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Introduction: The response to the SARS-CoV-2 coronavirus epidemic requires
increased research efforts to expand our knowledge of the disease. Questions related to
infection rates and mechanisms, the possibility of reinfection, and potential therapeutic
approaches require us not only to use the experimental models previously employed
for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to
respond to urgent questions.

Development: We reviewed the different experimental models used in the study of
central nervous system (CNS) involvement in COVID-19 both in different cell lines that
have enabled identification of the virus’ action mechanisms and in animal models (mice,
rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed
models used to assess the presence and effects of SARS-CoV-2 on the CNS, including
neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59
strain), and the use of brain organoids.

Conclusion: Given the clear need to increase our understanding of SARS-CoV-2, as
well as its potential effects on the CNS, we must endeavor to obtain new information
with cellular or animal models, with an appropriate resemblance between models
and human patients.

Keywords: SARS-CoV-2, experimental models, COVID-19, central nervous system, neurodegenerative disease,
multiple sclerosis

INTRODUCTION

On 31 December 2019, the Word Health Organization reported for the first time on an epidemic of
lower respiratory tract infection in Wuhan, in the Chinese province of Hubei. The causal agent was
soon identified as Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a coronavirus
(CoV), and the associated disease was named coronavirus disease 19 (COVID-19) (1). CoVs are
positive-sense single-stranded RNA viruses resembling a crown under microscopy due to the
presence of spike (S) glycoproteins on the viral envelope. There are four types of CoVs: αCoVs,
βCoVs, δCoVs, and γCoVs. SARS-CoV, MERS-CoV, and SARS-CoV-2 are zoonotic (2), first
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infecting animals and then spreading to humans. βCoVs, which
include SARS-CoV-2, are thought to originate in bats (3, 4),
among other species. These viruses can cause respiratory and
enteric diseases in different animal species. In humans, HCoV-
OC43 and HCoV-HKU1 (αCoVs), and HCoV-229E and HCoV-
NL63 (βCoVs) can cause the common cold and self-limiting
infection of the lower respiratory tract in immunocompetent
individuals in seasonal periods (5). Two previous epidemics have,
however, been caused by CoVs; these were similar to the current
pandemic, though with higher mortality rates, and were caused
by the severe acute respiratory syndrome coronavirus (SARS-
CoV) and middle east respiratory syndrome coronavirus (MERS-
CoV) and affected many countries (6). Although they led to many
research studies, expanding our knowledge of the viruses, the
COVID-19 epidemic has had a far greater global impact. One as-
yet unknown aspect of SARS-CoV-2 is its potential short- and
long-term impact on the central nervous system. In this respect,
although the rate of neurological symptoms associated with
infection is not high (7), the possibility of subsequent effects of
central nerve system (CNS) infection has been suggested by many
authors (8–17). To address these questions, we need experimental
models based on advances in biomedical research both in vitro
and in vivo. We review these models in the present article.

OBJECTIVES OF THE EXPERIMENTAL
MODELS IN THE STUDY OF THE IMPACT
OF SARS-COV-2 INFECTION

Previous studies on SARS-CoV already demonstrated that the
spike protein facilitates viral invasion of the target cell by
interacting with the angiotensin converting enzyme 2 (ACE2)
(18). This protein is expressed on the surface of epithelial cells
of the lower respiratory tract, endothelial cells of arteries and
veins, intestinal mucosa cells, kidney cells, immune cells, glial
cells, and neurons (19–21). In vitro studies have demonstrated
that SARS-CoV-2 also uses this receptor to penetrate cells (22,
23). In fact, sequencing of the SARS-CoV-2 spike protein has
shown that it contains residues that may increase its binding
affinity to the ACE2 receptor 10- to 20-fold in comparison with
SARS-CoV (18). When spike protein interacts with the receptor,
cleavage and activation by cell proteases is necessary to enable
the viral membrane to fuse with the host cell and the virus to
penetrate. In vitro studies have shown that SARS-CoV-2 spike
proteins are mainly processed by transmembrane protease serine
2 (TMPRSS2), by endosomal cathepsins B and L in the absence
of TMPRSS2 (23, 24), and by furin (25, 26). Once the virus
is internalized, viral RNA is released into the cytoplasm, and
a series of translations and replications create new RNAs and
viral proteins that assemble to form new virions (20). These
are released from the host cell and can infect new target cells
expressing the appropriate receptor on their surfaces (20, 23).

More complex biological systems are, however, needed to
study the possible interactions between SARS-CoV-2 and the
host. Due to these complex interactions, selecting an appropriate
model should be a thoughtful and clearly defined process, in
order to provide relevant and translatable scientific data enabling

us to address the questions of interest and to ensure the rational
use of animals. Although many animals may respond similarly
to humans from physiological, pathological, and therapeutic
perspectives, we must bear in mind that differences between
species may lead to erroneous conclusions (27); it is therefore
necessary to understand the relationship between the model and
the human disease (28). In the light of the current pandemic,
it is essential to have a cellular or animal model mimicking
the symptoms and pathological processes identified in patients
infected with SARS-CoV-2 (29).

