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 5 

SUMMARY 6 

Decision confidence plays a key role in flexible behavior, but exactly how and when it arises 7 

in the brain remains unclear. Theoretical accounts suggest that confidence can be inferred from 8 

the same evidence accumulation process that governs choice and response time (RT), implying 9 

that a provisional confidence assessment could be updated in parallel with decision formation. We 10 

tested this using a novel RT task in nonhuman primates that measures choice and confidence with 11 

a single eye movement on every trial. Monkey behavior was well fit by a 2D bounded accumulator 12 

model instantiating parallel processing of evidence, rejecting a serial model in which choice is 13 

resolved first followed by post-decision accumulation for confidence. Neural activity in area LIP 14 

reflected concurrent accumulation, exhibiting within-trial dynamics consistent with parallel updating 15 

at near zero time lag, and significant covariation in choice and confidence signals across the 16 

population. The results demonstrate that monkeys concurrently process a single stream of 17 

evidence to arrive at a choice and level of confidence, and illuminate a candidate neural 18 

mechanism for this ability. 19 

 20 

INTRODUCTION 21 

Decisions are accompanied by a sense of confidence, defined as the degree of belief that 22 

the decision is correct. Confidence facilitates learning in the absence of explicit feedback (Daniel & 23 

Pollmann, 2012; Guggenmos et al., 2016) and guides decisions that are part of a sequence or 24 

hierarchy (Sarafyazd & Jazayeri, 2019; Purcell & Kiani, 2016; van den Berg et al., 2016b). When 25 

feedback does occur, confidence informs whether the outcome is surprising (i.e., a high confidence 26 

error), driving an increase in learning rate (Rescorla & Wagner, 1972; Sutton & Barto, 1992). 27 
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Indeed, it can be shown that the optimal weights for converting sensory neuron activity to decision 28 

evidence can only be obtained with a learning rule that is proportional to confidence (Drugowitsch 29 

et al., 2019). Even when subjects are well-trained and task contingencies are stable, choice biases 30 

continuously evolve in response to previous outcomes in a difficulty-dependent manner, 31 

suggesting a role for confidence (Lak et al., 2020). These facts imply that confidence is of broad 32 

importance for understanding sensorimotor behavior and learning, yet we still lack a mechanistic 33 

understanding of its neuronal underpinnings. Here we focus on the timing of confidence 34 

computations in relation to the primary decision (Xue et al., 2023; Herregods et al., 2023; Moran et 35 

al., 2015; Pleskac & Busemeyer, 2010), with the goal of uncovering the latent dynamics of choice 36 

and confidence signals in the brain (Murphy et al., 2015; Gherman & Philiastides, 2015; Pereira et 37 

al., 2020; Balsdon et al., 2021; Wang et al., 2023; Dou et al., 2024; Fan et al., 2024). Beyond 38 

informing theories of decision making and learning, this question has implications for the 39 

computational and neural basis of metacognition. 40 

Most existing models fall into one of two main alternatives for the dynamics of choice and 41 

confidence formation. The serial hypothesis states that the two computations make use of 42 

temporally nonoverlapping streams of evidence (Herregods et al., 2023; Moran et al., 2015; 43 

Pleskac & Busemeyer, 2010). In contrast, the parallel hypothesis proposes simultaneous initiation 44 

and temporally overlapping (concurrent) computation of choice and confidence (Dotan et al., 2018; 45 

van den Berg et al., 2016a; Xue et al., 2023) — though this need not exclude additional post-46 

decision processing (Desender et al., 2021; Maniscalco et al., 2021; see Discussion). Both 47 

hypotheses have received support from behavioral, modeling, and human EEG data, but to date 48 

there have been no single-neuron or population recording studies that directly address this 49 

question. This is important because discerning between the two strategies could benefit from the 50 

spatial and temporal resolution afforded by single-unit electrophysiology, and because ultimately, 51 

we seek biological mechanism. Also, most tasks include a time delay between decision and 52 

confidence reporting (including the waiting-time assay; Lak et al., 2014; Stolyarova et al., 2019), 53 

potentially biasing participants toward a post-decisional strategy. 54 
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We circumvented these issues by training monkeys to report choice and confidence 55 

simultaneously in a response-time (RT) paradigm (‘peri-decision wagering’, peri-dw), building on 56 

previous work in human participants (Kiani et al., 2014a; van den Berg et al., 2016a). The goal was 57 

not to challenge post-decisional accounts of confidence, as this phase clearly plays a role in many 58 

tasks and natural situations. Rather, our task was designed to unveil whether a serial process is 59 

essential for a monkey's deliberation about both aspects of the decision, or if this process is 60 

fundamentally parallel. The approach facilitated evaluation of competing hypotheses on equal 61 

footing within the framework of bounded evidence accumulation, and to shed light on the 62 

underlying neural mechanism. Notably, the task measures choice, RT, and confidence on every 63 

trial, unlike ‘opt-out’ or uncertain-response paradigms (Kiani et al., 2009; Smith et al., 2012; 64 

Komura et al., 2013; Fetsch et al., 2014a; Li et al., 2023), allowing us to relate neural activity to all 65 

three measures on a trial-by-trial basis. 66 

While monkeys performed the task, we recorded the activity of ensembles of neurons in the 67 

ventral portion of the lateral intraparietal area, LIPv (Shadlen & Kiani, 2013). Previous work has 68 

shown that LIPv (hereafter LIP) contains a representation of a decision variable (DV) that predicts 69 

choice and RT (Roitman & Shadlen, 2002), as well as confidence in an opt-out task (Kiani & 70 

Shadlen, 2009). Recent work using high-density probes found that the DV representation is 71 

observable on single trials (Steinemann et al., 2024) and thus is not an artifact of averaging 72 

(Latimer et al., 2015). Lastly, although one study failed to observe behavioral effects of LIP 73 

inactivation (Katz et al., 2016), at least four others support a causal role for this area in visuo-motor 74 

decisions (Hanks et al., 2006; Zhou & Freedman, 2019; Chen et al., 2020; Jeurissen et al., 2022). 75 

This makes LIP a sensible target for pursuing a population-level understanding of the dynamics of 76 

choice and confidence formation. 77 

Using a combination of computational modeling and model-free analyses, we first show that 78 

a parallel model can explain all three features of the decision in this task, as suggested by previous 79 

work (Fetsch et al. 2014a; Kiani et al., 2014a). Then, using single-neuron analyses and population 80 

decoding, we show that the DV representation in LIP supports concurrent deliberation toward a 81 
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choice and associated wager. This work expands the toolkit for studying confidence in animal 82 

models and supports a role for LIP in decisions guided by an online estimate of confidence. 83 

 84 

RESULTS 85 

We recorded 407 neurons in area LIP of two rhesus monkeys (Macaca mulatta; 207 in monkey H, 86 

200 in monkey G) while they performed the peri-dw task (Figure 1A). The saccade targets 87 

correspond to a motion direction decision (left or right) and a wager (high or low) on the 88 

correctness of that decision. Although behaviorally the task amounts to a choice among four 89 

options, we refer to the left-right decision as ‘choice’ and the high-low decision as ‘wager’ or ‘bet’, 90 

for simplicity and because the results support this interpretation. Monkeys were rewarded or 91 

penalized based on the conjunction of accuracy and wager (Figure 1B): a larger drop of juice for 92 

high vs. low bets when correct, and a time penalty for high bets when incorrect (no penalty for a 93 

low-bet error). As in previous studies (e.g., Roitman & Shadlen, 2002), monkeys showed greater 94 

accuracy (Figure 1B, left) and faster RTs (Figure 1B, middle) when the motion was strong 95 

compared to weak (coh near 0%). Motion strength also influenced wagering behavior in the 96 

expected manner, namely the probability of betting high increased with greater motion strength in 97 

either direction (Figure 1B, right). Importantly, the behavior shows that the low-bet option did not 98 

correspond to opting out of the motion decision: accuracy remained high on low-bet trials, and 99 

choice and RT still varied systematically with motion strength in a manner consistent with a 100 

deliberative process (see Model Fitting section below). 101 

 102 
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 103 

Figure 1. Task, behavioral performance, and model schematics. (A) After the monkey acquired fixation, four 
targets were presented, followed by a random-dot motion stimulus. At any time after stimulus onset the monkey 
could make a saccade to one of the targets to signal its choice and wager. The table at the right illustrates the 
possible outcomes for each trial: if correct, a high bet yielded a larger juice reward compared to a low bet, but if 
incorrect, a high bet incurred a 2-3 s time penalty assessed on the following trial’s pre-stimulus fixation period. 
Low-bet errors were not penalized. (B) Performance on the peri-dw task pooled across two monkeys (N = 216 
sessions, 202,689 trials, including sessions without neural recording). Each behavioral variable is plotted as a 
function of signed motion strength (%coh, negative=leftward, positive=rightward). Choice (proportion rightward) 
and RT functions are shown conditioned on wager (low=red, high=blue). Error bars (SE) are smaller than the data 
points. Smooth curves show logistic regression (choice) and Gaussian (RT) descriptive fits. (C) The serial model 
begins with a single accumulator with symmetric bounds (standard 1D drift-diffusion model). Arriving at one of the 
bounds terminates the primary decision (h1 vs. h2 = left vs. right in our task) and initiates a secondary process that 
accumulates evidence toward a ‘high’ or ‘low’ bound governing the wager. Crossing either of these bounds 
terminates the entire decision process and initiates the corresponding response. (D, left) The parallel model 
comprises two concurrent accumulators that are partially anti-correlated, allowing for variability across trials in the 
amount of evidence favoring the unchosen option. The first bound to be crossed (the ‘winner’) dictates the choice 
and decision time, whereas the losing accumulator dictates confidence by way of a mapping (right) between 
accumulated evidence and the log odds that the choice made was the correct one (color scale). Importantly, the 
mapping takes into consideration not only the amount of evidence but also the elapsed time.  
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Crucially for a behavioral assay of confidence, the monkeys’ sensitivity was greater when 104 

betting high versus low (Figure 1B left, red vs. blue; p<10-258, logistic regression). This was true 105 

even when controlling for variability in motion energy within each coherence level, by leveraging 106 

multiple repeats of the same random seed (Figure S1A; monkey H: p<10-4, monkey G: p<10-6; see 107 

Methods). Additionally, we fit a session-by-session logistic model separately for high and low bet 108 

trials, providing two distributions of weights relating motion strength to choice, and found that they 109 

were significantly different (Figure S2A; monkey H: p<10-19, monkey G: p<10-37). Both monkeys 110 

also showed faster RTs when betting high versus low, for all but the largest motion strengths 111 

(Figure 1B middle, red vs. blue; asterisks indicate p<0.0045 by t-test, Bonferroni corrected). 112 

Similarly to choices, we fit a Gaussian function to the average RT as a function of motion strength 113 

for each session, separately for high and low bet trials. The amplitude parameters of the fitted 114 

