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Abstract

In many microbes rapid mutation of highly mutable contingency genes continually replenishes a pool of variant alleles from
which the most suitable are selected, assisting in rapid adaptation and evasion of the immune response. In some
contingency genes mutability is achieved through DNA repeats within the coding region. The fungal human pathogen
Candida albicans has 2600 repeat-containing ORFs. For those investigated (ALS genes, HYR1, HYR2, CEK1, RLM1) many
protein variants with differing amino acid repeat regions exist, as expected for contingency genes. However, specific alleles
dominate in different clades, which is unexpected if allele variation is used for short-term adaptation. Generation of new
alleles of repeat-containing C. albicans ORFs has never been observed directly. Here we present evidence for restrictions on
the emergence of new alleles in a highly mutable C. albicans repeat-containing ORF, PNG2, encoding a putative secreted or
cell surface glycoamidase. In laboratory cultures new PNG2 alleles arose at a rate of 2.861025 (confidence interval
3.36102629. 961025) per cell per division, comparable to rates measured for contingency genes. Among 80 clinical isolates
17 alleles of different length and 23 allele combinations were distinguishable; sequence differences between repeat regions
of identical size suggest the existence of 36 protein variants. Specific allele combinations predominated in different genetic
backgrounds, as defined by DNA fingerprinting and multilocus sequence typing. Given the PNG2 mutation rate, this is
unexpected, unless in different genetic backgrounds selection favors different alleles. Specific alleles or allele combinations
were not preferentially associated with C. albicans isolates from particular body sites or geographical regions. Our results
suggest that the mutability of PNG2 is not used for short-term adaptation or evasion of the immune system. Nevertheless
the large number of alleles observed indicates that mutability of PNG2 may assist C. albicans strains from different genetic
backgrounds optimize their interaction with the host in the long term.
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Introduction

Repetitive DNA sequences mutate several orders of magnitude

faster than non-repetitive sequences through addition and removal

of repeat units by strand slippage and recombination [1]. In many

microbes such highly mutable repeat sequences are placed either

upstream of, or within, ORFs where mutations may alter

transcription rates or the amino acid sequence of the encoded

proteins [2–4]. For the genes affected, often referred to as

‘contingency genes’, a pool of variant alleles is constantly

replenished by repeat sequence mutation. From this pool the

most suitable at a given time are selected, allowing rapid

adaptation to changing circumstances and evasion of the immune

response [2–4].

The genome of the human pathogen Candida albicans contains

approximately 2600 repeat-containing ORFs, three and ten times

more, respectively, than those of the ascomycete yeasts Saccharo-

myces cerevisiae and Schizosaccharomyces pombe [5]. Comparative

genomic analyses of C. albicans strains suggest that repeat-

containing ORFs may be important C. albicans fitness determinants

[6]. To date, only a few of these genes have been characterized,

including EAP1, PIR1 CEK1, HYR1, HYR2, HWP1, RLM1 and the

ALS (agglutinin like sequence) family of adhesins [7–16]. Allele

variation has been assessed in CEK1, HYR1, HYR2, RLM1 and the

ALS family, and high allelic diversity, caused by variations in

repeat regions, was observed in all of these ORFs [10–16]. The

alleles differ in the number of highly conserved repeats and this

translates into proteins differing in amino acid repeat numbers

[10,12–16]. An effect of changes in repeat numbers on the

adhesive function of the protein has been demonstrated experi-

mentally for Als5p [17]. Functions of the repeat regions in Hwp1p

in adhesion [9], in Pir1p in localizing the protein [8], and in

Eap1p in positioning binding sites of the encoded protein [7] have

also been demonstrated.

To our knowledge the rate at which new alleles arise in repeat-

containing C. albicans ORFs has never been determined. Hoyer

and coworkers [18] and Zhao and coworkers [13] analyzed several

ALS genes in serially passaged cultures but could not detect any

new ALS alleles. For the related S. cerevisiae FLO1 gene, alterations

in its repeat region generate new alleles with a frequency of

approximately 1025 new alleles per cell per division [19], at the

lower end of rates of changes in contingency loci [2,20].

For all repeat-containing ORFs for which clade-specificity of

alleles has been investigated (ALS genes, HYR1, HYR2 and CEK1),
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alleles with particular repeat regions predominate in the different

C. albicans clades in collections of isolates obtained from a variety

of geographical regions, body sites and types of candidiasis

[10,12–15]. This is unexpected if these genes mediate rapid

adaptation to changing circumstances or evasion of host defenses.

Clades diverged more than 3 million years ago [21] whereas

contingency genes can change so quickly that different alleles can

predominate at different times during infection of a single host

[20,22]. Thus selection of alleles beneficial in specific host niches

or selection of novel alleles in response to host defenses should

have largely prevented any clade specificity. Clades are generally

not confined in distribution to specific geographical regions, body

sites or types of candidiasis [23,24]; therefore association of

particular alleles with specific geographical regions as a result of

genetic drift or with specific host niches should also not generate

clade specificity as a secondary consequence.

