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Abstract: Microglia are immune brain cells involved in neuroinflammation. They express a lot of
proteins on their surface such as receptors that can be activated by mediators released in the microglial
environment. Among these receptors, purinergic receptor expression could be modified depending
on the activation status of microglia. In this review, we focus on P2Y receptors and more specifically
on P2RY12 that is involved in microglial motility and migration, the first step of neuroinflammation
process. We describe the purinergic receptor families, P2RY12 structure, expression and physiological
functions. The pharmacological and genetic tools for studying this receptor are detailed thereafter.
Last but not least, we report the contribution of microglial P2RY12 to neuroinflammation in acute
and chronic brain pathologies in order to better understand P2RY12 microglial role.
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1. Introduction

Microglia are the main immune cells in the brain. These plastic cells display a variety
of morphological and functional states in both healthy and pathologic conditions. Numer-
ous studies demonstrated the involvement of microglial activation in different cerebral
neuroinflammatory pathologies [1]. Microglia express a variety of cell-surface proteins that
mediate their functions. Among these proteins, one can find some purinergic receptors.
The latter are membrane-bound, ligand-gated ion channel (P2X) and G protein-coupled
receptor (GPCR) (P2Y) for extracellular nucleotides involved in purinergic signaling. Glial
cells release and respond to ATP and other purinergic molecules, released by injured cells
or secreted, under both physiological and pathological conditions. Purinergic signaling
plays an important role in regulating microglial activity. As microglia are involved in
neuroinflammation, increasing studies have described the role of microglial purinergic
receptors in brain inflammatory processes. In this review, we focus on P2Y receptors and
more specifically on P2RY12. After a brief description of purinergic receptor families, we
then review P2RY12 structure, expression and functions, especially the microglial one. We
also summarize the pharmacological and genetic tools developed to study this purinergic
receptor. Then, we highlight the contribution of microglial P2RY12 to neuroinflammation
in nervous system pathologies.

2. P2RY12
2.1. Purinergic Receptor Families

Purinergic signaling and receptors were first described in the 1970s [2,3]. Purinergic
signaling is involved in neurodevelopment and pathophysiological processes, such as cell
proliferation, differentiation, neuron–glia cross-talking and inflammation [4].

The purinergic receptor family is divided into two subfamilies, P1 and P2 receptors,
depending on their endogenous agonists [4,5]. On the one hand, the P1 receptor subfamily
is constituted of four subtypes that are metabotropic receptors sensitive to adenosine. On
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the other hand, P2 receptors are activated by nucleoside di- and triphosphates (denosine
diphosphate (ADP) and ATP; uridine di-(UDP) and triphosphate (UTP); UDP-glucose) and
classified as P2X and P2Y receptors. The P2X receptor group is composed of seven subtypes
that are ATP-gated ion channels permeable to cations (Na+, K+ and Ca2+). P2Y receptors
are metabotropic receptors coupled with a G-protein that are activated by purines and
pyrimidines [4,6]. P2RY12 is one of the eight members of P2Y receptor group expressed by
humans [7]. Indeed, P2RY are divided into two subgroups based on ligand binding and
the selectivity of G-protein binding. The first one consists of P2RY1, P2RY2, P2RY4, P2RY6
and P2RY11 that are coupled with Gq protein, which stimulates phospholipase C (PLC),
resulting in calcium release from intracellular stores and protein kinase C (PKC) activation.
One of these receptors, P2RY11 can also be coupled with Gs protein, which stimulates
adenylate cyclase (AC) and increases the production of cyclic adenosine monophosphate
(cAMP). On the contrary, the members of the second subgroup, P2RY12, P2RY13 and
P2RY14, are coupled with Gi protein, resulting in a decreased cAMP production [6].