Gaussians were greater for low vs. high bets (Figure S2B; monkey H: p<10-7, monkey G: p<10-25, 115 

paired t-test), indicating greater modulation of RT by motion strength when the monkey indicated 116 

low confidence. Lastly, we examined wagering behavior as a function of RT (Figure 1B right), 117 

separately for each individual motion strength (Figure S3A,B). For most motion strengths, the 118 

monkeys bet high less often for longer RTs (Figure S3B; p<.0085 for both monkeys for every 119 

coherence except 51.2%, Cochran-Armitage trend test with Bonferroni correction). This pattern is 120 

remarkably similar to that observed in humans on a similar task (Kiani et al., 2014a), where the 121 

results argued that confidence depends on both evidence strength and elapsed time. As in that 122 

previous study, the pattern remained significant when controlling for variability in motion energy 123 

across trials of a given coherence (Figure S3D; monkey H: p=0.0003, monkey G: p=0.0056, 124 

interaction term between motion energy and RT quintile using ANCOVA). 125 

An inverse relationship between response time and confidence is a classic psychophysical 126 

result (Henmon, 1911; Kellogg, 1931; Audley, 1960), replicated in more recent human work (e.g. 127 

Kiani et al., 2014a; Desender et al., 2021; Dou et al., 2024). Observing it in monkeys, for the first 128 

time to our knowledge, supports the notion that the peri-dw assay is a valid measure of confidence, 129 

and it is consistent with a family of accumulator models as addressed below. Note that we 130 
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sometimes refer to the wager (or proportion of trials with a high bet) as ‘confidence’ for simplicity, 131 

acknowledging that confidence is a latent cognitive variable and any behavioral measure is bound 132 

to be imperfect. 133 

 134 

Model-free analyses of behavior suggest temporally overlapping choice and 135 

confidence computations 136 

Although the choice and wager were indicated with a single eye movement, this does not 137 

necessitate simultaneity in the processing of evidence. Different temporal windows of the stimulus 138 

could covertly be used to support the two elements of the decision, which would then only be 139 

reported when both were resolved. To test whether monkeys use a consistent serial strategy 140 

(resolving choice first and then confidence, or vice versa) we calculated the influence of stimulus 141 

fluctuations on choice and confidence as a function of time (psychophysical kernels; Kiani et al., 142 

2008; Nienborg & Cumming, 2009; Zylberberg et al., 2012). Briefly, we quantified the motion 143 

energy for each trial and video frame by convolving the random-dot pattern with two pairs of 144 

spatiotemporal filters aligned to leftward and rightward motion (Adelson & Bergen, 1985). We then 145 

partitioned trials by outcome (choice and wager) and plotted the average relative motion energy 146 

(residuals) for each outcome as a function of time. 147 

           Psychophysical kernels for choice are plotted in Figure 2A. Rightward choices were 148 

preceded by more rightward motion energy throughout most of the trial (red line), and the same 149 

was true for leftward choices and leftward motion (blue). The kernels for right and left choice began 150 

to separate about 100 ms after motion onset and remained so until ~100 ms before saccade 151 

initiation. This clear separation, aligned on both motion onset and saccade, suggests that the 152 

monkeys used essentially the entire stimulus epoch to decide motion direction. For confidence, we 153 

calculated the kernels by taking the difference between the motion energy time series for high and 154 

low bets associated with a specific choice (van den Berg, 2016a). For high minus low wager on 155 

rightward choice trials, motion energy  156 
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 157 

Figure 2. Psychophysical kernels and changes-of-mind for choice and wager. (A) Motion energy profiles 
conditioned on right and left choices (red and blue, respectively), aligned to motion onset and saccade onset. 
Shaded regions indicate SEM. Left column is for monkey H and the right for monkey G. Black line at top indicates 
when right and left traces were significantly different from each other (p<0.05, t-test with Šidák Correction for 140 
frames). (B) Confidence kernels computed as the difference in motion energy between right-high and right-low 
choices (green), and the difference between left-high and left-low choices (purple), aligned to the same events as 
(A). Colored lines at top of graph indicate when the corresponding traces were significantly different from zero 
(p<0.05, t-test with Šidák correction). 
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values were above zero, indicating an excess of rightward motion on high-bet choices compared to 158 

low-bet choices (Figure 2B, green). Similarly, for left choice trials the difference in motion energy 159 

was below zero, indicating more leftward motion on high vs. low bets (Figure 2B, purple). This 160 

analysis shows that both early and late motion evidence is leveraged to inform confidence, for both 161 

monkeys. Comparison of the traces in Figure 2A vs. 2B might suggest that the utilization of the 162 

stimulus for confidence does not identically overlap with choice, especially for monkey H. However, 163 

the substantial overlap does appear to rule out a consistent temporal segregation, such as an 164 

obligatory post-decision mechanism for confidence. Of course, psychophysical kernels rely on trial 165 

averages and cannot resolve dynamics of individual decisions; we partly address this shortcoming 166 

below using neural recordings. 167 

When decisions are reported with an arm movement (Resulaj et al., 2009; van den Berg et 168 

al., 2016a), human subjects occasionally alter their reach trajectory in a manner that suggests a 169 

‘change of mind’ (CoM) based on continued processing of evidence after movement initiation. 170 

Saccadic choices are generally considered incompatible with CoMs because of their speed and 171 

ballistic nature (Resulaj et al., 2009; but see McPeek et al., 2000; Caspi et al., 2004), but we were 172 

nevertheless able to identify a small subset of trials with multiple saccades in quick succession that 173 

revealed putative CoMs (see Methods). These trials showed characteristic features of CoMs 174 

(Figure 2C-E), including greater frequency on difficult vs. easy trials (Figure 2E; monkey H: p = 175 

0.0076; monkey G: p<10-6, Cochran-Armitage test). Changes from incorrect to correct were more 176 

likely when motion strength was high (Figure 2C red line; monkey H: p < 0.0001; monkey G: p < 177 

10-5), whereas correct-to-error CoMs, occurring sparingly, were more likely when motion strength 178 

was low (Figure 2C, dark red line; monkey H: p < 0.0012 monkey G: p < 10-5). We also observed 179 

changes from low to high confidence, which for one monkey were more frequent with greater 180 

motion strength (Figure 2D blue line; monkey H: p < 10-60 monkey G: p = 0.944), as shown 181 

previously in humans (van den Berg et al., 2016a). The presence of CoMs and changes of 182 

confidence (sometimes both on the same trial) suggests that both dimensions of the decision were 183 

subject to revision at the time of the initial saccade. This argues against a strictly serial process, 184 
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 10 

although it also highlights a potential window of post-decisional processing, even for saccadic 185 

decisions (McPeek et al., 2000; Caspi et al., 2004). 186 

 187 

Model fitting favors parallel deliberation for choice and confidence 188 

            Previous studies have typically focused on either a serial (Pleskac & Busemeyer, 2010; 189 

Moran et al., 2015) or a parallel (Vickers, 1979; Shadlen & Kiani, 2013) framework for confidence. 190 

Thus, explicit comparisons of these models have generally been qualitative because of variations 191 

in task design across studies (but see Shekhar & Rahnev, 2024 for a comprehensive evaluation). 192 

Here we provide a quantitative comparison of the two classes of model applied to the same data 193 

from the peri-dw task. Our exemplar of the serial strategy is a one-dimensional drift-diffusion model 194 

(DDM) with post-decision accumulation for confidence (Moran et al., 2015; Herregods et al., 2023; 195 

Figure 1C). The choice is determined by which of two primary decision boundaries is crossed, and 196 

the wager by a second set of bounds symmetric around the primary (winning) bound. The 197 

observed RT is the sum of the time taken to reach both bounds, plus non-decision time. Our 198 

implementation of a parallel strategy is a two-dimensional DDM, where a common accumulation 199 

epoch governs both choice and confidence (Kiani et al., 2014a; van den Berg et al., 2016; Figure 200 

2B). Here there are two accumulators integrating evidence in support of the two alternatives, 201 

equivalent to an anticorrelated race. Two accumulators are necessary because the winning 202 

accumulator determines the choice and RT while the losing accumulator is leveraged to compute 203 

confidence. In contrast, the serial model uses two separate epochs of accumulation to inform 204 

choice and confidence, and therefore requires only a single accumulator. Note that the key 205 

distinction is serial vs. parallel, not 1D vs. 2D; we simply chose these as exemplars based on the 206 

leading candidates in the literature. 207 
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            The curves in Figure 3 and Figure S4 are fits to the serial (A and C) and parallel models (B 208 

and D) for the two monkeys. Both models capture the general trends in choice, RT, and wager 209 

across motion strengths, at least when pooled across correct/incorrect and high/low wager trials 210 

(Figure S4), and both qualitatively predict greater sensitivity and faster RTs for high vs. low wager. 211 

However, in monkey G the serial model was unable to capture the large difference in reaction time 212 

between high and low bet trials (Figure 3C, middle). The more subtle RT difference in monkey H 213 

was well handled by the serial model (Figure 3A, middle), but this came at the cost of a slightly 214 

poorer fit to the wager-conditioned choice data (Figure 3A vs. B, top). Thus, the behavioral 215 

Figure 3. Comparison of serial and parallel model fits. The left two columns show results from monkey H 
and the right two columns monkey G. Within these two columns the left column shows fits to the serial model 
and the right column the parallel model. (A) Proportion of rightward choices as a function of motion strength 
(% coh), conditioned on high and low bet trials (red and blue, respectively). The solid dots are empirical data 
points and solid lines are model fits. (B) Similar to (A) but for mean reaction time. (C) Proportion of high bets 
as a function of motion strength (% coh), conditioned on correct and error trials (magenta and green, 
respectively). The fitting procedure used for these panels differs from the previous ones. They are fitted using 
only correct trials, and the green traces illustrate the resulting prediction for error trials.  
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differences between the two animals served to highlight complementary strengths of the parallel 216 

model: its ability to explain a broader range of confidence-RT relationships while also tolerating a 217 

more subtle increase in sensitivity on high vs. low-bet trials. Quantitative Model comparison 218 

supported these observations: Bayesian information criterion (BIC) was lower for the parallel vs. 219 

the serial model (monkey H: 8.24x105 (parallel) < 8.79x105 (serial), monkey G: 1.21x106 (parallel) < 220 