To better understand their biological role, we have begun to

investigate additional repeat-containing ORFs in C. albicans. In a

recent survey of DNA polymorphisms largely specific to a general-

purpose genotype (GPG; equivalent to clade 1) of C. albicans

strains, causing disease 10–100 times more often than other

genotypes, we identified a GPG-specific polymorphism, caused by

a GPG-specific number of repeats within the PNG2 ORF [6].

PNG2 encodes a putative peptide:N-glycanase (EC 3.5.1.52) [6],

a class of enzymes that removes N-linked glycans from

glycoproteins [25]. It is most likely secreted or located at the cell

surface, as judged from sequence homologies with two experi-

mentally verified peptide:N-glycanases [25,26]. Its expression is

upregulated in response to treatment with caspofungin, ciclopirox

olamine or ketoconazole [27,28], downregulated in response to

lowered pH [29] and its transcript is detectable by reverse

transcriptase PCR in oral candidiasis [6]. We describe here our

characterization of the variability of the PNG2 ORF repeat region

and conclusions, based on these results, regarding the role of this

variability in adaptation.

Results

Seventeen Different-Sized PNG2 Repeat Regions Forming
23 Different Repeat Region Combinations in 80 Clinical C.
albicans Isolates

The PNG2 ORF first came to our attention because differences

in the copy number of 12 bp repeats (encoding mainly PPHE and

PPHH; Fig.1) created an amplified fragment length polymorphism

(AFLP) largely specific to GPG clinical isolates [6]. We extended

this analysis by PCR amplification of the repeat-containing region

in 80 clinical isolates (Fig. 2, Table 1) to determine the number of

different-sized alleles. We found 17 different-sized repeat regions

containing between 12 and 41 repeat units. C. albicans is diploid

and repeat regions combined to form 23 different pairwise allele

combinations. We sequenced 31 repeat regions and confirmed

that alterations in the number of repeat units were responsible for

alterations in the size of the PCR product in every case, and that

the PCR-based estimates of the number of repeats were correct in

every case.

In several ALS genes the differences in repeat numbers between

the two alleles present in a given isolate differ significantly from

those expected if all observed alleles were randomly paired with

each other [13,15]. This was not the case for PNG2. Differences in

repeat numbers between the two copies of the gene in a given

strain covered a wide range (0–25 repeats), and the average

difference in the number of repeat units (5 units) did not differ

significantly from the differences observed in 1000 simulations in

which alleles were randomly combined into 80 pairs.

Different Alleles and Allele Combinations Dominate in
Different Genetic Backgrounds Regardless of the Body
Site or Geographical Region from Which Isolates Were
Obtained

Forty-one of our clinical isolates belonged to the GPG cluster

and 39 belonged to a variety of other genotypes ([23], Table 1).

Two repeat region lengths were overrepresented in GPG isolates

(Fig. 3A). Fifty percent of all GPG alleles had a 21 unit repeat

region and 45% had a 23 unit repeat region. Only 13% and 23%

of alleles from other isolates had 21 and 23 repeat unit lengths,

respectively (z test, P,0.05 with Bonferroni correction and

assuming that isolates with only one repeat unit size detectable

by PCR carried two units of identical size). Even though they were

less frequent than in GPG strains, both the 21 and the 23 repeat

Figure 1. PNG2 ORF and its predicted protein product, based
on the published SC5314 genome sequence. The repeat region is
shown grey and striped, regions with homology to glycoamidases are
marked light grey and a predicted transmembrane helix (FCQILSLFGV-
LYLVNFLYI; amino acid residues 69-87) is marked with the letter M.
Positions of primers used in this study are shown as arrows. KD: Kyte/
Doolittle hydrophilicity plot; ARG: Argos Helix plot of the protein.
doi:10.1371/journal.pone.0009614.g001

Figure 2. Examples of acrylamide gels used for assessment of
repeat region sizes in C. albicans isolates. PCR products were
amplified using primers MC0repf and MC0repr from genomic DNA of
GPG strains (A) and other strains (B), and separated on acrylamide gels.
Repeat numbers predicted from amplicon size are shown below the
gels. Repeat numbers verified by sequencing are underlined. Sequence-
verified PCR products, marked by white triangles, were also used as
molecular weight markers.
doi:10.1371/journal.pone.0009614.g002

Selection in Mutable PNG2
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lengths were more common than most other repeat lengths among

39 non-GPG isolates analyzed. Non-GPG strains represent a

spectrum of highly diverse C. albicans genotypes [21,23,24] but can

be subdivided into two major jackknifing-supported evolutionary

branches, B and C [23]. The 23 unit repeat was significantly more

frequent in branch B than in branch C (8/18 alleles versus 10/60

alleles respectively; z test, P,0.05, Table 1).

Table 1. C. albicans isolates and their PNG2 repeat region size
combinations.