2.2. Structure

P2RY12 is a Gi-coupled receptor containing 342 amino acids and with a molecular
weight of 39 kilodaltons. Its structure is composed of seven hydrophobic transmembrane
regions of α-helice connected by three extra- and intracellular loops, and a carboxy-terminal
helix VIII that is parallel to the membrane bilayer on the cytoplasmic side (Figure 1) [8].
All P2Y receptors possess four cysteine residues (Cys 17, 97, 175, 270) at their extracellular
domain. Regarding P2RY12, these four cysteine residues form two disulfide bonds: the
first one between the N-terminal domain and the third extracellular loop, and the second
one between the first and the second extracellular loop. These disulfide bonds play a key
role in the stimulation/inhibition of this receptor.
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Figure 1. Schematic secondary structure of P2RY12. P2RY12 is composed of seven α-transmembrane
domains connected by three extra- and intracellular loops. There are four extracellular cysteines
(Cys) at positions 17, 97, 175, and 270 that form two disulfide bonds.

It is noteworthy that there is a marked difference between the agonist and the antag-
onist bound receptor structure. Indeed, when P2RY12 is activated, the receptor binding
pocket is contracted, suggesting large-scale rearrangements in extracellular regions during
the binding process. In this structure, both disulfide bonds are part of the agonist bound
structure [6]. When it is antagonized, the receptor binding pocket is wide open and consists
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of two subdomains. In addition, the disulfide bond between the first and the second
extracellular loop is missing.

2.3. Expression

Initially, P2RY12 was identified on platelets and in a lesser quantity in some re-
gions of the brain. However, it is now well established that P2RY12 has a wider cell
expression [9–12], as it is also expressed on vascular smooth muscle cells, brown adipocytes,
cholangiocyte primary cilia, osteoblasts, osteoclasts, and several immune cells including
dendritic cells and lymphocytes.

Within the brain, while there is no doubt that this receptor is expressed on the ram-
ified processes of microglia [13–15], its expression in other brain cells is not so clear.
Indeed, there are conflicting reports whether P2RY12 is expressed [9,12,16] or not on
macrophages [13,15,17]. P2RY12 has also been detected on oligodendrocytes, suggesting
that its expression might be a marker of demyelinating lesions in neuroinflammatory
diseases, such as multiple sclerosis [17]. However, recently, Cserép and collaborators [18]
have reported that P2RY12 expression is exclusively restricted to microglia, in agreement
with previous studies [19–21].

The literature reports a stable P2RY12 expression during human brain development,
including fetal phases [15]. In humans [22] and mice [23], P2RY12 expression is reduced in
aged microglia compared to young microglia. Notably, human samples originated from
patients with neuropathologies involving modification of microglial activation, which may
have influenced the expression of P2RY12.

A sexually dysmorphic behavior in microglial P2RY12 expression was also observed
in mice, as it was lower in four-month females than in males [23].

2.4. Functions

As mentioned above, P2RY12 is coupled with Gi-protein that inhibits AC and affects
intracellular calcium concentration [4]. Consequently, its activation or inhibition affects
many cellular and physiopathological responses.

2.4.1. Platelet Aggregation

Platelet P2RY12 plays a crucial role in ADP-induced aggregation, which explains why
this receptor is an established target of several antithrombotic drugs, such as clopidogrel
or ticagrelor [24]. ADP-induced P2RY12 activation mediates AC inhibition through the
activation of the Gαi2 G protein subtype, although effective coupling may also occur with
Gαi1 and Gαi3 [25]. It is worth mentioning that ADP by itself is unable to cause the release
of platelet dense granules, but its binding to both platelet receptors, P2RY1 and P2RY12,
amplifies and sustains the secretion and aggregation induced by strong agonists, such as
thrombin and thromboxane A2 [12]. Indeed, concomitant stimulation of P2RY1 and P2RY12
is necessary to generate normal ADP-induced platelet aggregation [6]. In response to ADP,
P2RY1 triggers the mobilization of calcium from internal stores, which results in platelet
shape modification and weak transient aggregation, while P2RY12 potentiating secretion
and stabilizing aggregation. Therefore, P2RY12 is a key player in thrombus formation and
stabilization.