1.30x106 (serial)). 221 

More strikingly, the serial model failed qualitatively to reproduce the confidence pattern on 222 

error trials (Figure 3, bottom row). In general, confidence increases as a function of stimulus 223 

strength for correct choices—which makes intuitive sense—but empirically it often decreases with 224 

stimulus strength on incorrect trials. This characteristic ‘X-shape’ pattern has been proposed as a 225 

statistical signature of confidence in behavior (Sanders et al., 2016) and brain activity (Kepecs et 226 

al., 2008; Rolls et al., 2010; Komura et al., 2013; Bang et al., 2020). In contrast, we (Figure 3, 227 

bottom row) and others (Kiani et al., 2014a; van den Berg et al., 2016a) observed that confidence 228 

increases with motion strength even for errors. As noted previously (Kiani et al., 2014a; Fetsch et 229 

al., 2014b; Desender et al., 2021; Khalvati et al., 2021), these conflicting findings can be explained 230 

by the relative timing of choice vs. confidence. Resolving choice first followed by confidence later 231 

allows for revision of the confidence judgment upon further deliberation. Incorrect choices when the 232 

stimulus was strong are more likely to undergo such revision, as further processing reveals that the 233 

initial choice was incorrect. However, when choice and confidence are reported simultaneously 234 

there is little or no time for revision, and thus confidence on error trials either increases or remains 235 

flat as a function of stimulus strength (Kiani et al., 2014a; van den Berg, 2016a, Desender et al., 236 

2021). For this reason, the serial model tested here simply cannot reproduce the error-trial 237 

confidence pattern we observed empirically (note that the green curves in Figure 3, bottom, are a 238 

prediction, not a fit). In summary, although basic behavioral patterns are reasonably well predicted 239 

by the serial model, model comparison favors a process where evidence is accumulated in parallel 240 

for constructing a decision and associated level of confidence. 241 

 242 
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LIP neurons show signatures of concurrent accumulation 243 

            Putative DV representations have been observed in several subcortical and cortical areas, 244 

including LIP (Shadlen & Kiani, 2013), as well as in aggregate signals observable with noninvasive 245 

methods in humans (O’Connell & Kelly, 2021). Although the widespread ‘ramping’ pattern of 246 

activity does not uniquely identify a process of evidence accumulation, a large body of work 247 

supports the assertion that LIP activity reflects such a process during the random-dot motion task. 248 

We reasoned that, if choice and confidence were resolved concurrently during motion viewing 249 

(parallel model), the ramping activity should begin to predict both dimensions of the eventual 250 

saccade at the same time, classically around 200 ms after motion onset (Roitman & Shadlen, 251 

2002). Alternatively, if choice were to be deliberated first followed by confidence later (serial 252 

model), this temporal separation should be evident in the divergence point of neural activity traces 253 

conditioned on the four outcomes. 254 

These traces are shown in Figure 4A for four example neurons. The highest firing rate 255 

corresponds to choices made into the response field (RF) of the neuron, which was almost always 256 

in the left (contralateral) hemifield but was equally likely to overlap the high or low wager target. 257 

The relative ordering of the remaining three traces differs across neurons, possibly due to 258 

idiosyncratic RF properties or nonspatial choice or confidence signals. The key observation is that 259 

the activity preceding saccades to the preferred wager target (low or high) diverges from the 260 

activity for the other wager target (high or low) at about the same time as it diverges from the 261 

traces for ipsilateral choice (right-low and right-high). This pattern is present in each example 262 

neuron as well as in the population averages (Figure 4B,C). There is no evidence that ramping 263 

activity consistently predicts the left-right choice prior to the high-low one (or vice versa), as 264 

expected under a serial model. Instead, to the extent the activity reflects accumulation of evidence 265 

favoring the target in the RF (see below and Discussion), the results support a model in which such 266 

accumulation underlies concurrent deliberation toward a choice and confidence judgment. 267 

To dig deeper into the nature of the observed ramping signals, we tested for statistical 268 

signatures of a noisy accumulation process (Churchland et al., 2011; de Lafuente et al., 2015;  269 
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Shushruth et al., 2018; Steinemann et al., 2024): increasing variance of the latent rate as a 270 

function of time (variance of conditional expectation, VarCE) and a characteristic autocorrelation 271 

pattern in this latent signal (correlation of conditional expectation, CorCE). These signatures follow 272 

from considering neuronal spiking as a doubly stochastic process described by a Poisson 273 

distribution with an underlying rate that varies within and across trials. For stochastic bounded 274 

Figure 4. Temporal properties of neural activity in LIP during the peri-dw task. (A) Firing rate of 
example units split by choice/wager outcome, aligned to motion onset and saccade onset. (B) Population 
average firing rate (normalized) for neurons with an RF overlapping the left-low target. Colored bars at top 
indicate when the corresponding trace is significantly below the trace for choices into the RF. (C) Same 
as B but for left-high neurons. Only low-coherence trials (0, +/- 3.2%, +/- 6.4%) are included in A-C. (D) 
Theoretical autocorrelation matrix of a standard ideal accumulation process (left) and a delayed 
accumulator (right; see Methods). (E) Projection of theoretical autocorrelations for top row (gray dotted) 
and first juxtadiagonal (gray solid) along with the corresponding data after fitting the phi parameter 
(Methods). Red and blue represent the two populations shown in B,C, pooled data from both monkeys. 
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accumulation, VarCE should increase linearly with time during deliberation, then decrease near the 275 

saccade as the bound is reached. Second, correlations between firing rates at adjacent time points 276 

(t and t+1) should increase for pairs of bins further out in time from stimulus onset (t+n and t+n+1, 277 

as n increases). Third, the correlation between two time points should decrease as the distance 278 

between them increases (t and t+1 versus t and t+5; Figure 4D, left & Figure 4E, left). 279 

The results supported all three predictions. After 200 ms following motion onset, VarCE 280 

shows a roughly linear increase for at least the next 400 ms (Figure S5, left; left-high neurons, 281 

monkey H: p < 10-7, monkey G: p < 10-13; left-low neurons, monkey H: p < 10-19, monkey G: p = 282 

0.0014; linear regression), then decreases near saccade initiation (Figure S5, right; left-high 283 

neurons, monkey H: p = 0.015, monkey G: p = 0.0016; left-low neurons, monkey H: p < 10-4, 284 

monkey G: p < 10-7). For CorCE, the results from both monkeys were reasonably well matched to 285 

the predictions (Figure 4E, left; monkey G: R2 = 0.74 and 0.79 for left-high and left-low neurons, 286 

respectively; monkey H: R2 = 0.69 and 0.79, respectively). 287 

These dynamics in variance and autocorrelation are consistent with an underlying neuronal 288 

process that reflects accumulation, and are not easily explained by alternative accounts of LIP 289 

ramping activity such as a gradual shift of attention or simple movement preparation. Critically, the 290 

patterns were present over the same time window in both the high- and low-preferring populations. 291 

This argues against a form of the serial model in which choice is initially resolved by considering 292 

only one pair of targets, followed by a shift to the other pair after some time has elapsed. We 293 

explicitly tested this by computing the expected autocorrelation under a simulated process where 294 

integration is delayed by a random amount of time. Fitting such a model to the data generated a 295 

qualitative and significant mismatch with the CorCE prediction (Figure 4D, right & Figure 4E, right; 296 

monkey H: p < 0.008 for both populations, monkey G: p < 0.012 for both populations). Taken 297 

together, the results favor a parallel model in which deliberation occurs simultaneously between 298 

both the high and low pairs of targets. What remains to be tested is whether and when these 299 

accumulation signals are predictive of the monkey’s choice and wager on individual trials.  300 

 301 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.06.606833doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.06.606833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Single-trial decoding supports a link between choice and confidence signals 302 

Thus far most of our analyses have relied on trial averages, potentially obscuring the dynamics of 303 

individual decisions. We therefore turned to a population decoding approach (Kiani et al., 2014b; 304 

Kaufman et al., 2015; Peixoto et al., 2021; Steinemann et al., 2024), leveraging the simultaneous 305 

recording of neural ensembles to more directly address the question of parallel vs. serial 306 

deliberation. We trained two logistic classifiers, one for the binary choice and another for the binary 307 

wager, using the spike counts from the neurons recorded during each session (mean = 14 308 

units/session). The analysis determines the linear weight for each neuron that maximizes the 309 

probability of predicting the observed choice or wager (Methods). We can then extract a ‘model 310 

decision variable’ which is simply the log odds of a particular choice or wager, according to the 311 

decoder, based on the population spike counts up to time t on a given trial (Kiani et al., 2014b; 312 

Peixoto et al., 2021). This quantity is also known as prediction strength or certainty. To facilitate 313 

comparison of the two decoders, we collapsed across choices such that positive values of the 314 

model DV correspond to correct prediction of the choice, rather than exhibiting symmetry around 315 

zero as in previous work. 316 

For both monkeys, the model DV ramped up starting about 200 ms after motion onset 317 

(Figure 5A), as shown previously. The DV dynamics differed for the two animals, but both exhibited 318 

a ramping slope that depended on motion strength (monkey H: p < 0.001, monkey G: p < 10-4, 319 

linear regression). Cross-validated prediction accuracy also ramped up starting at this time, and 320 

critically, did so simultaneously for both the choice and confidence decoders (Figure 5B). 321 

Horizontal bars at the top of the plot indicate significant differences from chance level, which 322 

occurred for both decoders starting around 200 ms and persisted until saccade onset. At their 323 

peaks, both performed well above chance on the test set (Figure 5B), but a notable difference is 324 

the timing of the peaks, which for choice is just before saccade onset and for wager is slightly after 325 

the saccade (Figure 5B, right). The black bar in Figure 5B indicates a period near the saccade with 326 
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a significant difference in prediction accuracy between the decoders, highlighting an epoch where 327 

choice accuracy peaks but wager accuracy continues to increase.  328 

Figure 5. Population decoders support concurrent readout of choice and wager from a unimodal population. 
(A) Log odds (‘model decision variable’) quantifying prediction strength (‘certainty’) for the choice decoder as a 
function of time, aligned on motion onset and conditioned on motion strength. Left graph is monkey H and the right 
graph is monkey G. (B) Prediction accuracy (proportion correct binary classification in the test set), for both the 
choice (gray) and wager (brown) decoders, as a function of time and aligned to motion onset and saccade onset. 
Shaded regions around the traces indicate SEM. Gray and brown bars at top indicate when accuracy for the 
corresponding decoder was significantly greater than chance. Black bar indicates when prediction accuracy was 
significantly different for choice vs. wager. (C) Log odds for both choice and wager decoders as a function of time 
and aligned to motion onset and saccade onset. Line color, error shading, and significance bars are similar to 5B. 
(D) Correlation between the magnitude of choice and wager weights (red line) compared to the value expected by 
chance (shuffled data). (E) Histogram of the difference between choice and wager decoder weights. 
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We next confirmed that this temporal offset is not simply a product of the binary 329 

classification method but also reflects graded prediction strength (log odds or model DV). The log 330 

odds for both choice and wager were significantly different from chance after 200 ms and persisted 331 

until saccade onset (Figure 5C). As with prediction accuracy, the initial peak for choice is near 332 

saccade onset while the peak for the wager occurs about 100 ms after the saccade. We speculate 333 

that this late peak may be related to continued evaluation of evidence for a possible CoM (see 334 

below), although we cannot exclude the possibility of a signal related to expectation of outcome 335 