Isolatea Groupb
Country of
isolation

Isolation
sitec

No. of
repeatsd

FJ26 GPGA1 Fiji s/w 21,23

FJ9 GPGA1 Fiji r/o 21,23

FJ23 GPGA1 Fiji u 21,23

YASU751 GPGA1 Malaysia u 21,23

AU1 GPGA1 New Zealand r/o 21,23

CH14 GPGA1 New Zealand s/w 21,23

VAR1.1VAG GPGA1 USA v 21,23

VAR1.3VAG GPGA1 USA v 21,21

HUN122 (GPGA1) Great Britain s 24,25

CLB42 GPGA2 Colombia v 20,23

CLB56 GPGA2 Colombia s/w 21,23

CLB53 GPGA2 Colombia s/w 21,23

FJ10 GPGA2 Fiji r/o 21,23

OD8807 GPGA2 Great Britain r/o 21,21

OD8911 GPGA2 Great Britain r/o 21,23

HUN127 GPGA2 Great Britain s 21,23

HUN95 GPGA2 Great Britain s 16,23

OD8916 GPGA2 Great Britain r/o 21,23

HUN93 GPGA2 Great Britain s 21,21

HUN96 GPGA2 Great Britain s 21,21

OD8826 GPGA2 Great Britain r/o 21,23

YASU568 GPGA2 Malaysia u 21,23

YASU649 GPGA2 Malaysia u 21,23

YASM73 GPGA2 Malaysia r/o 21,23

AU19 GPGA2 New Zealand u 21,23

AU90 GPGA2 New Zealand s/w 21,23

CH35 GPGA2 New Zealand u 21,23

W132 GPGA2 New Zealand r/o 21,23

W26 GPGA2 New Zealand a 21,23

W43 GPGA2 New Zealand r/o 21,23

CH42 GPGA2 New Zealand s/w 21,23

CHOB5 GPGA2 New Zealand s/w 21,23

JAM-2C GPGA2 USA a 23,23

RIHO10 GPGA2 USA s 21,23

COUR-C GPGA2 USA r/o 21,23

RIHO13 GPGA2 USA s 21,23

VAR1.4VAG GPGA2 USA v 21,23

RIHO16 GPGA2 USA s 21,23

RIHO9 GPGA2 USA s 21,23

VAR1.10VAG GPGA2 USA v 21,23

VAR1.8VAG GPGA2 USA v 21,23

HUN123 B Great Britain s 23,23

HUN61 B Great Britain r/o 19,23

AU2 B New Zealand r/o 21,21

W137 B New Zealand r/o 20,20

CH9 B New Zealand v 24,25

OTG18 B New Zealand r/o 23,23

VAR1.7VUL B USA v 21,23

Isolatea Groupb
Country of
isolation

Isolation
sitec

No. of
repeatsd

VAR1.5VAG B USA v 23,23

RIHO30 B USA s 16,20

CLB49 C Colombia r/o 21,36

CLB44 C Colombia s/w 19,27

CLB45 C Colombia s/w 22,27

FJ12 C Fiji r/o 19,41

FJ27 C Fiji c 19,27

HUN68 C Great Britain r/o 22,23

HUN64 C Great Britain s/w 19,41

OD8824 C Great Britain r/o 21,26

HUN91 C Great Britain s 18,20

HUN66 C Great Britain s/w 21,23

YASU123 C Malaysia u 12,26

YASU363 C Malaysia u 21,36

YASU63 C Malaysia u 21,36

YASM1 C Malaysia s/w 22,26

YASU709 C Malaysia u 23,23

YASM42 C Malaysia r/o 21,36

CH3 C New Zealand u 22,23

W142 C New Zealand r/o 16,16

AU36 C New Zealand c 22,23

OTG10 C New Zealand a 19,41

W53 C New Zealand r/o 19,41

AU134 C New Zealand r/o 19,41

W17 C New Zealand r/o 17,27

W55 C New Zealand a 19,41

CH20 C New Zealand v 16,41

OTG1 C New Zealand r/o 23,23

OTG4 C New Zealand v 19,37

GAYMC-C C USA r/o 15,23

SW-17C C USA s 19,27

HUN92 (C) Great Britain s 21,23

SC5314 GPGe laboratory strain 21,23

aSee [23] for more detail on isolates.
bA, B and C are the three major jackknifing-supported branches within the

species, with limited support for a further subdivision of the general-purpose
genotype A into two groups A1 and A2, based on Ca3 fingerprints [23]; for
strains in brackets other markers are in conflict with the Ca3-based
classification [6].

cStrains were isolated from: anal sites (a), catheter (c), respiratory and oral sites
(r/o), skin and wounds (s/w), sterile sites (s), urine (u), vagina/vulva (v).

dNumber of repeat units in both alleles based on length of PCR products (and for
some strains also by sequencing; see Fig. 5); where only one product was detected
it was assumed that the isolate possessed two identical-sized repeat units.

eBased on [30].
doi:10.1371/journal.pone.0009614.t001

Table 1. Cont.
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A more striking difference between GPG strains and other strains

occurred in terms of allele combinations (Fig. 3b). The repeat

combination 21 plus 23 repeats was ten times more frequent in

GPG than in non-GPG clinical isolates (33 out of 41 (80%) versus 3

out of 39 (8%); z test, P,0.001). The next most common allele

combination in GPG strains was 21 plus 21 repeats (10% of isolates),

very similar to the 21 plus 23 combination. There was no clearly

predominant allele combination among non-GPG strains.