IN VITRO MODELS (TABLE 1)

Vero E6 Cell Line
This cell line was isolated from kidney epithelial cells extracted
from an African green monkey (Chlorocebus aethiops) in 1979;
the Vero E6 cell line has been shown to be very useful for
viral propagation and production in vitro (30). These cells are
permissive to SARS-CoV replication, as they efficiently express
the ACE2 receptor (31, 32). Furthermore, they enable persistent
infection in vitro (33). Vero E6 cells have therefore already been
used in studies with SARS-CoV and MERS-CoV (30, 33–36)
and also in the development of live-attenuated and inactivated
vaccines for human use (37, 38). More recently, they have been
used in research into the viral infection mechanism in COVID-
19 (23, 39, 40), the effects of the virus on cells, confirmation of
viral infection (41–43) and pharmacological research (44–48).

HEK 293T Cell Line
This cell line is a variant of the HEK 293 lineage, which
was isolated from kidney epithelial cells extracted from human
embryos (49). Both lines are widely used in research due to their
high transfectability, gene expression, and production of proteins
or recombinant retrovirus (23, 49, 50). The HEK 293T variant
expresses the T SV-40 antigen, which enables the amplification
of transfected plasmids containing the SV40 origin of replication
and thus considerably increases the expression levels of desired
gene products (50). These cells have also previously been used
in studies of other such viruses as herpes simplex virus, SARS-
CoV, and even CoV pseudovirions (34, 51–53). Due to its high
efficiency of transfection, research with this cell line is producing
significant findings, such as the confirmation of ACE2 as the cell
entry receptor for SARS-CoV-2 and the potential role of CD147
as an alternative receptor (23, 24, 39, 40).

BHK-21 Cell Line
This line is a subclone of the fibroblast cell line extracted from
1-day-old Syrian hamster (Mesocricetus auratus) kidney cells
(54) and is useful for studying virus propagation and plasmid
transfection (55). It has been used in the study of HCoV-OC43
and SARS-CoV-2 infection mechanisms (23, 36, 56, 57).

Huh7 Cell Line
This lineage was established in 1982 from a human hepatocellular
carcinoma; it is therefore able to produce a great variety of
substances secreted by the human liver (58) and has been used in
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TABLE 1 | In vitro models for the study of SARS-CoV-2.

References Cell Line Origin Virus Dose Use

(23, 42, 43, 44, 47, 48) Vero E6 African green monkey
(Chlorocebus aethiops) kidney
epithelial cells

• Multiplicity of infection
(MOI) of 0.01 to 0.5

• In vitro amplification of viral
particles

• Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism
• Search for new therapeutic targets
• Pharmacological screening

(23, 24, 39, 40) HEK 293T Human embryonic kidney
epithelial cells

• No determined • Study of infection mechanism
• Search for new therapeutic targets
• Pharmacological screening

(23, 39) BHK-21 Baby hamster (Mesocricetus
auratus) kidney fibroblasts

• 8 × 107 genome
equivalents (GE) per
24-well of SARS-CoV-2

• Study of infection mechanism

(23, 26, 46, 48) Huh7 Human hepatocellular
carcinoma

• MOI of 0.05 to 1 • Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism
• Pharmacological screening

(39, 41, 43) LLC-MK2 Rhesus macaque (Macaca
mulatta) kidney epithelial cells

• No determined • Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism

(23) Caco-2 Human colorectal
adenocarcinoma

• No determined • Study of infection mechanism

(23, 39, 72) Calu-3 Human lung adenocarcinoma • MOI of 0.001 to 0.08 • Study of infection mechanism
• Pharmacological screening

(116, 117, 139, 141) Human brain
organoids

Human induced pluripotent
stem cells (hIPSCs)

• MOI of 0.1 to 2.5 • Nervous tissue infection
mechanisms

• Neurodegenerative mechanisms
• Pharmacological screening

The table includes the main cell lines used in the study of SARS-CoV-2 infection, the origin of the cells, viral dose used in some studies for the infection of cells and their
uses. The culture media used for each cell line is specified in Supplementary Material.

the study of hepatitis C virus, SARS-CoV, and MERS-CoV (27, 34,
58, 59). In the context of SARS-CoV-2, this cell line has been used
in the study of infection mechanisms (23, 39), the cytotoxicity
of viruses from human hosts (22, 60), and in pharmacological
research (26, 46, 48).

LLC-MK2 Cell Line
The LLC-MK2 cell line was established in 1955 from rhesus
macaque (Macacamulatta) kidney epithelial cells (61). It has been
mainly used in the study of poliovirus, but also to study SARS-
CoV, HCoV-NL63 (34, 62, 63), and SARS-CoV-2 to assess the
cytopathic effects in patients infected with the virus (41, 43) and
to characterize its viral infectious pathway (39).

