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Autophagy and apoptosis play crucial roles in tumorigenesis. Recent studies have shown that autophagy and apoptosis
have a cross-talk relationship in anti-tumor therapy. It is well established that apoptosis is one of themain pathways of
tumor cell death. While autophagy can occurs in tumors with opposite function: protective autophagy and lethal au-
tophagy. Protective autophagy can inhibit tumor apoptosis induced by anticancer drugs, while lethal autophagy can
induce tumor cell apoptosis in cooperation with anticancer drugs. Hence, autophagy and apoptosis have synergistic
and antagonistic effects in tumor. Colorectal cancer is a commonmalignant tumor with high morbidity and mortality.
In recent years, colorectal carcinoma has achieved improved clinical efficacy with drug treatment. Nonetheless, in-
creasing drug-resistance limit the treatment efficacy, highlighting the urgency of exploring the molecular events
that drive drug resistance. Researchers have found that autophagy is one of themajor factors leading to drug resistance
in colon cancer. Therefore, elucidating the interaction between autophagy and apoptosis is helpful to improve the ef-
ficacy of anticancer drugs in clinical treatment of colorectal cancer. This review attaches great importance to the rela-
tionship between autophagy and apoptosis and related factors in colorectal cancer.
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Introduction

Colorectal Carcinoma is one of the most common types of cancer and
ranks third inmorbidity andmortality among all tumors [1]. The pathogen-
esis of colorectal cancer is a complicated multifactorial process involving
mutations in specific oncogenes and tumor suppressor genes. Recent de-
tailed studies have defined three major genetic pathways that lead to the
occurrence of CRC: the chromosomal instability pathway (CIN), serrated
pathway (CPG island methylator phenotype pathway-CIMP), andmicrosat-
ellite instability pathway (MSI) [2]. In recent years, the incidence of colo-
rectal cancer has been continually increasing and tends to be younger,
but its mortality has declined [3]. This has to do with changes in personal
eating habits and lifestyles as well as the improvement of medical levels
through economic development, making socio-economic development im-
portant factors affecting the incidence and mortality of colorectal cancer
[4,5]. In a word, the situation of diagnosis and treatment of colorectal can-
cer is not optimistic. Surgery remains the primary treatment in cases diag-
nosed early, but it is no longer effective in advanced cancer cases [6]. In
these patients, the efficacy of neoadjuvant and cytotoxic therapy has been
inhibited by rapidly evolving drug resistance and cancer recurrence [7].
Therefore, early prevention, diagnosis and treatment of colorectal cancer
is essential to reduce the incidence and improve the survival rate of patients
[8]. At present, a variety of targeted therapeutic drugs for colorectal cancer
has been developed clinically. There are three main classes of drugs: mono-
clonal antibodies against EGFR (cetuximab and panitumumab), monoclo-
nal antibodies against VEGF-A (bevacizumab), fusion proteins against
various angiogenic growth factors (e.g., aflibercept), and small-molecule
multi-kinase inhibitors (e.g., regorafenib) [9]. With the development of
new targeted drug therapies and the in-depth study of drug resistance
mechanisms, it seems that the survival rate of colorectal cancer patients
can be greatly improved.

Autophagy is a dynamic, multi-step process of degradation of cytoplas-
mic proteins and organelles by lysosomal pathway, which is closely related
to highly conserved genes, namely autophagy-related genes (ATG), and can
be subdivided into five stages: initiation, nucleation of the autophagosome,
expansion and elongation of the autophagosome membrane, closure and
fusion with the lysosome, and the degradation of intravesicular products
[10,11]. Based on the pathways that transport cytoplasm to lysosomal lu-
mens, there are three different types of autophagy: macroautophagy,
microautophagy and chaperone-mediated autophagy. Autophagy is gener-
ally referred to as macro-autophagy [12,13], which is mainly mediated
through the PI3K/Akt/mTOR and AMPK/mTOR signaling pathways [14],
the molecular mechanism by which mTOR kinase is an important regula-
tory molecule that induces autophagy. mTOR can be activated by PI3K/
AKT/mTOR pathway to inhibit autophagy, while the AMPK/mTOR path-
way negatively regulatesmTOR to promote autophagy [15]. Autophagy oc-
curs frequently during tumorigenesis and chemotherapy. In general,
autophagy protects cancer cells from apoptosis during chemotherapy, lead-
ing to drug resistance and refractory cancers [16]. However, other re-
searchers have found that autophagy can also cause cell death and inhibit
cell growth or have no effect [17], which depends on tissue type, stage of
tumor development, and degree of autophagy activity [18]. Thus, autoph-
agy is a double-edged sword in tumors. Nowadays, enhancing enhance
the anti-tumor effect through autophagy induction has become a hot
topic in medical biology.