We found no evidence that geographical region or body site of

isolation affected the frequencies of alleles or allele combinations.

Among GPG strains the 21 plus 23 repeat combination

predominated in all geographical regions and in all body sites

from which GPG isolates had been obtained (Table 1). There was

no indication that GPG isolates with other allele combinations

were preferentially obtained from a specific geographical region or

body site (Table 1). Among non-GPG strains, all allele

combinations that occurred more than once were found in isolates

from different geographical regions and different body sites. There

was no indication that any allele combination was overrepresented

in a specific region or among non-GPG isolates from a particular

body site (Table 1).

We did not include laboratory strain SC5314 in these analyses.

Unlike the clinical isolates we used, SC5314 has been propagated

in the laboratory for many years under selective pressures likely to

be different from those in the human host, and its repeat region

may have changed as a result. Indeed, while our stock of the strain

had the allele combination 21 plus 23 repeats, predominant in

GPG strains (SC5314 is a GPG strain [30]), the published SC5314

genome sequence [31] has two alleles with 21 repeats.

In Laboratory Cultures, the PNG2 Repeat Region
Generated New Alleles at a Frequency of 2.861025 per
Cell Division

Repeat-containing ORFs in C. albicans should generate new

alleles at rates comparable to those measured in other organisms,

but this has so far not been observed. To measure the rate at

which new PNG2 alleles arise, we transferred four strains (two

GPG strains, HUN93 and RIHO10 and two non-GPG strains,

W53 and W142) serially for 300 generations and screened 60

colonies per strain by colony PCR. Two of the 240 colonies had

one altered allele each. In one RIHO10 progeny colony, one allele

had gained one unit, and in one W53 progeny colony, one allele

had been shortened by 3 repeat units (Figs 4, 5). Thus new PNG2

alleles had been generated by insertions and deletions of repeat

units with a frequency of 2 in 72,000 cell divisions (2.861025;

confidence interval 3.36102629. 961025) comparable to that

observed by Versterpen and coworkers for the repeat-containing

FLO1 gene in S. cerevisiae [19].

Figure 4. Alterations of repeat regions after 300 generations of
serial transfer of strains RIHO10 and W53. PCR products amplified
from genomic DNA using primers MC0repf and MC0repr were resolved
on acrylamide gels. For each strain the middle lane shows PCR products
from the clone with an altered allele (ALT), flanked by two lanes of PCR
products from clones which retained alleles of the original lengths.
Figures on the right show the numbers of repeats, with altered allele
marked by an asterisk. Numbers of repeats were verified by sequencing
(see Fig. 5).
doi:10.1371/journal.pone.0009614.g004

Figure 3. Frequencies of repeat regions of different lengths
and frequencies of repeat region combinations. Frequencies (B)
among GPG clinical isolates are indicated by black bars, frequencies
among other clinical isolates by grey bars. Lengths (A) are expressed as
numbers of 4 amino acid repeat units. One borderline GPG strain and
one borderline non-GPG strain (see Table 1) were included in the
analysis.
doi:10.1371/journal.pone.0009614.g003
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Evidence That the Repeat Region Has a Biological
Function

The function of the PNG2 ORF is unknown. We have proposed

the name PNG2 based on a bioinformatics analysis suggesting that

it encodes a non-cytoplasmic (i.e. secreted or cell surface-located)

peptide:N-glycanase (peptide-N4-(N-acetyl-b-D-glucosaminyl)as-

paragine amidase, EC 3.5.1.52). N- and C-terminal regions of

Png2p flanking the repeat region have significant amino acid

sequence similarity to two eukaryotic secreted peptide:N-glyca-

nases with experimentally verified enzyme activity, PNGase At

from Aspergillus tubingensis [25] (E = 1610221 for the C-terminal

region, and 4610218 for the N-terminal region), and PNGase A

from Prunus dulcis (almonds) [26] (GI:56405352; E = 4610220 for

the C-terminal region, and 3610214 for the N-terminal region),

but not to the S. cerevisiae PNG1 intracellular peptide:N-glycanase

and its C. albicans ortholog ORF 19.26. A predicted transmem-

brane helix (Fig. 1) could serve as both membrane anchor and

internal signal sequence [32,33], and the bulk of PNG2 orthologs

from 52 fungi are predicted to be non-cytoplasmic (either secreted

or anchored in the cell membrane). Like its well-characterized

orthologs, C. albicans Png2p has multiple potential sites for N-linked

glycosylation, which can only occur during translocation into the

endoplasmic reticulum [34] as part of the secretory pathway.

The repeat region of Png2p is not present in any non-Candida

orthologs. It interrupts the conserved regions of Png2p but such an

interruption would not per se preclude the Candida protein from

functioning as a non-cytoplasmic peptide:N-glycanase. During

posttranslational processing of the P. dulcis peptide:N-glycanase,

the two conserved regions are cleaved at a position corresponding

to that of the repeat region in C. albicans Png2p to form the active

heterodimeric enzyme [26].