Platelet activation also plays a fundamental role in inflammation, by modulating
innate and adaptive immune responses. Indeed, upon ADP-induced P2RY12 activa-
tion, platelets release mediators from their granules, including various cytokines and
chemokines, which can recruit and activate leukocytes, mainly neutrophils and mono-
cytes [10,12,26]. Thus, the influence of activated platelets on inflammatory state has been
demonstrated in several diseases, such as sepsis, rheumatoid arthritis, myocardial infarc-
tion and pulmonary inflammation.
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2.4.2. T Cell Activation

Among the other blood cells expressing P2RY12, it has been shown that the activation
of this receptor on dendritic cells promotes specific T cell activation by increasing anti-
gen endocytosis [27], while P2RY12 inhibition induces an immunosuppressive effect by
decreasing antigen uptake [12].

2.4.3. Vascular Effects

In vascular smooth muscle cells, P2RY12 plays an important role in the physiological
functions of blood vessels, such as vasoconstriction, vasodilation and extracellular matrix
production [12]. Moreover, ADP-induced P2RY12 activation seems to generate vascular
inflammatory changes by upregulating monocyte chemoattractant protein-1 (MCP-1) and
promoting monocyte adhesion [28]. MCP-1, one of the main mediators of vascular in-
flammation, triggers vessel wall inflammation by chemotactically inducing the monocyte
migration into the vessel wall. Therefore, P2RY12 represents an important therapeutic
target in atherosclerotic diseases.

2.4.4. Bone Remodeling

There is also evidence that P2RY12 is involved in bone remodeling [11], as mice with a
deficiency of this receptor present decreased osteoclast activity and show lower age-related
bone loss.

2.4.5. Microglia Functions: Motility and Migration

Microglia account for about 10% of brain cells and are the most abundant mononu-
clear phagocytes in the CNS. They participate in the maintenance of various homeostatic
functions [29,30], but they are also the primary effectors of central inflammatory response
to acute and chronic disorders [1,31]. Indeed, these cells display remarkable plasticity and
are able to respond to a vast array of challenges. It is noteworthy that the microglial popu-
lation is highly heterogeneous both in terms of cell density and transcriptional signature
depending on brain regions, but also to age and gender, which underscores the numerous
functions of microglia [30,32]. Despite these transcriptomic differences in brain regions, it
has been demonstrated that all cells express a core profile of genes, among which is P2RY12.
Moreover, it has been reported that in pathological conditions, such as neuroinflammation,
microglia lose their transcriptomic homeostatic signature.

As the resident immune cells of the brain, it is well established that microglia survey
the parenchymal environment by physically interacting with other cells such as neurons,
other glial cells (oligodendrocytes, astrocytes) and cerebrovascular endothelial cells [33,34].
Their capacity to migrate is indispensable to tissue maintenance, but also in pathological
conditions. Microglia exhibit two modes of motility [30,35]. Indeed, on the one hand,
under physiological conditions, they continuously extend and retract their processes in
all directions to survey the brain. On the other hand, under pathological conditions,
activated microglia migrate toward the lesion site using chemoattractant gradient as a
directional cue, in order to envelop sites of tissue damage with their processes. It is now
established that these two motility modes differ mechanistically. Thus, although P2RY12
seems necessary to microglial directed motility (chemotaxis) in response to CNS injury [13],
its role in the constant surveillance of the brain, as well as in the microglial ramification,
appears to be mainly dependent on the tonic activity of the newly described two-pore
domain K+ channel, THIK-1 (TWIK-related halothane-inhibited K+ channel) [35]. Thus,
THIK-1 maintains the “resting” potential of microglia. In line with these data, Sipe and
collaborators [36] also reported that P2RY12 signaling contributed to but was not necessary
to maintain microglial ramified morphology.