Apoptosis, also knownas type I programmed cell death (PCD I), is an au-
tonomic regulated physiological process leading to cell death characterized
by cell shrinkage, membrane blebbing, DNA fragmentation and the
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formation of apoptotic bodies. There are two main apoptotic pathways: ex-
ogenous or death receptor pathway and intrinsic or mitochondrial path-
way, as well as a perforin/granzyme pathway. These three pathways
converge on the same terminal, or execution pathway, which is initiated
by the cleavage of caspase-3 [19,20]. Once caspases-3 are initially acti-
vated, cell death seems irreversible. Activation of caspase-3 occurs through
the upstream signaling molecule Caspase-9 or caspase-8, and then the acti-
vated Caspase-3 splices PARP, inactivating PARP and subsequently leading
to apoptosis. Thus, the regulation of cell death by apoptosis is unidirec-
tional [21,22], and caspases-3 are central to the mechanism of apoptosis.
Meanwhile, the balance of pro-apoptotic and anti-apoptotic protein regula-
tors is the key to determination whether apoptosis occurs [23]. Cancer is
often found to over express anti-apoptotic proteins to resist apoptosis
[24], helping cancer cells survive, proliferate, and resist drugs [25].
Hence, deregulation in apoptotic cell deathmachinery is a hallmark of can-
cer [26]. To sum up, apoptosis is a promising target in the treatment of
tumor.

The main way of crosstalk between autophagy and apoptosis in CRC

Autophagy and apoptosis are both typical types of programmed cell
death, and dysfunction of their pathways can lead to the development of tu-
mors. Nevertheless, relevant studies have shown that autophagy has a dual
role in tumors, which can also help tumor cells survival under stress condi-
tions such as hypoxia or low nutrition [27]. Autophagy and apoptosis usu-
ally occur within the same cell, and on the sequence of autophagy is in
advance of apoptosis [28]. At the same time, whether autophagy induces
or inhibits apoptosis depending on the type of cell, nature, and duration
of the stimulus/stress [29]. Therefore, the relationship between autophagy
and apoptosis is complex in CRC, involving a variety of signal transduction
pathways and regulators. According to the different interaction of autoph-
agy and apoptosis in tumor, it can be roughly divided into synergistic effect,
promoting effect and antagonistic effect [27,28,30,31] (Fig. 1).