(reward or penalty). 336 

The results in Figure 5B and 5C offer clear support for parallel deliberation of choice and 337 

wager, refuting a temporal bottleneck associated with a serial strategy. However, a different form of 338 

bottleneck might exist within the population of neurons that manifests as distinct subsets of 339 

neurons supporting choice and wager. The fitted decoder weights used to predict choice and 340 

wager serve as tools for addressing this question. To summarize the relationship between the 341 

choice and wager weights we converted them to an absolute magnitude and performed a 342 

Pearson’s correlation (Figure 5D) and a difference test (Figure 5E). For both analyses the weight 343 

time series were marginalized over the accumulation period (Methods). The correlation across the 344 

population was modest (monkey H: r = 0.18 & monkey G: r = 0.21) but highly significant by 345 

permutation test (p << 0.05 for both monkeys). Additionally, the distribution of weight differences 346 

was unimodal (Figure 5E, Hartigan’s dip test, p > 0.9 for both monkeys individually), suggesting a 347 

continuum of contributions to choice and confidence across the population and not two distinct 348 

subpopulations contributing to one or the other. 349 

As mentioned, one way to describe the model DV is as a graded level of certainty (Kiani et 350 

al., 2014b) or even “confidence” (Peixoto et al., 2019) in the prediction of behavior by neural 351 

activity. Although these are just labels (see also Pouget et al., 2016), we wondered whether the 352 

level of certainty of the choice decoder might predict the binary classification by the wager decoder 353 

on a trial-by-trial basis. To test this, we partitioned trials according to whether they were classified 354 

as high or low bets by the wager decoder, by calculating the mean P(High) for the wager decoder 355 
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in the period immediately surrounding the saccade. Values above (below) 0.5 indicated a decoded-356 

high (decoded-low) wager. We then averaged the model DV from the choice decoder, using only 357 

0% coherence trials, and found that it was higher for decoded-high vs. decoded-low trials (Figure 358 

6A). This indicates that the strength with which LIP predicts the upcoming choice covaries with the 359 

degree to which the same population predicts a high bet, consistent with a tight link between 360 

choice and confidence signals. This is surprising given that the spatial/motor dimensions for choice 361 

and wager are orthogonal. 362 

 With the established link between decoded choice certainty and wager prediction, we can 363 

now reexamine the temporal differences shown in Figure 5B & 5C, specifically by asking when 364 

choice decoding strength best predicts the wager decoder’s probability of a high bet on a given 365 

trial. We fit a linear regression relating choice decoder strength (Methods) at time t to decoded 366 

wager probability at time t + ∆t, where ∆t ranges from +/- 200 ms. We found that, during the 367 

deliberation phase (200-600 ms after motion onset and 400-0 ms before saccade onset) the best 368 

prediction between choice strength and wager probability was at zero time lag (Figure 6B, R2 = .13 369 

Figure 6. Predictive relationship between choice and wager decoders. (A) Log odds of choice decoder as a 
function of time, aligned to saccade onset. Red and purple lines are trials separated by whether the wager decoder 
predicted a high or low bet. Shaded regions are SEM. Black bar at top indicates a significant difference between the 
traces. (B) Corrected R2 values from a linear regression relating trial-by-trial transformed choice decoding strength 
and wager decoder probability (P(High)), as a function of time lag. The blue, red, and purple traces comprise 
different time windows either aligned to motion onset (MO) or saccade onset (SO). Standard error bars are included 
as shaded regions near the lines (barely visible). Negative values on the x-axis indicate wager decoder values were 
regressed with choice decoder values that were x seconds in the past, and vice versa for positive values. 
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& .21 blue and red lines, respectively). Interestingly, the period centered around the saccade gave 370 

rise to two peaks, one at zero lag (R2 = 0.12) and one at a lag of -0.2 s (wager lagging behind 371 

choice; R2 = 0.125). This suggests that the updating of the confidence signal around the decision 372 

time instead reflects a procrastinated element (perhaps evidence, or a bias signal) that was 373 

integrated into the decision variable earlier in time.   374 

 375 

DISCUSSION 376 

The neural mechanisms underlying metacognition have become tantalizingly more 377 

accessible over the past two decades through the development of behavioral assays of confidence 378 

in nonhuman animals (Hampton, 2001; Kiani et al., 2009; Middlebrooks & Sommer, 2011; Smith et 379 

al., 2012; Kepecs & Mainen, 2012). A longstanding goal is to connect the rich psychological 380 

literature on process models for confidence with their implementation at the level of neural 381 

populations and circuits. One approach considers how decision accuracy, speed, and confidence 382 

can be jointly explained within the framework of bounded evidence accumulation (Kiani & Shadlen, 383 

2009; Pleskac & Busemeyer, 2010; Fetsch et al., 2014b), an idea presaged by Vickers’ balance-of-384 

evidence hypothesis (Vickers, 1979). Such a framework is motivated by the critical role of response 385 

time in psychophysical theory and experiment (Luce, 1986) and its strong empirical link to 386 

confidence going back at least a century. 387 

Yet embracing a dynamic model still leaves open questions about the temporal evolution of 388 

choice and confidence in the brain. Several authors have emphasized post-decisional processing 389 

(Baranski & Petrusic, 1998), formalized by serial models in which evidence is integrated for 390 

confidence only after termination of the primary decision (Pleskac & Busemeyer, 2010; Moran et 391 

al., 2015; Herregods et al., 2023). This idea follows naturally from the definition of confidence as 392 

the expected probability correct conditioned on a choice (Pouget et al., 2016), and it is sensible to 393 

exploit additional information acquired (or generated internally) after commitment to the choice if 394 

the behavioral context allows it. However, in many other settings it would seem advantageous to 395 

compute a provisional degree of confidence while the decision is still being formed. Decisions are 396 
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commonly expressed as motor actions, executed with a degree of vigor (or caution) that depends 397 

on confidence or expected reward (Shadmehr et al., 2019). Also, deliberation itself is a significant 398 

cost (Drugowitsch et al., 2012), so it could be less efficient to extend the deliberation period for 399 

confidence. Lastly, an online prediction of accuracy facilitates rapid decision sequences (van den 400 

Berg et al., 2016b; Lisi et al., 2020; Zylberberg, 2021) and strategic modulations of the decision 401 

process (Balsdon et al., 2020). Recent human studies (Dotan et al., 2018; Balsdon et al., 2020; Li 402 

et al., 2023) offer intriguing evidence for parallel computation of confidence (or at least certainty; 403 

Pouget et al., 2016) during decision formation, further supported by electroencephalography 404 

(Gherman & Philiastides, 2015; Balsdon et al., 2021; Dou et al., 2024) and transcranial magnetic 405 

stimulation (Xue et al., 2023). How this might be implemented at the level of neuronal populations 406 

remains unclear and requires a suitable paradigm for nonhuman animals. Here we establish such 407 

a paradigm and provide evidence that monkeys (and LIP neurons) can accumulate samples of 408 

evidence concurrently to guide a single motor action corresponding to a choice and degree of 409 

confidence therein.  410 

 411 

Behavioral evidence for concurrent deliberation 412 

First we validated the peri-decision wager as a measure of confidence per se, which should covary 413 

with accuracy even when conditioned on the stimulus. If a behavioral report only predicts accuracy 414 

across levels of stimulus strength or difficulty, it could reflect an associative process of 415 

categorization (Smith et al., 2012), or more subtly, an estimate of difficulty itself (Löffler et al., 416 

2023). We sought to allay these concerns by including a set of identical-seed trials, in which the 417 

random dot movie was identical up to the initiation of the saccade. Controlling for stimulus motion, 418 

the accuracy for high bets was still significantly higher than for low bets, for both monkeys (Figure 419 

S1A). This suggests that the wager reflects, in part, variability in the internal representation of 420 

evidence and/or the reliability of the decision process, including aspects that could fall under the 421 

rubric of attention. 422 
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Psychophysical kernels indicated substantial overlap in the stimulus period contributing to 423 

choice and wager, as shown previously in humans (Zylberberg et al., 2012; van den Berg et al., 424 

2016a), ruling out a strategy where confidence is systematically assessed after (or before) choice 425 

formation. Additionally, a small subset of trials showed evidence for changes of mind (CoMs): 426 

perhaps surprisingly for a saccade task, the monkeys occasionally reversed their initial wager, 427 

choice, or both, implying that both were amenable to revision at the time of initial commitment. 428 

These two lines of evidence suggest that deliberation for choice and confidence occurs in 429 

overlapping time windows, even extending after the stimulus has been extinguished. 430 

Corroboration of a parallel strategy was provided by the superior fits and predictions from 431 

our parallel model compared to the serial model (Figure 3). We then used the model fits to make 432 

predictions for the probability of betting high when a trial outcome is correct vs. incorrect. This 433 

aspect of the behavior strongly argued against the serial strategy, which invariably predicts an ‘X-434 

shape’ pattern (decreasing confidence with greater evidence strength on error trials) that was 435 

absent in our data. We did not explicitly test a hybrid model where parallel accumulation is followed 436 

by a period of extra accumulation for confidence (Desender et al., 2021; Maniscalco et al., 2021), 437 

but this too predicts an X-shape, depending on the duration of the second epoch (Desender et al., 438 

2021). Other behavioral evidence (Kiani et al., 2014a) and model simulations (Khalvati et al., 2021) 439 

similarly appeal to the temporal domain to explain the X-shape, contrary to the conventional 440 

explanation based on signal-detection theory (SDT; Treisman & Faulkner, 1984; Kepecs et al., 441 

2008) or more general Bayesian formulations (Sanders et al., 2016; Adler & Ma, 2018). The 442 

distinction matters because neural correlates of the X-shape are considered diagnostic of 443 

confidence signals in the brain (Kepecs et al., 2008; Rolls et al., 2010; Komura et al., 2013; Bang 444 

et al., 2020), which could be misleading if the relative timing of choice and confidence 445 

computations are unknown. In general, however, the temporal explanation does not invalidate SDT 446 

as a useful framework, nor its extension to an estimate of decision reliability (‘meta-uncertainty’; 447 

Boundy-Singer et al., 2022). In fact an exciting future direction would be to link the neural 448 
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signatures of meta-uncertainty computations in visual cortex (Boundy-Singer et al., 2024b) to the 449 

temporal dynamics of confidence formation in decision-related areas. 450 

 451 

Neural correlates of concurrent deliberation 452 

Individual LIP neurons showed heterogeneous dynamics (Figure 4A), but when combined into 453 

populations with RFs overlapping either the left high or left low target, the averages revealed 454 

accumulation-like responses with interpretable timing relationships for the four outcomes. In 455 

essence, the ramping activity began to predict the wager at about the same time that it began to 456 

predict the left-right decision. Using a theoretical and simulated autocorrelation structure for a 457 

standard and delayed drift diffusion process, we found that both populations show the statistical 458 

signatures of accumulation (VarCE and CorCE) from 200 ms after motion onset, inconsistent with 459 

one form of serial strategy in which the decision process first considers only the low or high pair of 460 

targets then covertly switches to the other pair. Note that previous studies examined these 461 

signatures on simple 2-choice paradigms, so it was unclear whether LIP neurons in our 4-target 462 

task would conform to the same theoretical autocorrelation structure. It will be useful to generate 463 

specific predictions for the variance and autocorrelation of neural signals in more complex 464 

paradigms, including multi-alternative (Churchland et al., 2008) and multi-attribute perceptual and 465 

economic decisions (Kang et al., 2021; Sampson et al., 2023).  466 

To uncover latent decision and confidence signals on individual trials, we constructed 467 

logistic classifiers for choice and wager based on the neural population activity. As shown 468 

previously, the choice decoder displayed a graded prediction (the ‘model DV’) that was linearly 469 

dependent on coherence, reminiscent of classic LIP ramping activity (Roitman & Shadlen, 2002; 470 

