biomarkers
First, LASSO tenfold cross-validation was used to further 
knockout redundant genes, and 38 potential genes were 
finally screened out (Fig. 4A). Among these 38 genes, the 
SVM machine learning method was used to conduct in-
depth screening. The results showed that when 19 genes 
were included, the RMSE value was the lowest (Fig. 4B). 
In addition, the random forest tree method was used to 
rank the weights of the 38 genes (Fig.  4C). At the same 
time, the occurrence of DCM was used as the dependent 
variable, and logistic analysis was performed. The results 
of the forest plot showed the OR value and confidence 
interval corresponding to each gene (Fig. 4D). Finally, the 
genes identified by the above algorithm were overlapped, 
and FRZB and EXT1 were identified as hub biomarkers 
(Fig. 4E).

Validation of hub biomarkers
In the screening set, ROC and difference analyses were 
performed on the above two genes. The results showed 
that the two genes had good predictive performance 
in the screening set (EXT1 (AUC = 0.946) and FRZB 
(AUC = 0.985), which were both highly expressed in 
DCM samples) (Fig.  5A, B). In the external validation 
set, the expression of core genes was similar to that in the 
screening set, which were upregulated in DCM tissues 
with strong diagnostic performance (EXT1, AUC = 0.842; 
FRZB, AUC = 0.954) (Fig. 5C, D). In addition, the regu-
latory network of the above two core genes was visual-
ized, a TF-mRNA-miRNA network was constructed, 
and potential candidate compounds targeting EXT1 and 
FRZB were predicted to improve the symptoms of DCM 
patients (Addtional file 1: Figure S2).

Fig. 2  Identification of key modules correlated with clinical traits by WGCNA. A Clustering dendrograms of samples; B Analysis of the scale-free 
fit index and the mean connectivity under various soft-thresholding powers; C Dendrogram of all DEGs clustered with the topological overlap 
dissimilarity measure; D Heatmap of the correlation between module eigengenes and clinical traits. Each row corresponds to a module eigengene, 
each column represents a clinical trait, and each cell contains the correlation coefficient and p value (generated by ggplot2)
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Analysis of differences in the immune microenvironment
Considering the important role of immune-related path-
ways in the occurrence of DCM in gene enrichment 
analysis (Fig. 2), the CIBERSORT algorithm was used to 
analyse the content of immune cells in different samples. 
The histogram shows the overall landscape of immune 
cell distribution, and the results of the heatmap show in 
detail the correlation of 22 types of immune cells (Addi-
tional file  1: Figure S3). The results of Wilcoxon test 
analysis showed the difference in the content of immune 
cells in DCM samples and normal myocardial tissues. To 
identify the core immune cells that change the immune 
microenvironment in myocardial tissue, random forest 
tree analysis was performed on 22 immune cells (Fig. 6A, 
B). Subsequently, the immune cells identified by the Wil-
coxon test and random forest tree were overlapped, and 
four core immune cells that may affect the occurrence of 
DCM were finally identified (Fig.  6C): eosinophils, M2 
macrophages, resting memory CD4 T cells and naive B 
cells. Among them, only naive B cells were upregulated 
in DCM tissues, while eosinophils, M2 macrophages, and 
memory CD4 T cells were downregulated in DCM tis-
sues (Fig. 6D).

Correlation analysis of immune cells and hub biomarkers
In DCM tissues, correlation analysis between 22 kinds 
of immune cells and 2 hub biomarkers was performed. 
Among them, EXT1 was negatively correlated with rest-
ing NK cells and positively correlated with resting den-
dritic cells, resting mast cells, and eosinophils (Fig. 7A). 
Figure  7B specifically shows the scatter plot of the cor-
relation between EXT1 and core immune eosinophils. In 
addition, FRZB was positively correlated with monocytes 
(Fig. 7C, D).

Validation of the expression levels of hub genes 
and immune cells in DCM
Animal  experiments were performed to validate the 
expression of two hub genes and immune cells in myo-
cardial tissue of healthy mice and DCM mice. The 
echocardiographic images (Fig.  8A) and related cardiac 
function index (Fig.  8B, E) showed that DOX induced 
dilated cardiomyopathy. The RT–PCR results showed 
that the mRNA expression levels of EXT1 and FRZB in 
DCM myocardial tissues were significantly higher than 
those in normal myocardial tissues, which was consistent 
with the results of the bioinformatics analysis (Fig.  8F). 