Collaborative effect

Autophagy, also known as type II programmed cell death, like apopto-
sis, can lead to tumor cell death by chemotherapeutic drugs in tumor-
dependent autophagy [32]. It depends on the tissue type, stage of tumor de-
velopment, and degree of autophagy activity [18]. For example, excessive
or prolonged autophagy can lead to cell death [27]. At present, many stud-
ies have found that autophagy and apoptosis play a collaborative role in the
treatment of CRC, but the precise mechanism of their collaboration is un-
clear. According to the report, the activation of Galectin-1 induced by
shikonin potently activates apoptosis in colorectal carcinoma cells and au-
tophagic cell death both in vitro and in vivo [33]. The accumulation of
ROS induced by shikonin promotes the formation of Galectin-1 dimeriza-
tion, which induces autophagy and apoptosis of downstream cells by acti-
vating the JNK signaling pathway, eventually leading to cell death
together. In addition, M4IDP induces apoptosis through the inhibition of
Akt phosphorylation and the increase of Bad protein expression, and in-
duces lethal autophagy through the prolonged inhibition of Akt/mTOR/
p70S6K pathway [32]. This result shows that the PI3K/AKT/mTOR path-
way plays different roles in autophagy and apoptosis of colorectal cancer.
Because of PI3K/AKT/mTOR pathway can not only inhibit autophagy
through the activation of mTOR but also phosphorylate caspase-3,
Caspase-9, and Bad through the activation of AKT, to prevent their activa-
tion and further inhibit the apoptosis of cells [34–36]. It has been reported
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recently, As4O6 induced apoptosis of SW620 cells by up-regulating the ex-
ogenous pathway of caspase-8 activation by DR5 and the endogenous path-
way mediated by mitochondria, while it also induce beclin-1 independent
autophagic cell death [37]. Thus, these findings suggest that autophagy
and apoptosis can comparably induce cancer cell death in CRC. However,
another form of cooperation between autophagy and apoptosis has been re-
ported, RCE induces HT-29 cell apoptosis through the caspase-7-dependent
pathway, but it does not constitute the main mechanism of cell death,
whichmainly occurs through PCD-II probably as result of excessive autoph-
agy [38]. PCDH17 combined with 5-FU in the treatment of colorectal can-
cer has also been found to induce apoptosis and autophagic cell death. In
addition, autophagy played a leading role in cell death induced by
PCDH17, as an autophagy inhibitor blocked cell death to better than the
pan-caspase inhibitor Z-VAD-FMK [39]. However, compared with apopto-
sis, autophagy in promoting cell death is not always a dominant position.
For example, Hsuan S et al. found that the main mechanism of WE induced
cytotoxicity is the direct effect of apoptosis and the indirect effect of au-
tophagy. Therefore, apoptosis plays a leading role in the death of colorectal
cancer cells induced byWE [40]. These results indicated that the collabora-
tive effect of autophagy and apoptosis also exists in the form of one main
and one auxiliary in CRC. To sum up, the synergistic effect of autophagy
and apoptosis in colon cancer mainly exists in two forms: equivalent, one
main and auxiliary.

Promoting effect

In the study of inhibiting radiation-induced autophagy to sensitize ma-
lignant glioma cells, it found that autophagy could enhance cell apoptosis,
while inhibiting autophagy did not affect the function of cell apoptosis, in-
dicating that autophagymay not directly lead to cell death, but only played
a promoting role [41]. This relationship between autophagy and apoptosis
has also been found in studies of colorectal cancer [42–44]. Petroni G et al.
3

found that Cla induced and blocked autophagy by regulating both the
PI3K/Akt pathway and the herg1-dependent regulation of P53 in colorectal
cancer. The former is related to the reduction of the phosphorylation levels
of Akt and erk1/2, while the latter is related to the inhibition of autophagy
flux. Late damage of autophagy-mediated degradation triggers apoptotic
cell death, which is caused by activation of P53 and caspases [42]. The
stereoselective assembly of Multifunctional Spirocyclohexene pyrazolone
also induced autophagy-dependent apoptosis in colorectal cancer cells
[43]. Thesemay be related to autophagy activation of apoptosis-related fac-
tors, and the sequence of autophagy is usually before apoptosis [28]. For in-
stance, Emodin induces autophagy, which leads to apoptosis in colon
cancer cells in a ROS-dependent manner [44]. In a word, these results sug-
gest that autophagy can trigger cell apoptosis in colorectal cancer. How-
ever, there are few studies on the role of apoptosis signal in the
regulation of autophagy in colorectal cancer, so its specific mechanism of
action remains unclear.

Antagonistic effect

Protective autophagy has been found in many diseases, especially can-
cer. It is easy to induce protective autophagy during tumor chemotherapy,
which helps tumor cells survive under stress conditions such as hypoxia or
low nutrition [27], leading to drug resistance and refractory tumors [16].
For example, Zhao Z et al. found that the expression of VEGF-A protein in
colorectal cancer tissues was up-regulated. Anti-VEGF (bevacizumab)
inhibited cell activity and induced apoptosis. In addition, bevacizumab in-
duced autophagy through increased HIF-1α expression. Inhibition of au-
tophagy by chloroquine or small interfering RNA promoted apoptosis and
proliferation inhibition induced by bevacizumab [45], indicating that
bevacizumab induced protective autophagy. Recent studies have shown
that LncRNA plays a regulatory role between autophagy and apoptosis
[46,47], LncRNA (HAGLROS) are highly expressed in CRC tissues and
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cells which is associated with shorter survival time in CRC patients. Down-
regulation of HAGLROS in HCT116 cells can induce apoptosis and inhibit
autophagy by regulating the mir-100 /ATG5 axis and the PI3K/AKT/
mTOR pathway [46]. Moreover, LncRNA (Malat1) activated autophagy
and promoted cell proliferation, yet inhibited apoptosis by sponging miR-
101 in colorectal cancer cells [47]. Thus, LncRNA-induced autophagy
plays an important role in inhibiting the apoptosis of colorectal cancer
cells. All in all, the antagonistic effects of autophagy and apoptosis are prev-
alent in colorectal cancer, which contributes to the formation and develop-
ment of CRC in an adverse environment such as low oxygen and low
nutrition [27].
The main regulatory factors of the interaction between autophagy
and apoptosis in CRC