Caco-2 Cell Line
This line was extracted in 1977 from human epithelial colorectal
adenocarcinoma cells; under specific culture conditions, the cells
are able to differentiate into small intestine enterocytes (64). This
cell line is frequently used to study transfection, invasion, and
absorption (65). It has been used in studies of MERS-CoV, SARS-
CoV, and HCoV-NL63 (27, 66, 67), and in the analysis of the S

protein activation in studies with SARS-CoV-2, due to the fact
that these cells express the TMPRSS2 protease (23).

Calu-3 Cell Line
This line was extracted in 1975 from a human lung
adenocarcinoma and is used in the study of respiratory
viruses (68, 69). It has been used in the study of SARS-CoV and
MERS-CoV (27, 70, 71) and infection mechanisms studies and
pharmacological research into COVID-19 (23, 39, 72).

Other Cell Lines
Several of the available cell lines susceptible to transfection
may also be used in in vitro research. For example, the study
by Zhou et al. (22) uses the HeLa cell line, which does not
endogenously express ACE2, and expression plasmids for human
ACE2 (hACE2) in the study of SARS-CoV-2.

IN VIVO MODELS (TABLE 2)

Mouse and hamster strains are the main animal models used
in research into SARS-CoV and MERS-CoV (73); however, in
the case of SARS-CoV-2, research efforts have been focused
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TABLE 2 | In vivo models for the study of SARS-CoV-2 infection in the CNS.

References Model Virus, inoculation route, and dose Findings

(76) C57BL/6 ACE2
knockout mouse

SARS-CoV; intranasal; 7.6 × 106 pfu/ml in DMEM Mechanisms of primary infection and viral propagation

(73) C57BL/6 TMPRSS2–/–
knockout mouse

SARS-CoV; intranasal; 105 TCID50 in F-musX
MERS-CoV; intranasal; 106 TCID50 in HCoV-EMC
2012

Mechanisms of primary infection and viral propagation
in the respiratory tracts

(83, 85) C57BL/6 STAT1
knockout mouse

SARS-CoV, SARS-CoV 2; intranasal 7 × 104 pfu Cytokine-induced biological responses

(79) hACE2 ICR mouse SARS-CoV-2; intranasal; 105 TCID50 Viral antigen in the lower respiratory tract, alveolar
infiltrates, and weight loss

(80) C57BL/6J-hACE2-AAV
mouse

SARS-CoV-2; intranasal; 3 × 107 pfu/ml Pulmonary infiltrate, neutralizing antibodies,
interferon-stimulated genes

(81) C57BL/6 young and
aged hACE2 mouse

SARS-CoV-2; intranasal; 4 × 105 pfu. Intragastric;
4 × 106 pfu

Viral antigen in trachea, lungs, and brain. Pulmonary
infiltrate. Pathological changes in lungs are more
evident in aged mice.

(88) Young and aged
BALB/c mouse

Adapted viruses: SARS-CoV-2 MA; intranasal;
105 pfu

Viral replication in lower and upper respiratory tract.
Clinical symptoms worsen with age. Prophylactic and
therapeutic role of interferon lambda-1a

(87) Young and aged
BALB/cC57 mouse
Young C57BL/6 mouse

Adapted viruses: SARS-CoV-2 MASCp6;
intranasal; 7.2 × 105 pfu Adapted viruses:
SARS-CoV-2 MASCp6; intranasal; 7.2 × 105 pfu

Evaluation of the efficacy of the subunit vaccine
consisting of SARS-CoV-2 S protein RBD fused with a
human IgG Fc subunit

(92) Syrian hamster
(Mesocricetus auratus)

SARS-CoV-2; intranasal; 8 × 104 TCID50 Viral antigen in the upper and lower respiratory tracts
and intestinal mucosa. Pulmonary infiltrates.
Neutralizing antibodies. Transmission by direct contact
or aerosols

(146, 148) C57BL/6 mouse MHV coronavirus; intranasal, intracerebral, enteral
(1–2.5 × 103 pfu)

Mechanisms of primary infection and viral propagation,
demyelinating lesion model

(93) Syrian hamster
(Mesocricetus auratus)

SARS-CoV-2; intranasal; 105 pfu in DMEM Viral antigen in the upper and lower respiratory tracts
and intestinal mucosa. Mononuclear infiltrates.
Neutralizing antibodies. Transmission by direct contact

(97) Mustela putorius furo SARS-CoV-2 F13-E and SARS-CoV-2 CTan-H;
intranasal; 105 pfu

Viral replication in the upper respiratory tract without
causing severe disease

(98) Mustela putorius furo SARS-CoV-2 GISAID ID EPI_ISL 406862;
intranasal; 6 × 105 TCID50 of SARS-CoV2 virus
diluted in 500 µl of PBS