Fig. 3  Enrichment analysis of 1343 potential core genes. A DO enrichment analysis; B GO enrichment analysis; C KEGG enrichment analysis; D GSEA 
enrichment analysis
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Fig. 4  Outcome of multiple machine learning approaches. A LASSO regression, B SVM, C random forest, D logistic regression analysis and E Venn 
diagram showing the overlapping genes of three machine learning approaches

Fig. 5  The diagnostic values of hub genes in DCM. ROC curves and AUC statistics to evaluate the diagnostic efficiency of hub genes on the 
incidence of DCM in the screening set (A, B) and in the external validation set (C, D)
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Fig. 6  Wilcoxon test (A) and random forest tree (B) were performed to identify the core immune cells, and a Venn diagram (C) was used to show 
the overlapping immune cells and the fraction of immune cells (D)
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CD19 was used as a marker of naive B cells. The images 
of immunofluorescence (Fig. 9) showed that naive B cells 
increased in myocardial tissue in the DCM group.

Discussion
As one of the leading causes of heart failure (HF), DCM 
is the most frequent indication for cardiac transplan-
tation. DCM is a final common response of the myo-
cardium to a quantity of genetic and environmental 
insults rather than a single disease entity. Contempo-
rary studies using genetic screening show that up to 
40% of DCM cases are genetically determined [3]. More 
than 50 genes related to sarcomeric proteins (MYH7, 
ACTC1, TNNT2, MYH6, MYBPC3), the cytoskeleton 
(TTN, DES, DMD, FLNC, NEXN, LDB3), ion channels 

(RYR2, SCN5A), the nuclear envelope (LMNA, TMPO) 
and intercellular junctions have been implicated in 
DCM.

Except for genetic factors, an important cause of 
acquired primary cardiomyopathy is myocarditis, 
which can lead to inflammatory dilated cardiomyopa-
thy (IDC), a subtype of primary acquired DCM. Idio-
pathic-inflammatory, viral or autoimmune-mediated 
cardiomyocyte destruction mediated via several types 
of immune cells plays an important role in this process 
[28].

To investigate potential biomarkers for better detection 
and therapy, we integrated the gene expression profiles of 
GSE141910, GSE3585, GSE42955 and GSE79962, which 
contained 194 DCM samples and 187 normal samples. A 

Fig. 7  Correlation analysis between 22 kinds of immune cells and two hub genes. A, B EXT1; C, D FRZB
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total of 1861 upregulated genes and 1882 downregulated 
genes were identified. WGCNA, DO, GO, and KEGG 
enrichment analysis and multiple machine learning 
approaches were performed to identify the hub genes and 
specific immune cells.

We identified two hub genes, FRZB and EXT1. High 
expression of the two genes was significantly associated 

with DCM. FRZB (frizzled-related protein) functions as 
a modulator of Wnt signalling through direct interac-
tion with Wnts and has a role in regulating cell growth 
and differentiation in specific cell types. It has been 
reported that FRZB serves as a key molecule in abdom-
inal aortic aneurysm progression [29] and can decrease 
the growth and invasiveness of fibrosarcoma cells [30]. 

Fig. 8  Representative echocardiographic images (A) and related cardiac function index (B-E) of the two groups. Validation of the expression levels 
of EXT1 and FRZB (F) in myocardial tissues of the DCM and control groups

Fig. 9  Representative immunofluorescence images (A) and IOD of CD19 (B) of the two groups
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FRZB is also a muscle biomarker of denervation atro-
phy in amyotrophic lateral sclerosis [31]. EXT1 is an 
endoplasmic reticulum-resident type II transmembrane 
glycosyltransferase involved in the chain elongation 
step of heparan sulfate biosynthesis. Diseases associ-
ated with EXT1 include hereditary multiple exostoses, 
non-small-cell lung carcinoma and chondrosarcoma 
[32–34].

Weighted gene coexpression network analysis 
(WGCNA) and differential expression analysis were 
performed to identify gene panels related to DCM. 
Meanwhile, the CIBERSORT algorithm was used to 
estimate the immune cells in DCM tissues. Multiple 
machine learning approaches were used to screen the 
hub genes and immune cells. Finally, the diagnostic 
value of the hub genes was assessed by receiver operat-
ing characteristic (ROC) analysis.

Dilated cardiomyopathy caused by doxorubicin-
induced myocardial injury represents a type of dilated 
cardiomyopathy caused by medicine, and whether the 
same results exist in dilated cardiomyopathy caused by 
other factors remains to be explored.

Conclusion
In our research, 3743 DEGs were identified in DCM. 
Multiple machine learning approaches were used to 
screen the hub genes and immune cells. Two hub genes 
(FRZB and EXT1) could be used as promising biomark-
ers, and eosinophils, M2 macrophages, resting memory 
CD4 T cells and naive B cells may also affect the occur-
rence of DCM. The increase in two hub genes and naive 
B cells was validated in animal experiments (Additional 
files 1, 2, 3).
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