The interaction between autophagy and apoptosis in colorectal cancer is
mainly regulated by related signal transduction pathways and factors
[48–50] (Fig. 2). At present, relevant literature has reported related factors
are involved in regulating the interaction between autophagic and cell apo-
ptosis in other tumors, such as Beclin-1, P62, caspase, Bcl-2 and so on
[51,52]. It was also found that these related regulatory factors were involved
in the interaction between autophagic and apoptosis in colorectal cancer
[48,53] (Fig. 2), the following key describes several major factors of interac-
tion between autophagy and apoptosis: Fig. 2. The interaction between au-
tophagy and apoptosis in colorectal cancer. The interaction between
autophagy and apoptosis in colorectal cancer is mainly regulated by related
signal transduction pathways and factors, such as the PI3K/Akt/mTOR sig-
naling pathway, AMPK/mTOR signaling pathway, LncRNA, miRNA.
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LC3

Microtubule-associated protein 1A/1b Light chain 3 (LC3), which is
the mammalian homologue of yeast ATG8 [54]. During autophagy, the
cytoplasmic form of LC3 (LC3-I) is conjured with phosphatidylethanol-
amine (PE) to form the LC3-phosphatidylethanolamine conjugation
(LC3-II). When autophagosomes fuse with lysosomes to form
autolysosomes, intra-autophagosomal lc3-II degrades with the contents
[55]. Therefore, LC3 is a hallmark of autophagy [56]. At the same time,
LC3 has also reported playing an important role in the interaction be-
tween autophagy and apoptosis, such as Tao R et al. found that Canthar-
idin sodium activates Caspase-3 through the LC3 autophagy pathway to
induce HepG2 cell apoptosis [57]. Furthermore, Spred2 co-localized
and interacted with LC3 through the LC3-interacting region (LIR)
motif-in its SPR domain to induce caspase-independent but
autophagy-dependent cell death in human cervical cancer HeLa and
lung cancer A549 cells [54]. Similarly, anti-tumor drugs can also induce
cell apoptosis through the LC3-autophagy pathway in colorectal cancer.
Selumetinib (AZD6244), a potent, orally bioavailable, allosteric MEK1/
2 inhibitor, while MEK1/2 is one of the critical molecules in the RAS/
RAF/MEK/ERK pathway [58]. Moreover, the existence of an intense
crosstalk between RAS/RAF/MEK and PI3K/AKT/mTOR pathways has
been demonstrated [58]. Therefore, Selumetinib (AZD6244) can induce
apoptosis of colorectal cancer cells through the LC3-autophagy pathway
[59]. The main mechanism of Selumetinib is to promote autophagy in
the early stage of autophagy and inhibit autophagy in the final stage,
leading to the accumulation of autophagosomes and the arrest of au-
tophagy, thus inducing apoptosis. To sum up, LC3 can be a potential tar-
get for targeted drug therapy for colorectal cancer.
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Beclin-1