Direct and indirect transmission

(96) Mustela putorius furo SARS-CoV strain Toronto-2; intranasal;
103TCID50/mL diluted in medium

Transmission before peak viral load, without symptom
onset

(105) Macaca fascicularis SARS-CoV-2 # 026V-03883, MERS-CoV #
011V-02838; intratracheal, intranasal; 10e6 TCID50

in PBS

Clinical symptoms similar to COVID-19

(100) Macaca mulatta SARS-CoV-2 HB-01; intratracheal; 106 TCID50/mL More severe clinical symptoms in older monkeys

(106) Macaca mulatta SARS-CoV-2 MN985325.1; intratracheal,
intranasal, conjunctival, oral; 4 × 105 TCID50/ml of
DMEM

Significant increase in pro-inflammatory interleukins

(109) Macaca mulatta SARS-CoV-2 WH-09/human/2020/CHN;
conjunctival; 1 × 106 TCID50/ml

Viral load in the ocular system and respiratory and
digestive tracts

(107) Macaca
mulatta/Macaca
fascicularis/Callithrix
jacchus

SARS-CoV-2; intratracheal, intranasal, conjunctival;
106 pfu/ml

Rhesus monkey is more susceptible to infection.

(110) Macaca mulatta MERS-CoV strain HCoV-EMC/2012; intratracheal;
7 × 106 TCID50

Viral RNA in the throat soon after infection

(111) Macaca mulatta SARS-CoV-2/WH-09/human/2020/CHN;
intratracheal; 1 × 106 TCID50/ml

Rhesus monkeys present no reinfection

(112) Macaca mulatta SARS-CoV-2 NR-52281; intratracheal, intranasal;
1.1 × 106 pfu or 1.1 × 105 pfu or 1.1 × 104 pfu

No reinfection

(113) Macaca mulatta SARS-CoV-2 MN985325.1; intratracheal,
intranasal, conjunctival, oral; 2.6 × 106 TCID50

Treatment study

(115) Macaca mulatta SARS-CoV-2; intratracheal; 106 TCID50/ml Vaccine development

The table includes the characteristics of the animals (species) used, as well as the route of administration, viral dose used in some studies for the infection and the
relevance of the model in SARS-CoV-2 research. TCID50, 50% tissue culture infectious dose; pfu, plaque forming units.
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on the study of aged mouse strains, the design of humanized
mouse models that express the hACE2 receptor, and the creation
of knockout mice, with the aim of replicating the mechanisms
involved in human infection.

Aged Mouse Strains
Roberts et al. (74) reported that aged BALB/c mouse strains
were able to maintain high rates of viral replication, which
was associated with clinical illness and pneumonia; the study
demonstrated an age-related susceptibility to SARS disease in
animals that parallels the human experience. Advanced age has
been identified as an independent factor of poor prognosis in
COVID-19 and is considered a predictor of mortality in patients
with SARS-CoV-2 infection. Other strains like C57BL/6 have also
been used (75).

Knockout Mouse Models
K18-hACE2 transgenic mice express hACE2, with regulation by
the human cytokeratin 18 (K18) promoter. Specifically, these
mice contain 2.5 kb of the K18 genomic sequence, including the
promoter, the first intron, and a translation-promoting sequence.
Expression of hACE2 is mainly observed in the epithelium
of the respiratory tract, which shows a higher incidence of
SARS-CoV-2 infection, and in the epithelium of other organs,
including the liver, kidneys, and gastrointestinal tract (76).
K18-hACE2 mice infected with SARS-CoV-2 show weight loss
and viral replication in the lungs, as in humans. Furthermore,
they show the typical histopathological findings of interstitial
pneumonia with lymphocytic and monocytic infiltration into
the alveolar interstitium and an accumulation of macrophages
in the alveolar cavities. Alveolar and bronchial epithelial cells
show presence of viral antigens; this is not observed in wild-type
(WT) mice with SARS-CoV-2 infection. Furthermore, these mice
show other pathological changes, such as vasculitis, degeneration,
and necrosis of extrapulmonary organs and presence of the
viral antigen in the brain (77, 78). Bao et al. (79) recently
studied the pathogenicity of SARS-CoV-2 virus in hACE2-
expressing ICR transgenic mice and WT mice. This model may be
useful in research into drug treatments for COVID-19. Israelow
et al. (80) developed an hACE2-adeno-associated virus 9 (AAV)
murine model, which was subsequently intranasally infected
with SARS-CoV-2. They studied the presence of coronavirus
infection, the inflammatory response in the lungs, the presence
of neutralizing antibodies, and the type I interferon signaling
pathway. The authors reported that this model would be
very useful for understanding questions related to infection,
replication, and pathogenesis of SARS-CoV-2 and for testing
therapeutic strategies.