In healthy brain, “resting” microglia exhibit a ramified shape, but in pathological
brain, they progressively adopt an amoeboid shape once activated. It is noteworthy that
the purinergic receptor density is modified depending on microglial activation state [37]
(Figure 2). Indeed, in response to the chemoattractant or “find-me” signal, ATP, released
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from damaged cells [38,39], the first step of microglial activation is the stimulation of
P2RY12. The latter triggers the extension of microglial processes towards the site of
injury, in cooperation with another microglial receptor, the adenosine receptor (AR) A3.
Then, these processes retract due to P2RY12 downregulation and ARA2A upregulation.
Microglial migratory activity towards the source of released ATP also depends on the
interaction between P2RY12 and P2RX4. After total retraction of microglial processes,
microglia adopt an amoeboid morphology and exert phagocytosis (P2RY6), pinocytosis
(P2RY4) or secretory activity (P2RX4 and 7) depending on the purinergic receptor involved.
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ATP release from damaged cells, P2RY12 stimulation triggers the extension of microglial processes
towards the site of injury, in cooperation with the adenosine receptor (AR) A3. Both these receptors
are upregulated during this step. Then, P2RY12 downregulation and ARA2A upregulation induce
the retractation of these processes. Microglial migratory activity also depends on the interaction
between P2RY12 and P2RX4. After total retraction of processes, microglia adopt an amoeboid
morphology, and exert phagocytosis, pinocytosis or secretory activity depending on the receptor
involved. ↑: upregulation or increased activation; ↓: downregulation or reduced activation.

This microglial chemotaxis via P2RY12 is necessary for the clearing of infected cells
or cellular debris, and for tissue repair. Furthermore, Lou and collaborators [21] reported
that following blood–brain barrier (BBB) breakdown, microglial chemotaxis via P2RY12
induces the rapid closure of BBB by forming a dense aggregate at the site of injury.

To go into further detail, several signaling pathways have been reported to be involved
in microglial chemotaxis (Figure 3) [30,40].

When released from Gαi, Gβγ can also transiently activate AC, which subsequently
induces cAMP increase, phosphorylation of vasodilator-stimulated phosphoprotein (VASP)
by protein kinase A (PKA), resulting in membrane ruffle formation and chemotaxis via the
regulation of focal adhesion formation/maturation. However, prolonged phosphorylation
of VASP perturbs this mechanism, resulting in defective chemotaxis. Therefore, balanced
regulation of phosphorylation and dephosphorylation of VASP is necessary for efficient
chemotaxis.

In addition, on the one hand, P2RY12 stimulation triggers the recruitment of β-
arrestin, which in turn recruits and activates extracellular signal-regulated kinase (ERK)
1/2, inducing paxillin phosphorylation at Ser83 that is required for adhesion disassembly
during chemotaxis. On the other hand, the activation of Src through Gαi triggers the
phosphorylation of paxillin at Tyr31, which is essential to focal adhesion assembly.

Thus, P2RY12 stimulation induces the activation of phosphoinositide 3-kinase (PI3K)
α and γ via Gαi and Gβγ, respectively, which activates Akt (=protein kinase B) and



Int. J. Mol. Sci. 2021, 22, 1636 6 of 16

Rac. Data suggest the existence of a positive feedback loop between PI3K and F-actin
polymerization regulated by Rac GTPase [41]. Ras can further activate PI3K, increasing the
F-actin polymerization. This signaling cascade plays an essential role in the regulation of
cell polarity, which is useful to sense and respond to environmental concentration gradients.
The activation of P2RY12 was also reported to potentiate the activity of THIK-1, which
regulates microglial ramification and surveillance of the brain in healthy conditions [35].
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Figure 3. Major signal pathways involved in microglial motility and migration after P2RY12 acti-
vation. (1) Once released from Gαi, Gβγ activates adenylate cyclase (AC), which induces cyclic
adenosine monophosphate (cAMP) increase, phosphorylation of vasodilator-stimulated phospho-
protein (VASP) by protein kinase A (PKA), and then membrane ruffle formation and chemotaxis via
the regulation of focal adhesion formation/maturation. (2) The recruitment of β-arrestin recruits
and activates extracellular signal-regulated kinase (ERK) 1/2, inducing paxillin phosphorylation
which is necessary for adhesion disassembly during chemotaxis. (3) The activation of Src through
Gαi triggers the phosphorylation of paxillin, which is essential to focal adhesion assembly. (4) Gαi
and Gβγ activate phosphoinositide 3-kinase (PI3K), promoting Akt (=protein kinase B) and Rac
activation that are both involved in F-actin polymerization. (5) P2RY12 activation potentiates the
activity of TWIK-related halothane-inhibited K+ channel (THIK-1) involved in microglial ramification
regulation and surveillance of healthy brain.