Beclin-1 is an important component of autophagy signal transduction
pathway. It affects every major step in autophagic pathways, from
autophagosome formation to the maturation of autophagosome/endosome
[60]. The initiation of autophagy requires dissociation of Beclin-1 from Bcl-
2 and subsequent binding with PIK3C3/ VPS34 (PtdIns3K), whereas the
BH3 domain of Beclin-1 is inhibited by Bcl-2 or Bcl-XL [60,61]. Previous
studies have confirmed that ROCK1 is one of the upstream regulators of
Beclin-1 mediated autophagy and controls the homeostasis between au-
tophagy and apoptosis [58]. Lin P et al. found that ARV S1133 caused au-
tophagy and apoptosis in Vero and DF1 cells, which was accompanied by
the activation of the Beclin-1 promoter in the early tomiddle stages, and in-
duction of caspase-3 expression in the middle to late stages of infection.
Therefore, RhoA/ROCK1 signaling pathway plays an important role in
the process of cell autophagy to apoptosis [62]. Furthermore, Zhou et al.
showed a correlation between the under-expression of Beclin-1 and the in-
duction of apoptosis in colorectal cancer cells by Icaritine [63]. Interest-
ingly, Icaritin activates the AMPM/mTOR signaling pathway. Activation
of mTORC1 will inhibit autophagy, while AMPK-induced inactivation of
mTORC1 could provoke autophagy. Previous studies have demonstrated
that Icaritine induces apoptosis by inhibiting autophagy in CRC cells [64].
In another study, the transition from autophagy to apoptosis after cleavage
of Beclin-1 was observed in steroidal saponin-treated HCT-116 cells [65].
These results indicated that autophagy-related protein Blin -1 was also in-
volved in the regulation of apoptosis. Therefore, Beclin-1 is one of the im-
portant factors involved in regulating the interaction between autophagy
and apoptosis in colorectal cancer.

SQSTM1\P62

SQSTM1\P62 is an autophagic adaptive protein that bind to
ubiquitinated protein aggregates and delivers them to autophagosomes
[66]. At the same time, P62 is also an important molecular for tumor gene-
sis and tumor treatment [53,67], autophagy can suppress tumorigenesis
through elimination of P62. Li et al. found that combination of rapamycin
and SAMC induces HCT-116 cells apoptosis through autophagy/P62/Nrf2
pathway, and P62 played a negative-regulatory role between Nrf2 and au-
tophagy [53]. Previous studies have shown that autophagy can inhibit
tumor development by eliminating P62. So, rapamycin can down-regulate
p62 expression by promoting autophagy. Also, the recent report that
Nrf2- Keap1 binding competed p62 for autophagy degradation [68]. There-
fore, the Nrf2-Keap1 system activated by rapamycin and SAMC co-
treatment could be related to autophagy through p62. In addition, studies
have shown that P62 can regulate ATM/ H2AX pathway mediated escin-
induced DNA damage and apoptosis in colorectal cancer [69]. In another
study, P62 blocks apoptosis by inhibiting Fas/Cav-1 complex formation.
To sum up, P62 plays a regulatory role in the interaction between autoph-
agy and apoptosis in CRC.

Atg5-Atg12

In the autophagy signal transduction pathway, the Atg5-Atg12 conju-
gate has been shown to promote Atg8-PE formation in a manner analogous
to the function of E3 enzymes during classical ubiquitin conjugation reac-
tions [70]. However, in CRC cells with high microsatellite instability
(such as HCT116 cells), Atg5 and Atg12 mutations may contribute to the
tumor progression by deregulating the autophagy process [71]. Won S
et al. found that JA-induced formation of Atg5-Atg12 contributed to the
promotion of HT-29 cells apoptosis by JA-induced autophagy [72]. In an-
other study, interaction of Atg5-Atg-12 with FADD can induce autophagic
death of HT29 cells [73]. These studies indicate that the ATG5-ATG12 con-
jugate may be involved in regulating the cascade between autophagy and
apoptosis in colorectal cancer. Thus, the Atg5-Atg12 conjugate plays an im-
portant role in balancing autophagy and apoptosis in colorectal cancer.
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Bcl-2 family proteins