Sun et al. (81) used CRISPR/Cas9 technology to create
a murine hACE2 model in young and aged animals. After
intranasal infection of the animals with SARS-CoV-2, the
researchers observed viral replication in the lungs, trachea, and
brain of both animals. However, alveolar inflammatory infiltrate
and vascular lesions were more evident in aged animals; this is
analogous to the pathological changes observed in older patients
with COVID-19. This model also showed evidence of respiratory
tract infection following intragastric inoculation.

TMPRSS2–/– Knockout Mice
This model was designed using a directional vector to replace
exons 10–13, which codify the serine protease domain of
the TMPRSS2 gene. It was constructed by electroporation
of embryonic stem cells and their subsequent injection into
C57BL/6 blastocysts for at least five generations (82). After
experimental infection with SARS-CoV-2, TMPRSS2-deficient
mouse strains showed reduced body weight loss and viral kinetics
in the lungs. Absence of TMPRSS2 affected the infection sites and
virus spread within the respiratory tract; therefore, this is a useful
model for COVID-19 research (73).

The STAT1 Knockout Mouse Model
(129S6/SvEv-STAT1tmRDS) contains a homozygous STAT1
mutation and completely lacks functional STAT1 proteins
(Pgm1c and Gpi1b alleles of 129S6). The model was created by
targeting the STAT1 gene in GS-1 ES cells and injecting target
cells into blastocysts. Heterozygous models of the mutation were
produced from the chimeras and were crossed over to generate
homozygous models (83, 84). The JAK-STAT signaling pathway
is involved in the mediation of cytokine-induced biological
responses. This is therefore a useful model for determining the
role of a variety of cytokines in immune responses, the role
of STAT1 protein in mediating interferon-dependent responses,
and its relationship with viral and bacterial pathogens (84–86);
the model is also interesting in the analysis of SARS-CoV-2
inflammation mechanisms.

Adapted Mouse Models
Studies have been recently conducted with BALB/c and C57BL/6
mice (87, 88) together with modified SARS-CoV-2 strains.
Modification of the virus has led to mouse-adapted SARS-CoV-
2 strains, the SARS-CoV-2 MA (88) and SARS-CoV-2 MASCp6
(87) strains, which are able to infect mice with no need for
modification of the animals, as these strains efficiently bind to the
murine ACE2 receptor in both young and aged mice, causing a
disease resembling human COVID-19. In addition to their use in
the study of pathogenesis, these models have enabled researchers
to trial vaccines and treatments for the disease (87, 88).

Mouse Models for the Induction of
Neutralizing Antibodies
BALB/c mice have been used in studies for the development
of vaccines, and Wistar rats have been used in studies into
immunization with attenuated strains of the virus (89).

Syrian Hamster Models
This animal model (M. auratus) has previously been used
in the study of SARS-CoV (90, 91), as the hamster presents
an ACE2 receptor homologous to the human receptor. Sia
et al. (92) intranasally inoculated animals with the β–
CoV/Hong Kong/VM20001061/2020 strain and corroborated
the presence of viral antigen in the epithelial cells of the
nasal and bronchial mucosa with progression to pneumocytes
and clearance of infectious particles by day 7 after infection.
Presence of mononuclear cell infiltrates was moderate in the
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nasal turbinates but was greater in the lungs. The viral
antigen was observed in epithelial cells of the duodenum,
without signs of inflammation. No infectious particles were
detected in the kidney, and no histopathological changes were
observed in other organs. Neutralizing antibodies were observed
on day 14 after infection. Infected animals presented clear
weight loss and researchers corroborated that the main route
of viral transmission was through direct contact or aerosols.
The authors conclude that SARS-CoV-2 infection in Syrian
hamsters presents similar characteristics to those observed in
humans with mild infections and that this model represents an
opportunity for understanding the transmission dynamics of this
novel coronavirus.

Chan et al. (93) confirmed transmission by contact, the
progressive decrease in viral load between days 2 and 7
after infection in both lower and upper respiratory tracts,
and the expression of viral antigens (protein N) by epithelial
cells together with presence of mononuclear infiltrates. On
day 7 after infection, regenerative hyperplasia occurring in
bronchioles led to the appearance of multiple irregularly
arranged epithelial layers. Furthermore, they detected the viral
antigen in the intestinal mucosa and observed histopathological
changes in the spleen and heart. The pro-inflammatory cytokine
cascade in this model normalizes at approximately day 7,
and antibodies are observed at 7–14 days. This animal model
reproduces the respiratory and enteric symptoms observed in
patients with COVID-19.