Evidence that the PNG2 ORF is transcribed comes from

transcriptome microarray studies and reverse transcriptase PCR

[6,27–29], and we confirmed this by Northern hybridization

(Fig. 6). PolyA-RNA hybridized with a repeat region probe

revealed a 3.1 kb band consistent with the 2.95 kb size of the

PNG2 ORF. Png2p, however, has to our knowledge never been

detected in proteomic investigations (based on the literature and

on searches of mass spectrometry data by C.A. Munro, J. L.

Lopez-Ribot, D. Thomas and C. Gil). Our own attempts to

demonstrate the presence of the protein and its location by

translational fusion with GFP [35] failed. No transformants were

obtained in several attempts to replace one copy of the gene with

an ORF encoding the fusion protein, even though heterozygous

deletion mutants are viable [36] (data not shown; the construct

was confirmed by sequencing).

We therefore sought evidence for a biological function of the

protein and its repeat region through comparative sequence

analysis. We sequenced five alleles of the entire ORF (both copies

of PNG2 in strains W53 and HUN68 plus one allele of our stock of

Figure 5. Graphic representation of the amino acid sequences of PNG2 repeat regions. The PNG2 repeat regions of 33 C. albicans strains
were sequenced and the predicted amino acid sequences, plus the repeat region from the C. dubliniensis ortholog (gi241951534), were compared.
Grey boxes represent the repeat PPHE, black boxes PPHH, and unfilled boxes PPHK. Grey boxes with diagonal black stripes represent PPHP, grey
boxes with horizontal black stripes represent SPHE, white boxes with diagonal grey stripes PPPE, white boxes with diagonal black stripes PPHD and
checkered boxes PSHH. The C. dubliniensis-specific repeat PGDK is represented by a grey box with a black dot. Where two alleles of the same strain
were sequenced, the name of the strain is followed by a dash followed by the allele number (1 or 2, with 1 being the allele with the shorter repeat
region). Names of laboratory strains are italicized, including the derivatives of the serially transferred W53 and RIHO10 with altered alleles; the altered
alleles are marked by asterisks and linked by an arrow to the allele in the original strain from which they are most likely derived. For laboratory strain
SC5314 two alleles sequenced by us, and the sequence determined as part of the C. albicans genome sequencing project, ‘‘DB’’ are shown (both
alleles in the genome database are identical in terms of amino acid repeats).
doi:10.1371/journal.pone.0009614.g005
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SC5314) and found that outside of the repeat regions, nucleotide

sequences were .99% identical, as is the case in C. albicans

housekeeping genes [37]. The average ratio of non-synonymous to

synonymous mutations (dN/dS) distinguishing pairs of sequences

outside the repeat-containing region was 0.37, which is compa-

rable to that of C. albicans housekeeping genes [38]. In 9 out of 10

comparisons of pairs of sequences the ratio was less than 1.0. A

ratio of ,1 is an indicator of purifying selection i.e. functionality of

the encoded protein, whereas a ratio of 1 would indicate no

selection [39]. We confirmed that the observed dN/dS ratio was

significantly (P,0.01) below 1 by a likelihood ratio test comparing

the fit between a model using the observed dN/dS ratio and the fit

between the data and a model in which dN/dS was set to 1.0 [40].

The dN/dS ratio of repeat regions of different lengths cannot be

easily assessed. Repeat regions would have to be trimmed to

identical size prior to analysis. There are often many equally

probable alignments of two repeat regions and thus there are no

obvious criteria for deciding which unit should be removed in

order to arrive at the correct dN/dS ratio. Calculating the dN/dS

ratio for several hundred sequences encoding individual four

amino acid repeats in all repeat regions is also not feasible.

However, other types of sequence analysis provided several lines of

evidence for the functionality of PNG2 repeat regions at the

protein level. Firstly, non-synonymous mutations were not

randomly distributed in the repeats. Among all 28 sequences

from the clinical isolates shown in Fig. 5, the frequency of amino

acid replacements among the first three amino acids of the 4-

amino acid repeats was 0.4% (7/1994 amino acids did not

conform with the prevailing PPH motif). In contrast, it was 34% in

the last amino acid (225/648 residues did not correspond to the

most common amino acid E; z test, P,0.001); this asymmetry is

not expected in the absence of selection since it implies

significantly stronger purifying selection of first three amino acids,

compared to the last. Also, there was an uneven distribution of the

different types of repeat units through the repeat region, which

would not be expected unless maintained by purifying selection:

For instance, 66% of the five units preceding the terminal PPHD

in Fig. 5 encode PPHH whereas only 8% of all repeats upstream of

this region in Fig. 5 encode PPHH (z test, P,0.001); likewise

PPHK units constitute 29% of the next five units upstream,

compared to only 5% of all other units, a significant concentration

in this region (z test, P,0.001).