Bcl-2 family proteins include both pro- and anti- apoptotic proteins and
are the major regulators of the apoptotic process. Bax and Bad are pro-
apoptotic proteins, while Bcl-2 and Bcl-x are anti-apoptotic proteins [74].
Bax permeabilizes the mitochondrial outer membrane, releasing pro-
apoptotic factors that activate caspases [75], which can then active the nu-
clear protein PARP [76]. While Bcl-2 can bind to and sequester Bax to pre-
vent activation of the downstream mitochondrial death cascade [77].
Therefore, the Bcl-2/Bax ratio is very important in regulating caspase-
dependent apoptosis. Cokergurkan A et al. found that Long-term use of
low-dose purvalanol in the treatment of HCT 116 cells can trigger
caspase-dependent apoptotic cell death by regulating bcl-2 familymembers
[78]. Other studies also found that non-phosphorylated Bad promotes apo-
ptosis by binding to and inactivating the anti-apoptotic proteins of Bcl-2 or
Bcl-XL [32]. In addition, there is increasing evidence that apoptosis and au-
tophagy were regulated by the Bcl-2 protein family [79]. Huang S et al.
showed Celecoxib can induce apoptosis and autophagy in human colorectal
cancer cells, both of which can be negatively regulated by Bcl-2/Bcl-XL. At
the same time, ABT-737 can enhance celecoxib-mediated apoptosis and au-
tophagy, and play a synergistic cytotoxic effect [80]. Celecoxib-induced ap-
optosis and autophagy may be related to its known ability to trigger ER
stress [81], while ABT-737 combined with celecoxib treatment produced
synergistic cytotoxic effects that were due primarily to caspase-dependent
apoptosis. In a word, in CRC, Bcl-2 family proteins are involved not only
in the regulation of apoptosis, but also in the regulation of autophagy.

ROS

Reactive oxygen species (ROS), generated during cellular metabolism
through leakage of electrons by mitochondrial electron transport as well
as the endoplasmic reticulum(ER) [82,83], is one of the important mecha-
nisms of mitochondrial dysfunction and cell damage [84,85]. Research
has shown that ROS have an important role in the crosstalk between au-
tophagy and apoptosis [86]. ROS has a negative feedback effect in autoph-
agy. On the one hand, ROS can promote the autophagy process. On the
other hand, autophagy reduces ROS by removing damaged mitochondria
and ER as well as other substances that contribute to ROS production
[87,88]. Meanwhile, ROS is a mediator of cell apoptosis [82]. Kim K et al.
showed intracellular ROS production played a critical role during ECZ-
induced apoptosis and autophagy of colon cancer cells and that increasing
ROS generation by the inhibition of autophagy results in enhanced apopto-
sis [89]. Furthermore, studies have found that Shikonin trigger the dimer-
ization of Galectin-1 by inducing the accumulation of ROS, which
eventually lead to autophagy and apoptosis of colorectal cancer cells
[33]. It is well known that ROS over-production can trigger ER stress.
Peng Y et al. found thatM4IDP triggers ER stress by promoting ROS produc-
tion, subsequently leading to apoptosis and autophagy in colorectal cancer
cells [32]. Therefore, ROS from mitochondria and endoplasmic reticulum
can be involved in regulating the cascade reaction between autophagy
and apoptosis in colorectal cancer. Overall, ROS can be considered as the
target molecules for chemotherapy drugs for colorectal cancer.

P53

P53 functions as the most efficient suppressor of cancer development
and progression [50], which plays essential roles in cellular protection
mechanisms against a variety of stress stimuli, such as DNA damages, met-
abolic changes and oncogene activation [90,91]. The activation of p53 in-
duces apoptosis or autophagy in certain cancer cells [90]. At the same
time, p53 has been shown to simultaneously control both apoptosis and au-
tophagy by up regulating apoptotic genes and regulating multiple levels of
the AMP-activated protein kinase-mTOR axis, respectively [92]. For exam-
ple, An Y et al. found that digiferrol activated p53-dependent gene expres-
sion by phosphorylating the p53 protein at ser-15 residue, inducing cell
cycle arrest, apoptosis, and autophagy in colon cancer cells [50]. In another
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study, long-term treatment of colorectal cancer cells by Cla leads to the
blocking of autophagy, activation of p53 and caspases, and induction of
cell apoptosis [42]. In addition, Garufi A showed in normal/high glucose
condition a mutual unbalance between p53-dependent apoptosis (PUMA)
and autophagy (DRAM) gene occurred, modifying the ADR-induced cancer
cell death in HG both in vitro and in vivo [93]. It is well known that PUMA
and DRAM are two target genes of p53. PUMA is mainly involved in p53-
induced apoptosis. DRAM interacts with other downstream factors of p53
to induce autophagy. Interestingly, DRAMhas also involved in p53 induced
cell death [93,94]. Therefore, p53 can participate in the regulation of au-
tophagy and apoptosis through the interaction between the regulatory fac-
tors PUMA and DRAM. All in all, p53 plays a regulatory role in the
interaction between autophagy and apoptosis in CRC.