Ferret Models
Ferrets (Mustela putorius furo) are frequently used as animal
models to study respiratory diseases caused by such viruses as
influenza virus or SARS-CoV (94–96). All studies with SARS-
CoV-2 in ferrets have used the intranasal route to inoculate
the virus (97–99). Shi et al. (97) studied the susceptibility of
ferrets to infection with 2 SARS-CoV-2 strains. In a first stage
of the study, the authors detected viral RNA in samples from
the nasal turbinates, palate, and tonsils, but no viral load was
detected in the other organs analyzed, including the lungs
and brain. This suggests that the virus can replicate in the
upper respiratory tract of ferrets. In a second stage of the
study, analyzing the viral replication dynamics, animals showed
viral RNA in nasal washes, whereas rectal swabs showed much
lower viral load. Furthermore, ferrets presented anti-SARS-
CoV-2 antibodies at days 13 and 20. Histopathological studies
showed altered pneumocytes, macrophages, and neutrophils.
Finally, when studying replication in the lungs, the authors
observed that the virus is able to replicate in the upper
respiratory tract up to day 8 after infection without causing
severe symptoms. Richard et al. (98) focused on the study
of the direct and indirect transmission of the SARS-CoV-
2. Ferrets inoculated with SARS-CoV-2 were placed in direct
contact with a group of healthy ferrets 6 h after infection.
Inoculated animals showed productive infection, and the peak
of viral infection was reached on the third day. All animals
in direct or indirect contact presented viral RNA at day 1–
3 after exposure. Animals exposed to inoculated ferrets were
expected to present a lower viral load than the inoculated

animals; however, viral load was similar in all cases. Lastly,
the authors observed that all animals presented antibodies at
day 21 after exposure to the virus, and that their levels were
similar, regardless of the form of infection. A similar design
was employed by Kim et al. (99), who observed viral load
up to 8 days after infection, both in samples from inoculated
animals and in samples from animals that were in direct contact
with the inoculated ferrets. Animals in indirect contact with
infected ferrets showed positive results for infection at day 2
after exposure, which suggests rapid transmission, even before
peak viral load was reached and in the absence of clinical
symptoms; this correlates with the reported transmission by
asymptomatic human patients.

Non-human Primate Models
Severe acute respiratory syndrome coronavirus and middle
east respiratory syndrome coronavirus have previously been
studied in non-human primates (75, 100–104); the use of these
models has been proposed for the study of SARS-CoV-2 (105)
especially with a view to the development of vaccines or antiviral
treatments (106, 107). Rockx et al. (105) used a combined
intratracheal and intranasal route to inoculate the SARS-CoV-
2 virus to both young and old adult cynomolgus macaques
(Macaca fascicularis). The results of this study showed that
these animals tolerated viral infection, presenting symptoms
similar to those of COVID-19 in humans. The virus efficiently
replicates in epithelial cells throughout the upper respiratory
tract, which correlates with the ease of transmission of the
virus, whereas replication in the lower respiratory tract correlates
with the development of the disease (105–108). Yu et al.
(100) obtained similar results with intratracheal inoculation of
young and old rhesus monkeys (Macaca mulatta). The authors
report that, although viral replication was more active in older
adult monkeys, both groups developed interstitial pneumonia
together with edema, which was more severe and diffuse in
older adult monkeys. Munster et al. (105) developed a COVID-
19 model using rhesus monkeys, inoculating them with the
virus through four different but combined routes (intranasal,
intratracheal, conjunctival, and oral). The animals presented
clinical signs compatible with COVID-19 from day 1 after the
inoculation to symptom resolution, between days 9 and 17. All
animals presented weight loss, low-grade fever, and pulmonary
infiltrates, in addition to a significant increase in IL-6 and IL-10,
among other findings; IgG antibodies were present at detectable
levels from day 7 after the infection. Nasal, pharyngeal, and
rectal samples showed high levels of viral RNA. Furthermore,
histopathological analyses showed similar alterations to those
caused by SARS-CoV and MERS-CoV (97, 98). Deng et al.
(109) inoculated rhesus monkeys with SARS-CoV-2 through the
conjunctival route. They did not observe significant changes
in the animals’ weight or body temperature. Antibody analyses
detected presence of IgG at days 14 and 21. Furthermore,
radiographs of these animals showed bilateral alterations in
the upper lobes and right lower lobe, which correlates with
the moderate interstitial pneumonia observed microscopically.
Histopathological studies showed viral load in the ocular and
nasolacrimal system, as well as in the respiratory and digestive
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tracts. Results of a comparative study of three non-human
primate species [rhesus monkey, crab-eating macaque, and
common marmoset (Callithrix jacchus)], which were inoculated
with the virus through three different pathways (intratracheal,
intranasal, and conjunctival), showed that almost all animals
presented clinical signs compatible with COVID-19, although
there were differences between species in the histopathological
findings (107). The rhesus monkey is the most susceptible
species to viral infection, and therefore a good model for the
study of COVID-19, as well as for the development of vaccines
and pharmacological studies (107, 108). De Wit et al. (110)
studied rhesus monkeys intratracheally inoculated with the virus,
finding that viral RNA was detectable in the throat during
the first days, but with levels subsequently decreasing until
becoming undetectable. Bao et al. (111) and Chandrashekar
et al. (112) intratracheally and intranasally inoculated rhesus
monkeys with the SARS-CoV-2 virus to study the possibility of
reinfection. Williamson et al. (113) used rhesus monkeys that had
previously been inoculated through the intranasal, oral, ocular,
and intratracheal routes for pharmacological research. These
animals have also been used for the development of vaccines (106,
107, 114, 115).