Steinemann et al., 2024). Notably, the population signal was predictive of choice and wager during 471 

identical epochs (Figure 5B & C), consistent with a parallel process. An interesting anomaly was 472 

the temporal offset between choice and confidence decoders at the end of the trial (Figure 5B,C). 473 

This offset was not driven by a lag between the trial-by-trial predictions during decision formation, 474 

but such a lag did emerge around saccade onset (Figure 6B). This could be a correlate of top-475 
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down signals related to attention, expectation, or affect—but another possibility is that it reflects 476 

reevaluation of the evidence for guiding subsequent decisions (van den Berg et al., 2016b; Lak et 477 

al., 2020 Zylberberg, 2021). One could test this by manipulating neural activity during the peri-478 

decision epoch in a task where optimal behavior depends on confidence in earlier choices. Lastly, 479 

we found that the strength of the decoder’s choice prediction (‘certainty’) was highly correlated with 480 

the probability of a high bet established by the wager decoder (Figure 6A). To our knowledge this 481 

is the first study to directly link a neural representation of choice certainty with a neural prediction 482 

of confidence as measured behaviorally. 483 

 484 

Caveats and conclusions 485 

The main limitation of this study is that confidence is mapped onto a stable motor action, namely 486 

the saccade to a high or low target whose positions did not change within a session. We found this 487 

to be necessary for achieving consistent behavioral performance, but it does present a challenge 488 

for disentangling cognitive signals from those involved in motor planning. Could our results be 489 

explained as merely the concurrent evolution of multiple motor plans? We do not think so. First, the 490 

signatures of noisy evidence accumulation (Figure 4E, Figure 5A) suggest that ramping activity in 491 

LIP reflects more than simple motor planning. Second, although there is evidence for parallel 492 

computation of competing plans (Cisek & Kalaska, 2002), even a motor-centric interpretation of our 493 

findings would be something different: simultaneous encoding of two dimensions of a motor plan 494 

(horizontal and vertical), corresponding to distinct transformations of the input (a categorical 495 

judgment vs. the quality of the evidence and/or decision process). It was not a foregone conclusion 496 

that the choice and wager dimensions could be computed in parallel; in fact, a 2-D decision with 497 

similar task structure (simultaneous report of color and motion) exposed a bottleneck preventing 498 

parallel incorporation of multiple evidence streams into a single DV (Kang et al., 2021; Jeurissen, 499 

Zylberberg, & Shadlen, unpublished observations). 500 

Importantly, the current findings are not incompatible with post-decision processing for 501 

confidence. Indeed, even though the peri-decision time window is highly compressed in our task, 502 
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there are hints of continued processing related to confidence and potential CoMs (Figure 2C; 503 

Figure 5B). Investigating this window further could be useful for testing mechanisms of confidence 504 

readout, which for a 2D accumulator requires querying the state of the losing race as well as 505 

estimating elapsed time (Kiani et al., 2014a). The contributions to this readout mechanism from 506 

sensory populations versus top-down signals remain to be teased apart. Simultaneous recordings 507 

across multiple brain areas will be essential for resolving this question, bringing us closer to 508 

understanding how neural dynamics convert sensation into belief. 509 
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 801 

METHODS 802 
 803 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 804 
 805 
Two male rhesus monkeys (Macaca mulatta, 6-8 years old, 8-10 kilograms) were kept and handled 806 

according to National Institutes of Health guidelines and the Institutional Animal Care and Use 807 

Committee at Johns Hopkins University. Standard sterile surgical procedures were performed to 808 

place a PEEK recording chamber (Rogue Research) and titanium head post under isoflurane 809 

anesthesia in a dedicated operating suite. The recording chamber was positioned over a 810 

craniotomy above the right posterior parietal cortex of both animals for access to the intraparietal 811 

sulcus and posterior third of the superior temporal sulcus. The chamber and head post were held 812 

in place using dental acrylic anchored with ceramic bone screws. 813 

  814 

METHOD DETAILS 815 

Experimental apparatus 816 

Monkeys were seated in a custom-built primate chair in a sound-insulated booth facing a visual 817 

display (ViewPixx, VPixx Technologies; resolution 1080x960, refresh rate 120 Hz; viewing distance 818 

52 cm) and infrared video eye tracker (Eyelink 1000 Plus, SR Research). Experiments were 819 

controlled by a Linux PC running a modified version of the PLDAPS system (Version 4.1, Eastman 820 

& Huk, 2012) in MATLAB (The MathWorks). Visual stimuli were generated using Psychophysics 821 

Toolbox 3.0 (Brainard, 1997). For correct responses, the monkey was given a fluid reward that was 822 

dispensed using a solenoid-gated system. 823 

 824 
Neurophysiology 825 

Recording probes (32- or 128-channel Deep Array, Diagnostic Biochips) were positioned with the 826 

aid of a PEEK grid secured inside the recording chamber. A sharpened guide tube was inserted 827 

through a grid hole so that the tip of the tube just punctured the dura, then a probe was advanced 828 

through the guide tube into the brain using a motorized microdrive (40mm MEM Drive, Thomas 829 
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Recording). Bandpass-filtered voltage signals were collected using the Open Ephys acquisition 830 

board and software (Siegle et al., 2017). Post-hoc analysis for identifying single neurons and multi-831 

unit clusters was done using Kilosort 2.0 (Pachitariu et al., 2016; Stringer et al., 2019). Further 832 

curation was done using the phy2 software (https://phy.readthedocs.io/en/latest/). Data analysis 833 

was performed with custom MATLAB code. 834 

 Targeting of LIPv was achieved by selection of grid locations based on a post-surgical 835 

structural MRI scan in which the chamber and grid holes were well visualized. We compared the 836 

MR images to published reports and atlases (Lewis and Van Essen, 2000; Saleem & Logothetis, 837 

2006) to estimate the depth of LIPv (typically 8-12 mm from the dura in our vertical penetration 838 

angle) and corroborated the targeting using white-gray matter transitions and physiological 839 

response properties during the mapping tasks described below. After reaching the target, we let 840 

the probe settle for 30-60 minutes before the start of the experiment. A total of 407 neurons (single 841 

= 148 & multi = 56 in monkey H, single = 107 & multi = 93 G) were collected over 29 sessions (12 842 

for monkey H, 17 for monkey G). 843 

 844 
Memory saccade task 845 

            Sessions began with a standard memory-guided saccade task to identify neurons with 846 

spatially selective activity during the delay period (Gnadt & Andersen, 1998) and to coarsely map 847 

their response fields (RFs). Monkeys were instructed to gaze at a central fixation point (1.5° radius 848 

acceptance window), after which a red target (0.42° diameter circle) was flashed for 100 ms, 849 

located in one of several locations evenly spaced in polar coordinates. The coordinates consisted 850 

of 3 different radii (eccentricities) and 10 or 12 angular positions, giving a total of 30 or 36 unique 851 

target locations. Each target location was presented 10 times in pseudorandom order, requiring a 852 

total of 300 or 360 trials. While fixating, the monkey had to remember the location of the target, and 853 

after a delay of 0.8 s the fixation point was extinguished, instructing the monkey to make a saccade 854 

to the remembered location. RFs were estimated online during/after the memory saccade block by 855 

acquiring multi-unit spikes (threshold crossings) on each recording channel and plotting the mean 856 
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firing rate during the memory delay as a function of target location in a 2D heat map. These RF 857 

maps guided the placement of the four targets for the main decision task, such that one or two of 858 

the targets overlapped the RF of multiple neurons in the recorded ensemble. 859 

  860 

Main task 861 

The monkeys were trained to perform a reaction-time direction discrimination task with 862 

simultaneous report of choice and confidence (‘peri-decision wagering’; Figure 1A). To initiate a 863 

trial the animals acquired fixation on a target on the center of the screen (0.21° diameter). After a 864 

delay of 0.5 s four targets appeared, positioned diagonally from the center of the screen, each 865 

representing a choice (left or right) and a wager, or bet (high or low). The targets representing high 866 

bets were always placed in the upper-left and upper-right quadrants while the low-bet targets were 867 

placed in the lower quadrants (left high: x = -7.3±2.1°, y = 7.3±1.5°; left low: x = -6.9±2.3°, y = -868 

3.4±1.4°; right high: x = 7.3±2.1°, y = 7.3±1.5°; right low: x = 6.9±2.3°, y = -3.4±1.4°). Each left-right 869 

pair was presented symmetrically around the vertical meridian, but high-bet targets were typically 870 

2-5° further from the fixation point than low-bet targets, in order to counteract the monkeys’ 871 

tendency to bet high more often than low. 872 

 After another brief delay (0.3-0.6 s, truncated exponential), a dynamic random-dot motion 873 

(RDM) stimulus was presented in a circular aperture. Motion strength, or coherence, was sampled 874 

uniformly on each trial from the set {0%, ±3.2%, ±6.4%, ±12.8%, ±25.6%, ±51.2%}, where positive 875 

is rightward and negative is leftward. The stimulus was constructed as three independent sets of 876 

dots (Roitman & Shadlen, 2002), each appearing for a given video frame then reappearing three 877 

frames (25 ms) later. Upon reappearing, a given dot was either repositioned horizontally to 878 

generate apparent motion in the assigned direction (speed = 2-16°/s, held constant within a 879 

session) with probability given by the coherence on that trial, or otherwise was replotted randomly 880 

within the aperture.  881 

            When ready with a decision, the animal could report its choice and wager by making a 882 

single saccade to one of the four targets. When the eyes moved 1.5° away from the target the 883 
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RDM and fixation point were extinguished while the four targets remained visible. When the eye 884 

position reached one of the four targets, it was required to hold fixation within 1.5° of the target for 885 

0.1 s to confirm the outcome. Lastly, the animal was either rewarded or given a time penalty 886 

depending on the conjunction of accuracy (choice corresponding to the sign of coherence) and 887 

wager (Figure 1A, right). The penalty for a high-bet error was applied to the subsequent trial where 888 

the animal was required to fixate the central target for a longer period of time (2-3 s) prior to RDM 889 

onset. Reward sizes (~.21 ml for high and ~.19 ml for low bets) and penalty times were chosen to 890 

encourage a wide range of wager probability across different levels of motion strength. 891 