LncRNA

Long noncoding RNAs (LncRNAs) are widely defined as transcriptional
RNA molecules with a length of more than 200 nt and no protein-coding
ability [95]. Bioinformatics analysis showed that LncRNA is the center of
normal development and tumorigenesis at the transcriptional level or
post-transcriptional level [96], which is actively involved in the regulation
of malignant phenotypes, such as apoptosis, autophagy, cell cycle, cell mi-
gration, et al. [97,98]. It is reported that inhibition of autophagy by 3-MA
can not only alleviate Malat1-induced cell proliferation, but also promote
Malat1-induced cell apoptosis. Therefore, Malat1 can activate autophagy
and promote cell proliferation. In addition, LncRNA Malat1, as an endoge-
nous sponge, can directly adsorb miR-101, thereby inhibiting the effect of
miR-101 on the apoptosis of colorectal cancer cells [47]. It follows that
LncRNA can be used as ceRNAs to regulate gene expression through sponge
miRNA and play a key role in tumors [99,100]. Song F et al. showed down-
regulation of LncRNA UCA1 leads to increased phosphorylation of mTOR,
PI3K and AKT, and significantly decreased levels of LC3 and autophagy-
related gene 5 (ATG5) protein, leading to increased P62 expression. In-
stead, autophagy activator RAPA reversed the effect. Therefore, down-
regulation of UCA1 induces autophagy inhibition by activating the AKT/
mTOR signaling pathway, thereby inhibiting cell proliferation and promot-
ing apoptosis of caco2 cells [101]. Mounting evidence suggests that
LncRNA is a key factor in autophagy [102].Moreover, through the negative
regulation of miR100/ATG5 axis, the down-regulation of LncRNA
HAGLROS can induce the apoptosis of CRC cells and inhibit autophagy
[46]. Thus, LncRNA plays an important role in balancing autophagy and
apoptosis.

At present, with the in-depth study on the interaction between autoph-
agy and apoptosis in colorectal cancer, an increasing number of factors
have been found to be involved in regulating the interaction between au-
tophagy and apoptosis, such as miRNA [46,103]. MicroRNAs (miRNAs)
are a class of small, endogenous, non-coding, single-stranded RNAs of
18–25 nucleotides in length that regulated the expression of their target
genes through mRNA degradation or translational inhibition. At present,
miRNAs have been found to regulate many cellular biological processes in-
cluding apoptosis, cell proliferation, and autophagy [104]. It has been re-
ported that Mir-218 inhibits the protective autophagy of cells through the
expression of YEATS4, making HCT-116/L-OHP cells sensitive to L-OHP-
induced apoptosis [103]. However, it is not the only type of miRNA in-
volved in regulating the interaction between autophagy and apoptosis in
colorectal cancer. Studies have found that more and more different types
of miRNAs are involved in regulating various stages of autophagy and apo-
ptosis interactions in CRC [46,47,104].

Conclusions

In summary, autophagy and apoptosis play an important role in the de-
velopment and progression of colorectal cancer. However, the relationship
between autophagy and apoptosis is anfractuous. On one hand, autophagic
proteins can be involved in regulating the process of apoptosis. Moreover,
whether autophagy induces or inhibits apoptosis depends on the type of
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cell, nature, and duration of the stimulus/stress [29]. On the other hand,
regulators of apoptosis also function as regulators of autophagic activation
[105]. Therefore, the identification of the interaction pattern between au-
tophagy and apoptosis, as well as the regulatory factors and signal transduc-
tion pathways involved, plays a crucial role in the treatment of colorectal
cancer. As the research further develops, the interaction mechanism be-
tween autophagy and apoptosis will be further elucidated. Autophagy or
apoptosis can be used as a new target to provide a basis for the development
of targeted tumor drugs for colorectal cancer.
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