That the repeat region is of functional significance at the protein

level was also suggested by the presence of a very similar repeat

region in the Pngp2 ortholog of C. albicans’ sister species Candida

dubliniensis (accession number gi241951534; 80% sequence

identity, 90% sequence identity outside of the Pngp2 repeat

region). As in C. albicans, (i) most units (11/12) start with PPH, (ii)

the most common repeats are PPHE and PPHH and (iii) the last

unit is PPHD (Fig.5). Such conservation would not be expected

unless the repeat region has functional significance at the protein

level. Likewise, given the high rate at which new alleles are

generated in laboratory cultures, the overrepresentation of a

specific allele combination in GPG strains is also not easily

explained in the absence of selection.

Discussion

Amino acid sequence similarity to the two known secreted

peptide:N-glycanases (P. dulcis PNGase A, Aspergillus tubingensis

PNGase At) suggests that Png2p is a peptide:N-glycanase. A

multiple sequence alignment of PNGase A, PNGase At and C.

albicans Png2p clearly identifies two conserved regions flanking the

repeat region in Png2p. While the repeat region is absent in the

two known secreted enzymes and their non-Candida orthologs,

nonrandom distribution of amino acid replacements in the repeat

region, the existence of clade-specific alleles and the high degree of

its conservation between C. albicans and its sister species C.

dubliniensis provide evidence (albeit indirectly) that the repeat

region of the protein is of functional significance.

A possible function of the repeat regions is suggested by the

heterodimeric nature of P. dulcis PNGase A. The position of the

repeat region in C. albicans Png2p corresponds to the position at

which the P. dulcis proenzyme is cleaved to generate the active

heterodimer [26]. Conceivably the P. dulcis enzyme must be

cleaved so that the resulting two subunits can be correctly

positioned to form the catalytically competent enzyme. If so, the

repeat units may mediate this positioning in the C. albicans Png2p.

Altering the length of the repeat region could then alter the

interactions between the conserved N- and C-terminal domains,

and so modulate the enzyme’s catalytic properties, in particular its

substrate specificity. If Png2p is secreted, or located on the cell

surface, as our bioinformatic analysis indicates, adhesion could be

an additional function of the protein, mediated by a highly

hydrophilic region, including the proline-rich repeats (with

alterations of the repeat regions modulating adhesion). Proline-

rich repeat motifs in fungal and bacterial proteins can mediate

adhesion to host cells [41,42], most notably the C. albicans Hwp1

protein [9]. As other C. albicans adhesins are known to have

enzymatic activity [43,44], Png2p could be an adhesin that

removes glycans to expose host adherence receptors.

While we can only speculate on the exact function of Png2p and

the functional significance of the repeat region, the fact that PNG2

is transcribed and that the protein is under purifying selection are

evidence that Png2p contributes to C. albicans’ fitness, i.e. that it is

a functional repeat-containing protein. As such it is a suitable

object for expanding our knowledge on the role of allelic variation

in repeat-containing C. albicans proteins.

PNG2 behaves like a contingency gene in terms of the variety of

alleles among 80 clinical isolates surveyed. Taking only repeat unit

length into account we found 17 alleles. Sequencing increased this

number to 24, due to differences in the arrangements of amino

acid repeat units between regions of the same size in different

strains (Fig. 5). As sequencing seven repeat region sizes from

different strains revealed 14 different amino acid sequences (Fig. 5),

we predict there could be approximately 36 variants of the protein

among the 80 clinical isolates we surveyed (Fig. 5). All of the

differences between the sequenced alleles were caused by addition,

removal and rearrangement of repeat units as expected if strand

slippage and recombination are the predominant mechanisms that

generate new alleles [1]. In contrast, the non-repetitive parts of the

Figure 6. Verification of PNG2 expression by Northern hybrid-
ization. Messenger RNA (5 mg per lane) prepared from exponential
phase cultures of SC5314 and HUN68 grown in YPD was hybridized
under high-stringency conditions with a probe corresponding to the
repeat region.
doi:10.1371/journal.pone.0009614.g006
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PNG2 ORF sequences from different strains were .99% identical

at the nucleic acid level, comparable to the level of sequence

diversity in housekeeping genes [37], with most of the point

mutations being synonymous.

New alleles were generated in laboratory cultures, also by

addition and subtraction of repeat units, at an apparent frequency

of 2.861025 (confidence interval 3.36102629. 9610-5) per cell

per division, or 1.461025 per locus per cell per division. This is

comparable to that measured in S. cerevisiae for the repeat-

containing FLO1 [4], and at the lower end of the range of

frequencies measured for contingency genes in other organisms

[2,20]. There are several reasons to assume that the true rate at

which new PNG2 alleles are generated exceeds the rate we

observed. Firstly, our assay could not detect new alleles in which

rearrangements of repeat units occurred without affecting repeat

region length. Secondly, some new alleles will have been

eliminated by genetic drift during serial propagation of the

cultures. Lastly, if a change in PNG2 alleles impacts on fitness

under laboratory culture conditions, some newly generated alleles

might have been reduced in frequency by competition with cells

that retained the original allele. Nevertheless the rate we measured

is 150 times the expected frequency for generation of new alleles

by a single point mutation (8.861028 new alleles per locus per

generation, based on the point mutation rate in S. cerevisiae of

3.3610210 mutations per bp [45], and an average size of 267 bp

of the repeat region in the four strains used in the transfer

experiment). The results regarding the frequency of new PNG2

allele generation are not necessarily at odds with those of Hoyer

and colleagues who could not detect new alleles in the repeat-

containing C. albicans ALS genes after 530 and 3000 generations

[13,18]. These authors analyzed culture aliquots rather than

multiple single colonies after serial passage of the original strain;