 892 
QUANTIFICATION AND STATISTICAL ANALYSIS 893 

Cell selection 894 

To quantify spatial selectivity, we modified a previously described discrimination index (Nguyenkim 895 

& DeAngelis, 2003).  896 

!!" = !!"#"!!$%

!!"#"!!$%#$% &&'
()*

	897 

Rmax and Rmin are the mean firing rates during the delay period at the target spatial location with the 898 

highest and lowest response, respectively. SSE is the sum-squared error around the mean 899 

responses, N is the total number of trials, and M is the total number of unique spatial target 900 

locations. For all analyses except the population logistic decoder, only units (single- and multi-) 901 

with a discrimination index higher than an arbitrary cutoff of 0.45 were kept for further analysis.  902 

  Full quantification of RFs was done by fitting a 2D Gaussian to the firing rates during the 903 

delay period of the memory saccade task for each target location:  904 

%& = ' ∗ &
$'|)|

+
,	
exp ,− &

$ (/ − 0)Σ
"&(/ − 0)+3905 

where FR is firing rate during the delay period and X is a 2-length vector that contains the X and Y 906 

positions of the target locations (in degrees). The fitted variables include A for amplitude, µ for the 907 

2D mean location of the RDM (X and Y in degrees), and ! which is the covariance matrix of the 908 

Gaussian (2x2). To reduce the variables for fitting we set the covariance to 0 and only fit for the 909 
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two variances. We then normalized the 2D Gaussian to convert it to a probability density and 910 

calculated the final preferred target based on the probabilities corresponding to the 4 targets in the 911 

peri-dw task. 912 

       For the population logistic decoder, we included not only units with delay period activity in 913 

the memory saccade task but accepted any that were well defined single neurons or multi-unit 914 

clusters based on careful spike sorting and manual curation. Previous studies have suggested that 915 

decision-related activity can be present even in neurons without memory delay-period activity 916 

(Meister et al., 2013), and we aimed to maximize the sample size to facilitate single-trial decoding. 917 

This broader criterion increased the average number of units per session from 7.5 to 17.3 for 918 

monkey H and from 6.2 to 11.2 for monkey G. 919 

 920 
Behavioral data analysis 921 

We applied a logistic regression model to fit the proportion of rightward choices, as follows: 922 

4,-./0 =
&

&#123(5-#5+67/#	5,89.:,#5.(67/)(89.:,))	923 

where Pright is the probability of a rightward choice, Coh is signed motion coherence, Wager is the 924 

monkey’s bet (high/low), β0 is the overall bias, β1 estimates the effect of signed motion coherence 925 

on choices, β2 is the weight for the bet, and β3 is the interaction term (used to calculate whether 926 

choice significantly depends on wager). The fitting was done by finding the minimum negative log-927 

likelihood value under a binomial distribution, using fminsearch in MATLAB with the Nelder-Mead 928 

method. For choices conditioned on high and low bets, we fit two separate logistic regressions 929 

after removing the terms to the right of β1Coh (Figure S1).  930 

             The fits to the average reaction times (RTs) as a function of motion strength were done 931 

using a Gaussian distribution, defined as follows: 932 

&5 = ' ∗ 1
7√2:

exp;−12 <
=>ℎ − 0

7 A
$
B + D  933 

where " is an amplitude term, #$ℎ is the signed motion coherence, & is the standard deviation 934 

controlling the width of the Gaussian, and ' is a bias term capturing the fastest mean RT. We fit 935 
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this pseudo-gaussian by minimizing root-mean-square error (RMSE) instead of maximizing the 936 

likelihood, because of the amplitude value. 937 

            To examine the relationship between accuracy and RT, as well as wager and RT, we 938 

calculated proportion correct and proportion of high bets grouped by RT, using non-overlapping 939 

100 ms time bins starting 100 ms after motion onset. To test for significance as to whether the 940 

trend was decreasing (during the time depicted in Figure 1D) we used a Cochran-Armitage test for 941 

trend: 942 

5 = 	∑ F-(G&-&$ − G$-&&)<
-=&

HIJ(5) = !+!,
> (∑ F-$K-(G − K-) − 2∑ ∑ F-F?K-K?<

?=-#&
<"&
-=&

<
-=&

943 

where (! are the weights depicting the trend (in our case linear, so t = [0, 1, 2, 3, 4, …]), ) = total 944 

number of trials, )"# is total number of trials for group * (accuracy: correct and error; wager: high 945 

or low) and ' is total number of trials for timepoint '. +" represents total number of trials for group 946 

* irrespective of time, and ,# is total number of trials at timepoint ' irrespective of group. The 947 

division of - by .*/(-) gives a test statistic that can then be used to compute a p-value. 948 

  949 

Motion energy analysis 950 

To estimate the temporal weighting of sensory evidence for choice and confidence, we utilized 951 

motion stimulus fluctuations to perform a psychophysical reverse correlation analysis on both 952 

choice and wager. We convolved each trial’s sequence of dots — a 3-dimensional array with the 953 

first two dimensions denoting the X-Y coordinates of the dots’ center, and the third dimension 954 

spanning the number of frames — with two pairs of quadrature spatiotemporal filters (Adelson & 955 

Bergen, 1985). The filters were oriented to account for motion in the direction along the choice 956 

axis: 0° motion (rightward) and 180° motion (leftward motion). The convolved quadrature pairs 957 

were squared and summed to give the local motion energy for both the leftward and rightward 958 

directions. These local motion energies were then collapsed across space (first 2 dimensions) to 959 

derive the motion energy provided by the stimulus through time, ME(t). To quantify the net motion 960 

energy, we took the difference between both directions of motion energy (right minus left; Adelson 961 
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& Bergen, 1985; Kiani et al., 2008). To strictly look at the fluctuations around the mean and 962 

mitigate potential effects of coherence, we subtracted from each trial the mean motion energy, 963 

conditioned on signed coherence, through time. As most meaningful fluctuations occur at smaller 964 

coherences, we also decided to restrict the analysis to 0%, 3.2% and 6.4% coherence trials.  965 

            For the choice kernels (Figure 2A) we simply averaged the motion energy profiles for all 966 

trials with a right choice (red line) or left choice (blue line). The shaded red and blue area 967 

represents the standard error of the mean. To evaluate statistical significance of the choice 968 

kernels, we used a t-test comparing the motion energy profiles for right and left choices at each 969 

time point, applying a Šidák correction matching the number of time samples. For the confidence 970 

kernels (Figure 2B), we instead subtracted the motion energy profiles for high vs. low wager trials 971 

conditioned on a given choice (correct trials only) and computed the standard error of the 972 

difference (shaded area around traces in bottom of Figure 2). To assess significance, we 973 

compared the confidence kernel distribution relative to a value of zero using a t-test with Šidák 974 

correction for the number of time samples. 975 

  976 

Parallel model 977 

To formalize the hypothesis of parallel deliberation for choice and confidence, we utilized a two-978 

dimensional (2D) bounded accumulator model (Kiani et al. 2014), also known as an anticorrelated 979 

race. We adapted a recently developed family of closed-form solutions for a 2D correlated diffusion 980 

process (Shan et al., 2019) to facilitate fitting of the parameters. By conceptualizing the diffusion 981 

process as a Gaussian distribution originating from the third quadrant on a plane with two 982 

absorbing bounds, one can employ the method of images (MoI) to calculate the propagation of the 983 

probability density of the diffusing particle, i.e. the solution to the Fokker-Planck equation. The 984 

constraint making this numerical solution possible limits the discrete number of anti-correlation 985 

values that can be modeled, governed by the number of images: 986 
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Jℎ> = cos	(− '
@)	987 

where Jℎ> is the correlation value and " is the number of images. We selected 2 = 4 or /ℎ$ =988 

.7071 for consistency with previous studies (Kiani et al., 2014; Van Den Berg et al., 2016a). 989 

            Specifically, the MoI yields 4OP,-./0 , PA:B0RK, F), describing the probability of the 990 

accumulator being in a particular position at time F for coherence K. The probability of making a 991 

right choice is given by: 992 

4(&STℎF|K) =
∫ ∫DEP,-./0 = V, PA:B0FK, FGHI/012∗D(0)H0

∫E∫ DEP,-./0 = V, PA:B0FK, FGHI/012#∫DEP,-./0 , PA:B0 = VFK, FGHI3$452GD(0)H0
993 

where V is the bound for terminating the accumulation process. To acquire the decision time 994 

distribution, we calculated the difference in the survival probability as follows: 995 

4(!5) = 	∆(∬ 4OP,-./0 , PA:B0RK, FYZP,-./0ZPA:B0
K7LMH
"-MB )996 

thereby providing the change in probability at each survival timestep, quantifying the probability of 997 

crossing a bound. To then calculate the probability of reaction time (decision time plus 998 

sensory/motor delays, referred to as non-decision time or nonDT), we convolved this probability 999 

density as follows: 1000 

4(&5) = 	[4N+(F − \)4M7MN+(\)Z\  1001 

where 4M7MN+(\) is modeled as a Gaussian distribution with mean (0M7MN+) and standard 1002 

deviation (7M7MN+).  1003 

            To calculate the probability of betting high, we first computed the log-odds of a correct 1004 

choice as a function of the state of the losing accumulator (Kiani et al., 2014), as follows: 1005 

]>T>ZZ^ = ]>T <∫DOP-MP7,,:P0 , FQPP7,,:P0 = V, K, FRD(6)H6
∫DOPP7,,:P0 , FQP-MP7,,:P0 = V, K, FRD(6)H6A1006 

where P-MP7,,:P0  is the incorrect accumulator (not matching the sign of coherence) and PP7,,:P0 is 1007 

the correct accumulator (matching the sign of coherence). This transformation provides a graded 1008 
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scale for betting that can be transformed into {high, low} responses by applying a cutoff value (_) 1009 

that imposes binary outcomes. To obtain the probability of a high bet we computed: 1010 

4(ℎSTℎ	`ITaJ) =
∬4OP,-./0RPA:B0 = V, F, K, ]>T>ZZ^ < _Y4(F) +∬4OPA:B0RP,-./0 = V, F, K, ]>T>ZZ^ < _Y4(F)	

∬4OP,-./0RPA:B0 = V, F, KY4(F) +∬4OPA:B0RP,-./0 = V, F, KY 	4(F)
 1011 

where ]>T>ZZ^ < _ indicates integration over the area in which ]>T>ZZ^ is less than the cutoff 1012 

value. 1013 

            Lastly, we found the best-fitting parameters to the model by using the joint probability of 1014 

choice, RT, and wager as follows: 1015 

4(&STℎF, &5, cSTℎ) = d 4(&STℎF|&5, cSTℎ) ∗ 4(&5|cSTℎ) ∗ 4(cSTℎ)
+,-9AS

0,=&
 1016 

We calculated the negative log likelihood of this by: 1017 

− logO4(&STℎF, &5, cSTℎ)Y =
	−∑ logO4(&STℎF|&5, cSTℎ)Y + log(4(&5|cSTℎ)) + logO4(cSTℎ)Y+,-9AS