MODELS FOR CNS RESEARCH

Coronaviruses have been found in autopsy studies in the CNS
of patients with multiple sclerosis, Parkinson’s disease, and
Alzheimer disease. Experimental studies have shown that human
CoVs can infect neurons, astrocytes, and microglia in primary
cultures as well as immortalized human microglial cells (6). The
suggestion that SARS-CoV-2 may use the brain as a reservoir
(10), potentially favoring the development of neurodegenerative
diseases (11), underscores the need to specifically analyze the
effect of the virus on the CNS.

CNS CELL LINES

The information currently available is from research on SARS-
CoV, which has 78% nucleotide homology with SARS-CoV-
2 (18). Although CNS tropism has been described (20), no
specific models of neural cell lines have been developed for
the study of SARS-CoV-2; however, neural progenitor cells
(NPCs), neurons and microglia derived from human induced
pluripotent stem cells (hIPSCs) have already been used in
in vitro studies of SARS-CoV-2 viral infection, demonstrating the
virus potential to infect CNS cells (116–118). Previous studies
with other neurotropic human coronaviruses showed possible
neural cell lines susceptible to infection by SARS-CoV-2 that
may be useful in studying the possible mechanisms by which
the virus infects the CNS. Studies into neural susceptibility to
SARS-CoV infection have used cell lines including HOG, a
line derived from a human oligodendroglioma that expresses
proteins characteristic of oligodendrocytes and is very widely
used in the study of neurons (119, 120) and the C6 cell
line, derived from a glioma induced in Wistar Furth rats

exposed to N-nitroso-N-methylurea, which is morphologically
similar to glioblastoma multiforme when injected into the
brains of neonate rats (121, 122). Although both cell lines
have been shown to be susceptible to SARS-CoV infection, low
levels of viral replication have been observed in comparison
with such other susceptible cell lines as Vero E6 or Caco-
2 (123). Other cell lines used to study the virulence of
HCoV-229E and HCoV-OC43 in the CNS include human H4
brain neuroglioma cells, the LA-N-5 human neuroblastoma
cell line, the CHME-5 human fetal microglia cell line, and
the U-373 MG and U-87 MG astrocytic lines derived from a
human glioblastoma and an astrocytoma, respectively, among
many others (124–129). Cultures of human primary neurons,
astrocytes, oligodendrocytes, and microglia have been used to
study these viruses (130, 131). All these neural cell lines may be
useful in the near future to study SARS-CoV-2.

BRAIN ORGANOIDS AS A MODEL OF
CNS INFECTION BY SARS-COV-2

Organoids are miniaturized, simplified, three-dimensional
versions of an organ produced in vitro, partially recreating the
cellular structure and the functioning of that organ (132, 133).
Classic cell culture systems present certain limitations, such as
the inability to study complex and dynamic responses or cell-cell
interactions. The use of organoids enables us to study complex
physiological or pathological processes in structures bearing
much greater resemblance to in vivo conditions, including
SARS-CoV-2 infection, tropisms and potential treatments
(133–135). To date, SARS-CoV-2 infection has been studied
in human organoids of lung, liver, intestine, blood vessels, and
kidney (42, 118, 136–138). Human brain organoids have also
been used; these present strong cellular and structural similarities
to some mammalian brain regions, such as a neural epithelium
containing NPCs, that align to form a ventricular zone-like
layer, cortical neurons, that contribute to the formation of a
cortical plate-like layer and glial cells, such as astrocytes or
oligodendrocytes (139–141). These organoids are useful for
the study of early stages of human neurodevelopment and
network formation, key cellular processes such as proliferation,
differentiation, apoptosis, synaptogenesis or myelination, CNS
function such as electrophysiological activity, neurodegenerative
diseases, potential treatments, and have been already used for the
study of other virus such as ZIKA virus or HIV (139, 141–144).