extrapolating from the rate at which new PNG2 alleles arise, it can

be estimated that even after 3000 generations 70–80% of the

alleles in their cultures would have still been identical to those of

the original strain (see Materials and Methods on details of

calculation). A multitude of additional newly generated alleles,

each present at low frequency, would have been difficult to detect.

The observed frequency of new allele generation is in apparent

conflict with the association of specific PNG2 alleles or allele

combinations, regardless of body site and geographical origin of

isolates, with specific genetic backgrounds. For instance, based on

our laboratory experiments the 21 plus 23 unit repeat combination

present in 80% of GPG strains should be reduced in frequency to

8% after 100,000 generations (the calculation is based on the very

conservative assumption that only the 23 observed allele length

combinations are possible). Using the rate of increase in cell

numbers following inoculation of a rat model of commensal

colonization as an indicator of doubling times in the host (1.4

doublings per day; R. D. Cannon, unpublished observations)

100,000 generations are equivalent to 190 years; based on the

confidence limits of our laboratory measurements of rates of new

allele generation, the time required to reduce the frequency to 8%

could be between 50 and 1600 years. Thus only a very recent

genetic drift event or strong selection in the GPG genetic

background in the host would explain the high frequency of the

21 plus 23 combination in GPG strains. Genetic drift seems an

unlikely explanation, firstly because the high number of alleles

makes accidental predominance of one combination very unlikely,

and secondly because under a genetic drift scenario we would

expect the frequency of the 21 plus 23 combination to be less

uniform between different geographical regions. Thus a strong

impact of the GPG genetic background on the selection of PNG2

allele combinations seems the most likely explanation for our

results. Whether other genetic backgrounds in C. albicans also select

in favor of specific allele combinations is more difficult to

determine, because GPG strains are the only group of highly

related isolates within the species that can be confidently defined

with phylogenetic methods [23,24]. However, we found some

indications this may be the case because there was a significant

difference in the frequency of the 23 unit allele between the two

major branches of non-GPG strains. Likewise MacCallum and

coworkers [14] found that specific alleles of repeat-containing

ORFs prevailed not only in clade 1 (i.e. GPG strains) but also in

other groups of genetically similar strains (clades) from mixed

sources which they defined using an arbitrary cut-off in MLST-

based dendrograms. This would indicate that genetic background

may generally have a strong impact on the selection of alleles of

repeat-containing ORFs.

We found no evidence that PNG2 allele variation is used for

short-term adaptation to different niches in the host. In this case

we would have expected that different alleles predominate in

isolates from different body sites. If the same host niche selects

different alleles in different genetic backgrounds we may not have

been able to see evidence for this selection in the genetically

diverse non-GPG strains, but it should have been apparent in the

GPG background. Likewise there is no evidence that mutation of

PNG2 is used as a means to evade recognition by the host. In this

case the predominant alleles in C. albicans populations colonizing a

given host would continually change [20,22] and we would not

expect to find alleles predominating in collections of isolates from

multiple patients.

In summary PNG2 appears to be a gene that is capable of

generating new alleles at rates comparable to those of contingency

genes, but the current data do not support the idea that this

mutability is used for short-term (transient) adaptation. The clade-

specificity of other repeat-containing C. albicans ORFs investigated

to date suggests that changes in these proteins are not used in

short-term adaptation either. Nevertheless the high number of

substantially different protein variants encoded by these repeat-

containing C. albicans ORFs and the high number of repeat-

containing ORFs in the C. albicans genome indicate that they play

an important role in optimizing the interaction between C. albicans

and its host in the long-term, with different allele combinations

working best in different genetic backgrounds. Only investigations

of a higher percentage of all C. albicans repeat-containing ORFs

will reveal if, and to what degree, the yeast also uses rapid

mutation of some of its repeat-containing ORFs for short-term

adaptation and evasion of the immune system.

Materials and Methods

Strains and Culture Conditions
The strains used in this study are shown in Table 1; they were

chosen to represent a collection of 266 infection–causing isolates

from 12 geographical regions in 6 countries [23]. C. albicans cells

were grown at 37uC in YPD medium (2% glucose, 2% Bacto-

peptone, 1% yeast extract). For serial transfer experiments,

cultures were grown overnight and total cell numbers were

determined microscopically using a counting chamber (ZINTL,

Western Germany).