0,=&
1018 

The full model had 6 or 7 free parameters, differing slightly between the two animals (see table 1019 

below). These included drift rate (g), bound (V), mean non-decision time (0M7MN+), urgency max 1020 

(9$), urgency half-life (9!
"
), and log-odds cutoff (:). The urgency signal followed a hyperbolic 1021 

function for monkey G, requiring both parameters, and a linear function for monkey H, requiring 1022 

one parameter. Also, monkey H required separate non-decision time means for left and right 1023 

choices, and a ‘wagering offset’ ('%) capturing a tendency to occasionally bet low even for the 1024 

highest coherence. Non-decision time standard deviation (7M7MN+) was not a free parameter and 1025 

was instead established using psychophysical kernels (van den Berg et al., 2016a, Methods 1026 

section). Fitting was done using MATLAB’s built-in function fminsearch applied in a grid search 1027 

method with 30 different starting points. 1028 

Monkey Parameters Number of Parameters 
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H g, V, 0M7MN+,67/#, 

0M7MN+,67/", 9$, :, '% 

7 

G g, V, 0M7MN+, 9$, 9!
"
, : 6 

 1029 

 1030 
Serial model 1031 

The serial model was constructed as a sequence of two 1D bounded accumulator (drift-diffusion) 1032 

models, one for choice followed by a second for confidence (Figure 1C; Moran et al., 2015; 1033 

Herregods et al., 2023). There are 6 main parameters: drift rate (g), choice bound (VP), high 1034 

wager bound (V/), low wager bound (VA), mean non-decision time (0M7MN+), and urgency signal 1035 

for only the confidence accumulator (9$,'()*). Parameter estimation predominantly followed the 1036 

same logic as the parallel model, using the joint distribution of choice, RT, and wager to fit the 1037 

data, with a few minor differences. Computing the probability of rightward choice was similar to the 1038 

parallel model and used the following formula: 1039 

4(&STℎF|K) = ∫DOP& = VP 	QK, FRD(0)H0
∫EDOP& = VP 	QK, FR#DOP& = −VP 	QK, FRGD(0)H01040 

where P is the accumulator variable for the first 1D accumulator, and the other parameters are 1041 

similar to the parallel model. The decision time distribution was calculated as: 1042 

4(!5) = 	∫ 4P/7-P:(F − \)4U9.:,(\)Z\1043 

where 4P/7-P: is the probability of hitting a bound at time t for the first accumulator and 4U9.:, is 1044 

the probability of hitting a bound at time t for the second accumulator. For RT we followed the 1045 

same procedure as the previous model. Lastly, to calculate the probability of betting high, we used 1046 

the following equation: 1047 

4(cSTℎ	`ITaJ|K) = 4(P$ = V/|K, Kℎ>S=a = &)
∫4(P$|K, Kℎ>S=a = &) ZP$

4(Kℎ>S=a = &) 1048 
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+ 4
(P$ = V/|K, Kℎ>S=a = ])

∫4(P$|K, Kℎ>S=a = ]) ZP$
4(Kℎ>S=a = ]) 1049 

 1050 

Monkey Parameters Number of parameters 

H g, V6 , V/, VA 0M7MN+,67/#, 

0M7MN+,67/", 9$,'()*, '% 

8 

G g, V6 , V/, VA, 0M7MN+, 

9$,'()* 

6 

 1051 

Changes of mind (CoMs) and changes of confidence 1052 

Raw eye position data (sampled at 1000Hz) were converted to velocity and smoothed by applying 1053 

a 3rd-order low-pass Butterworth filter with a cutoff frequency of 75Hz (Orozco et al., 2021). Eye 1054 

position is a 2D vector containing X and Y position in degrees, while eye velocity was defined as 1055 

1D vector that combines the velocities for both directions (X and Y). To preprocess the data, we 1056 

first calculated a stricter time for saccade onset by applying a threshold of 20°/s onto the smoothed 1057 

velocity data. Subsequently, we centered the eye positions by subtracting the average of the first 5 1058 

ms before saccade onset. The initial choice and wager were defined by the location of the saccade 1059 

in 1 of 4 quadrants of the screen 5 ms after saccade detection. The final choice and wager 1060 

corresponded to the target at which the eye position settled within a 0.1 s grace period following 1061 

the initial saccade. This provided an initial and final choice and wager for every trial, allowing for 1062 

simple analyses like those for Figure 2C,D,E. CoM frequencies (Figure 2C,D) were conditioned on 1063 

the initial outcome; therefore, the frequencies reflect not the proportion of all trials but rather only 1064 

trials that initially reached a given outcome (error, correct, low, and high). Lastly, for the rightmost 1065 

panels of Figure 2E the probabilities are reflective of all trials, hence the values are much smaller 1066 

than on the other plots. 1067 

  1068 
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Analysis of neural data based on preferred and chosen target 1069 

Two populations of neurons were established based on RF overlap of either the left-high or left-low 1070 

target. We computed four normalized firing rate responses for both populations of neurons, where 1071 

each response corresponds to one of the four chosen targets (Figure 4B & 4C). To combine across 1072 

neurons, we first detrended the responses of each neuron over the coherences of interest [-6.4%, -1073 

3.2%, 0%, 3.2%, 6.4%]. Then the firing rates for each neuron (after smoothing each trial with a 0.1 1074 

s exponential filter) were averaged over all trials that met 3 conditions: 1) matched the chosen 1075 

target of interest, 2) contained a coherence of interest, and 3) had a RT longer than 0.3 s. Example 1076 

neurons in Figure 4A were not detrended or normalized but otherwise the procedure was the 1077 

same. The colored bars at the top of Figure 4B & 4C indicate statistical significance based on a 1078 

one-tailed t-test evaluating whether the response of the chosen target (aligned with the neurons’ 1079 

RF) was higher than either of the other three chosen target responses. Given that the testing is 1080 

done over multiple timepoints, the one-tailed t-test alpha value was corrected using Šidák’s 1081 

correction.  1082 

 1083 

Autocorrelation signatures of standard vs delayed accumulator dynamics  1084 

 An accumulation of noisy evidence produces characteristic variance and autocorrelation 1085 

features that can be estimated from single neurons using procedures laid out by previous work 1086 

(Churchland et al., 2011; de Lafuente et al., 2015; Shushruth et al., 2018; Steinemann et al., 2022). 1087 

Applying the law of total variance to a doubly stochastic process, the variance in spike rate for a 1088 

given time bin is a summation of the variance of the underlying latent rate, termed variance of the 1089 

conditional expectation (VarCE), and the residual variance expected if the latent rate was constant, 1090 

known as point process variance (PPV). To calculate VarCE, one must subtract out the PPV from 1091 

the total measured variance. To do this we made two simple assumptions (Churchland et al., 1092 

2011): 1) the observed spiking of a neuron follows a stochastic point process mediated by some 1093 

rate parameter, and 2) that at each time bin the PPV is proportional to the mean count: 1094 
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HIJ(i[k-|l-]) = HIJ(k-) − i[HIJ(k-|l-)]	
HIJKi(k-) = 	HIJ(k-) − ni[G-]

 1095 

where k- represents the random variable capturing the neuron’s spike count at timepoint S, l- is the 1096 

random variable for the latent rate at timepoint S, and n is a constant that is fitted to maximize how 1097 

well the observed firing rates match an accumulation of independent identically distributed (iid) 1098 

random numbers. i[G-] is the mean spike count at timepoint S. In addition, it follows that the law of 1099 

total covariance is described using a similar equation: 1100 

K>POk- , k?Y = 	K>POi[k-|l-], i[k?|l?]Y + i[K>POk- , k?Rl- , l?Y]  1101 

The first term on the right-hand side is known as the covariance of conditional expectations 1102 

(CovCE), which is needed to compute the correlation of conditional expectations (CorCE). The 1103 

second term is the expectation of conditional covariance, and its diagonal is the PPV. To calculate 1104 

the CorCE, we made another assumption that when S ≠ p, the expectation of conditional 1105 

covariance is zero because the variance from the point process should be independent across 1106 

timepoints (Churchland et al., 2011; although this may be untrue for adjacent time bins due to their 1107 

shared interspike interval). This simplification makes it possible to state that the CovCE, for S ≠ p, 1108 

is equal to the measured covariance, and the diagonal of the CovCE is then the VarCE. It follows 1109 

that to calculate the CorCE, one must simply divide the CovCE by the VarCE: 1110 

K>JKi(k- , k?) =
67I6VOW$,W6R

%X9,6V(W$)∗X9,6VOW6R
1111 

where S and p are time points. The best fitting ; is then calculated by comparing the formulated 1112 

CorCE values onto theoretical or simulated correlation values that underlie the hypothesized 1113 

generative process (e.g., accumulation).  1114 

 We tested two theoretical autocorrelation patterns, one pertaining to a standard drift 1115 

diffusion process and the other to a delayed drift diffusion process (Figure 4D). The standard 1116 

accumulation of iid random numbers was calculated using the following equation: 1117 
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q-,? = rmin(S, p) max(S, p)w  1118 

We used 6 different timepoints giving 15 unique combinations (S = 1: 6	&	p = 1: 6, S ≠ p). For the 1119 

delayed accumulation of iid random numbers, we used a simulation that accumulated noisy 1120 

normalized samples of numbers with mean  [0.717, 0, -0.717]. We narrowed the simulation to the 1121 

first 6 timesteps to compare it to the results from the standard accumulation process. Additionally, 1122 

the delay component was constructed by uniformly sampling a value between 1-6, indicating when 1123 

the accumulation would begin. Using 10,000 trials we calculated the autocorrelation of the first 6 1124 

timesteps for this simulation providing 15 unique combinations (S = 1: 6	&	p = 1: 6, S ≠ p).  1125 

Additionally, we fit the ;, for both models, according to the following steps: 1) calculate the <[)!], 1126 

.*/(?!), and ,$@A?! , ?+C  from observed spikes, 2) compute .*/,<(?!) using an initial value of ; =1127 

1, 3) calculate ,$/,<(?! , ?+) under the assumptions of mentioned above, 4) calculate the mean 1128 

squared error (MSE) between the empirical ,$/,<(?! , ?+) and the theoretical/simulated 1129 

autocorrelation values, D!,+, and 5) iteratively update ; until the MSE between the ,$/,<(?! , ?+) and 1130 

D!,+ reached the global minimum.  1131 

            We used 6x60-ms time bins spanning from 170 ms after motion onset to 530 ms after 1132 

motion onset. We applied the analysis on trials with coherences of interest [-6.4%, -3.2%, 0%, 1133 

3.2%, 6.4%] and reaction times at least 630 ms to minimize bound effects. To combine across 1134 

neurons, we calculated the mean response for each time bin of each neuron across all trials and 1135 

subtracted that from the mean response for each time bin conditioned on the signed coherence. 1136 