In recent years, a novel form of microglia–neuron interaction called microglial process
convergence (MPC) has been described [42]. The proposed model suggests that an exces-
sive glutamate release activates neuronal N-methyl-D-aspartate receptors, which triggers
the release of chemokine fractalkine, CX3CL1 (C-X3-C motif chemokine ligand), from
neurons and consequently the activation of microglial CX3CR1 (C-X3-C motif chemokine
receptor 1). Then, CX3CR1 activation induces microglial IL-1β release that stimulates
neuronal dendrites and subsequently triggers the release of ATP. Last, the latter elicits the
localized convergence of microglial processes through P2RY12.

It has also become clear that microglia are far more active in the healthy brain than
previously thought [43]. Although a dynamic microglia–neuron crosstalk has already
been observed at synaptic structures [37,44], a recent publication identified the site of
interaction between microglia and neurons at the cell body rather than at synaptic elements
in both mice and humans [18]. While the activation of P2RY12 was previously mainly
associated with pathological conditions, the authors also highlight the importance of
these receptors under physiological conditions. Therefore, microglia continuously monitor
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neuronal status through somatic junctions, rapidly responding to neuronal changes and
initiating neuroprotective actions.

The importance of P2RY12 signaling in microglia–neuron interactions was also high-
lighted during plasticity in healthy conditions [36].

As mentioned above, purinergic receptor density varies depending on microglial
activation state. Thus, data suggest that P2RY12 is a useful marker for the identification of
healthy microglia and to discriminate activated microglia from quiescent microglia [15], as
its expression is downregulated during the inflammatory phenotype shift [13]. Moreover,
“resting” microglia show no or few P2RY6, but a high level of P2RY12. When activated, the
expression of P2RY6 is increased while that of P2RY12 is decreased, suggesting a functional
modal shift from chemotaxis to phagocytic function [45].

Interestingly, the microglial P2RY12 response to ATP appears to be age-dependent [46].
Thus, once P2RY12 is activated, aged microglia become less dynamic and ramified, while
the opposite occurs in young microglia.

In addition, microglial P2RY12 expression is phenotype-dependent. Indeed, P2RY12
is highly expressed in quiescent and activated non-inflammatory M2 microglia [36,38],
but less expressed in activated M1 microglia [14], suggesting a role of this receptor in
microglial polarization.

3. Pharmacological and Genetic Tools for Studying P2RY12

As mentioned above, P2RY family is activated by purines and pyrimidines [4,6].
For P2RY12, ADP is the native agonist, while ATP and ATP nucleotides and dianedine
nucleotides can act as partial agonists or antagonists of the receptor [6]. ATP is a ubiquitous
intracellular molecule, released by injured cells or in response to physiological brain activity,
which plays an important role as a danger signal in the extracellular space [47]. Structurally,
ATP differs from ADP in having a γ-phosphate group that is crucial for the antagonism of
the receptor [48]. Interestingly, the cluster differentiation 39 (CD39) regulates P2 receptor-
mediated functions by converting extracellular ATP to ADP, and then to AMP [49,50]. In
the brain, CD39 is exclusively expressed on microglia, and on endothelial and smooth
muscle cells of the vasculature [51]. Therefore, it is involved in nucleotide signaling
regulation between neurons or astrocytes associated with microglial ramifications, and
also in the regulation of blood flow and thrombogenesis. Other molecules, such as farnesyl
pyrophosphate, an intermediate in cholesterol biosynthesis structurally related to ADP,
have also been shown to act as endogenous, low affinity antagonists [52].