PCR Amplification and Sequencing
All polymerase chain reactions (PCRs) were performed in a final

volume of 20 ml containing 1 U Taq DNA polymerase (Qiagen Pty

Ltd, Clifton Hill Vic, Australia), 4 ml of Q-buffer and 1x PCR buffer

supplied by the manufacturer (Qiagen), 10 pmol of each primer,

200 mM of each dNTP (Roche Diagnostics, Auckland, New
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Zealand), and 10–100 ng DNA. The cycling conditions, varied

according to primer sets and the size of the products [46] and

included an initial incubation for 2 min at 94uC, followed by 30

cycles of 45 s at 94uC, 45 s at 50–60uC, and 30 s to 3 min at 72uC.

All PCR protocols included a final 5 min extension step at 72uC.

For colony PCR, a portion of a C. albicans colony was picked with a

10 ml pipette tip and mixed with 20 ml PCR reaction mixture; the

initial step in the cycling program was altered to 5 min at 96uC.

Reactions were carried out in an Eppendorf Mastercycler

thermocycler (Eppendorf, Hamburg, Germany). Repeat regions

were amplified using primers MC0repf (59- AACCATCATGAC-

GATCACCA -39) and MC0repr (59-GATAAATCTCATCTG-

CAGGC-39), and their sizes measured on 5% polyacrylamide gels,

using sequenced repeat regions as molecular size standards. The

numbers of repeat units were calculated from the sizes of the PCR

products. Additional primers used for sequencing were MC0outpf

(59-ACACCGAAGTAGAAGGTGTG-39), MC0orfpf (59-ATCT-

TTTCTTATTTGTTCAAGG-39), MC0orfpr (59-ACCCCTTA-

ACTAAGCAATGGC-39) and MC0sepf: (ACTGAAGCCAA-

GCCTGCAGA). Locations of all primers are shown in Fig. 1.

All nucleotide sequences determined as part of this study have

been submitted to GenBank (accession numbers DQ014518 to

DQ014537 and GU068595-GU068605).

Northern Hybridization
For Northern hybridization total RNA was isolated from

exponentially growing C. albicans cells (1.86109) by using TRI

reagentH (RNA/DNA/protein isolation reagent, Molecular Re-

search Center. Inc., Cincinnati, Ohio, USA) following the

manufacturer’s instructions. Poly-A mRNA was obtained from

total RNA using the Sigma GenElute mRNA isolation kit and the

mRNA samples were separated on 1% agarose gels containing 6%

formaldehyde, and transferred to nylon membranes (Roche

Diagnostics) [46]. The membranes were hybridized with a (32P)-

labeled DNA probe comprising the repeat region of strain

SC5314. The membrane was exposed to an X-ray film as

described by the manufacturer (Kodak, Rochester, N.Y., USA).

Bioinformatics and Statistical Analyses
Kyte/Doolittle hydrophilicity plots and Argos Helix plots

predicting transmembrane helices were generated using MacVector

7.2.2 (Accelrys Software, Inc., San Diego, Ca, USA). To determine

percent identity among PNGp orthologs, pairwise alignments of

amino acid sequences were performed using the BESTFIT and

GAP programmes in the Wisconsin Package Version 10.3 (Accelrys

Software Inc.). Multiple amino acid sequence alignments were

calculated by T-Coffee v2.11 using the web server at http://

igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi [47].

To test for purifying selection Paml 3.14 [48] was used initially

to calculate the ratio of nonsynonymous to synonymous mutations

(dN/dS). Purifying section is indicated by a ratio of nonsynon-

ymous to synonymous mutations (dN/dS) less than one. Paml 3.14

[48] was used to fit two models to the aligned sequence data, one

where dN/dS was fixed at 1, and one where it was free to vary.

The difference in likelihood between these two models was

compared by a likelihood test [40]. The model where dN/dS is

free to vary has one extra parameter, so a chi square test with

degrees of freedom equal to 1 was used to evaluate if the

likelihoods differed significantly between the two models. We did

not include the two alleles of SC5314 from the published genome

sequence in this analysis. Both of these differed from the SC5314

sequence we determined by the same two point mutations.

A confidence interval for the rate of new allele generation was

calculated as the exact (Clopper-Pearson) binominal confidence

interval. To calculate how much the frequency of a predominant

PNG2 allele combination should be reduced within 3000 or

100,000 generations, based on the rate at which new alleles were

generated in the laboratory, we assumed that in each division

2.861025 (or 3.361026 or 9. 961025) of cells with this

combination would undergo a change in one allele, while cells

with all other allele combinations could acquire the predominant

combination with a probability of 2.861025/(number of all

observed allele combinations 21). The latter rate is an

overestimate because some allele combinations are separated from

the predominant allele combination by two changes (when both

alleles differ from the alleles that form the predominant

combination). However because the rate is low and applies to

the minority of the cells without the predominant alleles, this does

not significantly affect the results within the timeframe to which

the simulation applies. For the same reason, the number of

possible allele combinations has little impact on the predicted

decline in frequency of the predominant allele combination.

Similar calculations were applied to interpret the outcome of serial

transfer experiments by Zhao and coworkers [13]. Because some

of the repeat regions analyzed by these authors were larger than

the PNG2 repeat region, the rates of new allele generation in the

simulation were increased accordingly.
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