This then gives a matrix of residuals that is of size [{a|J>{ ∗ FJSI}^			/			FS~a	DS{^], which is then 1137 

used to calculate a covariance matrix. Next, the VarCE is calculated by substituting the raw 1138 

variance for the diagonal in the covariance matrix, since the diagonal is the normalized population 1139 

variance, and ; is initiated at a value of 1. To calculate the empirical correlation values, each entry 1140 

in the covariance matrix is divided by �HIJKi(k-) ∗ HIJKi(k?). Lastly, using a fitting procedure 1141 
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we compare the Fisher z-transformation of the empirical correlation with a Fisher z-transformation 1142 

of the ideal correlation and minimize the mean squared error (MSE) of the correlation matrix.  1143 

 Testing for significant difference between standard and delayed accumulation was done 1144 

using a leave-one-out (LOO) cross-validation method. The metric used to test the validation was 1145 

the mean absolute percentage error (MAPE). MAPE allowed for comparison between the two 1146 

models because both models contained different dependent variables (D!,+). This method provided 1147 

15 different MAPE values, for each model, which were then compared using a one-tailed t-test. 1148 

The model with the lowest percentage error distribution better captured the underlying 1149 

autocorrelation structure of the data (Figure 4E).  1150 

 For Figure S5 we recalculated the VarCE but used 6x100-ms time bins spanning -50 ms 1151 

before motion onset to 550 ms after motion onset. Here we instead applied the analysis on all trials 1152 

irrespective of coherence. The CorCE statistical outcomes and preference for standard over 1153 

delayed accumulation process did not differ when using all the coherences. We quantified the 1154 

shaded errors bars by using a bootstrap method with 100 resamples.  1155 

  1156 

Population logistic decoder 1157 

Data were preprocessed by calculating spike counts in 100 ms time windows, stepping every 20 1158 

ms, through the first 600 ms after motion onset, and again separately for spikes aligned 400 ms 1159 

before and 200 ms after saccade onset. We looked only at trials with RTs 400 ms and longer. We 1160 

used two L1-regularized logistic decoders, one for choice and one for wager: 1161 

E,(+FGℎ(	#ℎ$F#I	$/	JFGℎ	K*GI/) = 	− log(1 + exp	(−(K- +K ∗ U)) − 	V‖K‖.1162 

where K represents a vector of weights at time t (vector length matches number of neurons), K- is 1163 

a bias term, and U is the spike count vector for each neuron in the session. The best 1164 

hyperparameter V was found using a 50-value grid search between [0 1000], using 5-fold cross 1165 

validation. The dataset was divided into a training set (90%) and test set (10%), the latter of which 1166 

was used to calculate the prediction accuracy (Figure 5B). If E, was greater than 0.5 this would 1167 

indicate that the decoder predicted either a right choice (for the choice decoder) or high bet (for the 1168 
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wager decoder). Values below 0.5 would indicate either a left choice or low bet. The performance 1169 

(accuracy) was defined based on the monkey’s choice and wager at the end of the trial. To 1170 

compute a ‘model decision variable’ from neural activity we first take the trials in which the monkey 1171 

made a choice that aligns with the signed coherence (except for 0% coherence). Afterwards, we 1172 

simply take the log odds of a particular choice (e.g., log X /(1!23,)
56/(1!23,)Y for rightward choices) given the 1173 

ensemble spike counts up to time t on a given trial (Kiani et al., 2014; Peixoto et al., 2021). 1174 

Importantly, for Figure 5A and 5C we used the log odds irrespective of choice, therefore the results 1175 

combine  log X /(1!23,)
56/(1!23,)Y for right choices and log X56/(1!23,)/(1!23,) Y for left choices. Because these log 1176 

odds for right choice and left choice are predominantly symmetric, this increases statistical power. 1177 

For Figure 5C the log odds for wager are also combined in the following manner:  log X /(3!23)
56/(3!23)Y for 1178 

high wagers and log X56/(3!23)/(3!23) Y for low wagers. 1179 

            To test whether the model decision variable (DV, log odds) for the choice decoder 1180 

contained a linear increase that was significantly dependent on motion strength, we utilized a linear 1181 

regression: 1182 

!H = ÄY + 5 ∗ Ä& + K>ℎ ∗ Ä$ + 5 ∗ K>ℎ ∗ ÄZ1183 

where ÄY is a bias term, 5 is time (20 ms time bins for 200-600 ms after motion onset), K>ℎ is 1184 

motion coherence level, and Ä&,$,Z are the weights accompanying the predictor variables. If the ÄZ 1185 

weight was significantly different from zero (4 < 0.05), then the modulation of log odds by motion 1186 

strength was deemed significant. Importantly, to compute this linear regression we only used the 1187 

mean !H shown in Figure 5A, excluding data cut off at the mean RT for each individual 1188 

coherence. 1189 

 As previously mentioned, both logistic decoders provide weights for each neuron through 1190 

time. Therefore, to test whether our sample of neurons contained a single population that 1191 

contributes approximately equally to choice and wager, we calculated the correlation between the 1192 

weight magnitudes (irrespective of sign) as well as the distribution of the difference in weight 1193 
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magnitude. The weights were preprocessed by taking their absolute value because of our interest 1194 

in magnitude and not direction. To calculate the correlation, we compute the Pearson’s correlation 1195 

between absolute weights for all our neurons at each time point. We collapsed over time by 1196 

averaging over the first 600 ms after motion onset and last 400 ms before saccade onset (Figure 1197 

5D, red line). We computed significance by randomly permutating the choice and wager weights 1198 

1000 times (Figure 5D, blue distribution). Additionally, the choice and wager decoder absolute 1199 

weights were also subtracted from one another to create a distribution which informs whether there 1200 

is a single population equally contributing to both choice and wager. Significance was evaluated 1201 

using the Hartigan’s dip test, which tests whether a distribution is unimodal or bimodal. 1202 

 To determine the trial-by-trial relationship between the choice and wager decoder we first 1203 

tested whether the wager decoder was predictive of the DV (log odds). Trials where categorized as 1204 

decoded-low or decoded-high confidence by calculating the mean E(JFGℎ) for the wager decoder 1205 

from saccade initiation till 200 ms after. Values above (below) .5 indicated a decoded-high 1206 

(decoded-low) wager. We strictly looked at trials with 0% coherence to try and remove any effects 1207 

of coherence on the results. Results for Figure 6A were calculated by then averaging the DV on 1208 

these decoded-high and decoded-low trials. Significance bars were calculated using a one-tailed t-1209 

test with Šidák’s correction. Importantly, differences in peak DV around saccade onset (Figure 6A) 1210 

highlight changes in the ratio /(1!23,)
56/(1!23,).  1211 

 The temporal offset between the peak log odds for choice and wager (Figure 5B) might 1212 

suggest that although deliberation for choice and confidence begins simultaneously, the updating 1213 

accrues some lag as the trial progresses. To test this, we related the log odds information of the 1214 

choice decoder to the E(JFGℎ) from the wager decoder. As shown in Figure 6A, there is a link 1215 

between the model DV and E(JFGℎ) that can be exploited to understand whether the temporal 1216 

updating is in sync or if there is some lag. In this case, the alternative hypothesis, given that the 1217 

peak of E(JFGℎ) is later than E(+FGℎ(), is that updating of the DV for choice precedes the updating 1218 

for wager. Figure 6B was calculated by using the 3 separate 400-ms time windows described in the 1219 
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legend. The independent variable, which is E(/FGℎ() from the choice decoder, was corrected so 1220 

that values near 0.5 (chance level) were close to zero and values moving away from 0.5 in either 1221 

direction (better predicting left or right choice) became closer to one. This was done using the 1222 

following equation: 1223 

#$//I#(IZ	E(/FGℎ() = *'[(E(/FGℎ() − .5) ∗ 2	 1224 

In essence, this remapping of E(+FGℎ() is changing the property of choice decoding strength so 1225 

that it is monotonic or linear. This transformation makes it possible for a linear relationship to exist 1226 

between corrected E(+FGℎ() and E(ℎFGℎ). To capture this relationship and its dependency on time 1227 

lag, we applied a linear regression, using the corrected E(+FGℎ() at time (, to the dependent 1228 

variable E(JFGℎ) at time ( + ∆(, where ∆( range from +/- 200 ms. To quantify how informative 1229 

corrected E(+FGℎ() is of E(JFGℎ) we used an R2 measurement at each time lag. Figure 6B displays 1230 

a corrected R2 which is simply the R2 value after subtracting out the average R2 values when the 1231 

time series of the decoders for each trial are randomly permuted. 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

 1246 
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SUPPLEMENTARY FIGURES 
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Figure S1. Three behavioral variables as a function of motion strength (% coh), including only 
the identical random seed trials (‘double-pass’ procedure (Bondy et al., 2018) adapted for 4 
options), to control for motion energy within each coherence. (A) Proportion of rightward choices 
as a function of motion strength. Both monkey H (top) and monkey G (bottom) showed 
significant differences in sensitivity between high- and low-bet trials. Smooth curves are from 
logistic regression. (B) Mean RT as a function of motion strength. Monkey H (top) displayed no 
differences in RT between high and low wager when controlling for motion energy, whereas 
monkey G (bottom) still showed large differences for all but the highest two coherences. Smooth 
curves show Gaussian fits. (C) Proportion of high bets as a function of motion strength. Both 
monkeys bet high more frequently as motion strength increased, irrespective of accuracy. Error 
bars in all plots are +/- SE. 
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Figure S2. Session-by-session sensitivity and amplitude parameters from fitting logistic and 
Gaussian functions to choice and RT, respectively. The vast majority of individual sessions 
showed greater sensitivity (accuracy) and faster RT amplitude when the monkey bet high vs. 
low. 
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Figure S3. (A) Accuracy as a function of RT quantile, split by motion strength (% coh). Accuracy tended to 
decrease as a function of RT (! < .0085 for every coherence except 0% in both monkeys and 51.2% in 
monkey G). (B) Proportion of trials with a high bet as function of RT. Colors same as A. (C) Accuracy as a 
function of motion energy. Colors represents five different RT quantiles. Significant increases in accuracy 
were observed across all RT quantiles for both monkeys (p<0.01). (D) Proportion of trials with a high bet as 
a function of motion energy. Colors same as C.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.06.606833doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.06.606833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  

Figure S4. Serial and parallel model fits on unconditioned data. (A,C) Serial model fitted to 
choice, RT, and wager as a function of motion strength (% coh). (B,D) Parallel model fitted to 
choice, RT, and wager as a function of motion strength (% coh). First two columns correspond 
to monkey H and the last two to monkey G.  
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Figure S5. Variance of the conditional expectation (VarCE) estimated for the left-high and 
left-low populations of neurons. In both monkeys (H=top, G=bottom) VarCE begins to 
increase at approximately 0.2 s from motion onset, then decreases near saccade onset. 
Colors represent the two populations, and the shaded regions are standard errors calculated 
using a bootstrap. 
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