Ramani et al. (116) observed that in these brain organoids,
the virus mainly infects mature cortical neurons and presents
a perinuclear distribution within these cells. Furthermore,
neurodegenerative effects have been observed in cells infected by
SARS-CoV-2, including cell death and hyperphosphorylation, as
well as mislocation of Tau protein; these alterations are observed
in such conditions as tauopathies or Alzheimer disease (116).
However, no productive replication of the virus was observed
in these cells, at least in the first 4 days after infection (116),
which would support the hypothesis that the CNS may act as a
long-term reservoir of the virus (10). In contrast, Bullen et al.
(139) observed an incremented accumulation of viral particles in
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neural cells of brain organoids between 6 and 72 h after SARS-
CoV-2 infection, suggesting an active replication and productive
infection of the virus in neural cells during the first days. Viral
particles were detected mainly in the neuronal soma and, in
some cells, also into the neurites (139). Similar to Ramani et al.,
Mesci et al. (141) used these brain organoids and observed
that the virus was able to infect neurons, including NPCs and
mature cortical neurons, and cause cell death accompanied by the
impairment of excitatory synapses. Furthermore, this work tested
the efficiency of Sofosbuvir, an FDA-approved brain-penetrant
antiviral drug for positive-sense single-stranded RNA viruses
(145), as a treatment for the SARS-CoV-2 infection and observed
that this drug was able to rescue the altered synaptogenesis
and decrease neuronal death and viral accumulation in these
brain organoids (141). Song et al. (117) also demonstrated
that SARS-CoV-2 has neuroinvasive capacity in human brain
organoids, particularly of NPCs and mature cortical neurons.
Infected cells showed a hypermetabolic state and viral particles
were accumulated within endoplasmic reticulum-like structures,
indicating the virus ability to use the neural cell machinery to
replicate (117). In addition, a hypoxic environment and extensive
neuronal cell death were observed in high density SARS-CoV-
2 infected areas, suggesting that virus infection could promote
death of nearby cells (117). Finally, this study detected IgG
antibodies against SARS-CoV-2 in the cerebrospinal fluid of a
COVID-19 patient that were able to block SARS-CoV-2 infection
in brain organoids (117). All these studies show that SARS-
CoV-2 can directly infect neural cells and trigger damaging
consequences that could cause neurologic symptoms. Also, these
studies expose the great potential of the human brain organoids
for the study of the SARS-CoV-2 effects in the CNS.

MHV-COV INFECTION IN MICE

Mouse hepatitis virus (MHV) is a βCoV that poses no risk to
humans but presents a great similarity with other viruses from
the same family, such as SARS-CoV, MERS-CoV, and SARS-
CoV-2. It penetrates the CNS, causing white matter lesions; it
has therefore been proposed as a viral model of demyelinating
disease (146, 147). The virus has been shown to remain in the
white matter and to be able to replicate in the CNS (148);
therefore, it is a good model for the study of CNS infection
by coronaviruses. Neurotropic strains of MHV-CoV have been
used extensively to induce acute and chronic demyelinating
disease mediated by neuroinflammation (149). Depending on
the inoculation route and the MHV-CoV strain, different CNS
regions are affected. Inoculation with experimental neurotropic
strains, especially MHV-A59, induces a biphasic disease of acute
meningoencephalitis at 10–14 days after inoculation, followed by
a disease causing subacute, chronic inflammatory demyelination
in the brain; spinal cord involvement is more pronounced
(150). Virus translocation from the initial site of inoculation in
the brain to the spinal cord is caused by the transit of virus
particles in neural and glial cells, as well as mechanisms that
involve the fusion of lipid membranes, probably during the virus
internalization step (151). Intranasal and intracranial inoculation

of JHM-CoV induces similar symptoms in BALB/c mice to
those caused by MHV-A59. After intranasal inoculation of mice,
MHV-CoV accesses the CNS through the olfactory nerve and
propagates from the olfactory system to limbic system structures
and their connections with the brainstem (152).

In order to study the immune system role in demyelination
induction caused by MHV infection, Wang et al. (153)
treated infected animals with gamma radiation to cause
immunosuppression and, subsequently, reconstituted immunity
by transferring cells from other immunocompetent animals.
The results showed that demyelination was prevented by
radiation and was present again when the immunity was
restored, indicating that immunity is directly involved in the
demyelination process (153). Moreover, CD4 and CD8 T cells
have been observed to play a critical role in the development
of the demyelinating process, with γδ T cells being the most
important for this process (154, 155). In contrast, B cells,
the most abundant cell type in the spleen, and NK cells are
not involved in demyelination as nude animals without spleen
do not present demyelination (154), MHV offers a unique
model for studying host defense-mediated demyelination during
chronic infection in a phase acute viral infection and immune
response (156).

CONCLUSION

Research on SARS-CoV-2 has become a necessity due to the
magnitude of its spread worldwide. Such aspects as infection
rate and mechanisms, the possibility of reinfection, and possible
therapeutic approaches make it necessary not only to use
the experimental models previously employed to study the
SARS-CoV and MERS-CoV coronaviruses, but also to generate
new models to respond to urgent questions. The potential
involvement of the CNS due to SARS-CoV-2 infection should be
studied specifically, and research efforts must focus on obtaining
information with cellular or animal models to expand our
understanding of the virus.
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