Over the years, many synthetic ligands have been developed to improve knowledge
on P2RY12 pharmacology. Thus, some potent molecules, such as 2-methylthio-ADP and
2-methylthio-ATP, which present a high affinity for P2RY12, have been discovered. Both
these potent agonists are close analogues of ADP and ATP, respectively [6,7].

Currently, several P2RY12 antagonists are used in pharmacotherapy to reduce platelet
aggregation. Consequently, they are highly effective to prevent and treat cardiovascu-
lar events, such as myocardial infarction or stroke [11]. These antiaggregant ligands are
divided into two drug classes: thienopyridines and nucleoside–nucleotide derivatives
(Table 1) [12]. The thienopyridine compounds clopidogrel, prasugrel, and ticlopidine
are prodrugs that need to be enzymatically converted by the hepatic cytochrome P450
into active metabolites, and consequently present a delayed onset of action [53]. Their
active metabolites covalently bind to P2RY12 by forming a disulfide bond with the cys-
teine residues, resulting in an irreversible inhibition of the receptor [54]. By contrast, the
nucleoside–nucleotide derivatives, such as cangrelor and ticagrelor, do not require hepatic
metabolism and are part of a new generation of reversible direct-acting compounds. They
are faster, more potent and more predictable than thienopyridines [12]. They promote a
rapid inhibition of P2RY12 through a direct and reversible binding [53]. Therefore, both
these antagonists are widely prescribed as antiplatelet treatment.
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Table 1. P2RY12 antagonists.

Antagonist IC50 (µM) Binding References

Natural antagonist ATP 0.0003 Reversible [48,55]

Thienopiridines

2-oxo-clopidogrel
(clopidogrel metabolite) 0.1

Irreversible

[6,56]

R-138727 1

(prasugrel metabolite)
1 [57]

UR-4501 2

(ticlopidine metabolite)
2 [58–60]

Nucleotide-Nucleoside
derivatives

Ticagrelor 0.003
Reversible

[6]

Cangrelor 0.0008 [6]

Other molecules

Suramin 3

Reversible

[6,61]

Reactive blue-2 0.025 [6]

PSB-0739 0.0002 [6]

AZD1283 0.01 [62]
1 (2Z)-2-[1-[2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-sulfanylpiperidin-3-ylidene]acetic acid; 2 ([1-[(2-
chlorophenyl)methyl]-4-mercapto-3-piperidinylidene]acetic acid.

Recently, new analogues of P(1), P(4)-di(adenosine-5’) tetraphosphate (Ap4A) and UTP
have proved to have an anti-aggregant effect. While adenosine analogues simultaneously
antagonize P2RY1 and P2RY12 [63], those of UTP exclusively inhibit P2RY12 [64].

Suramin and reactive blue-2 block also act as P2RY12 antagonists [6], but at high
micromolar concentrations (30–100 µM), the first one also blocks all nucleotide-sensitive
P2RY except P2RY4, and the second one blocks P2RY1 and P2RY6 [65]. PSB-0739, an
analogue of reactive blue-2, is a potent and competitive antagonist of P2RY12.

The other novel compounds that have demonstrated an inhibitory effect on P2RY12 are
6-amino-2-thio-3H-pyrimidin-4-one derivatives, morpholine analogues, piperazinyl gluta-
mates, derived phosphonates, salvianolic acids, flavonolignans, ethyl 6-aminonicotinate
acyl sulfonamides and related sulfonamide derivatives [6,11].

Beside pharmacological tools, the genetic approach is very useful to understand the
functions of a protein by changing its expression in specific conditions. To study P2RY12,
two approaches have been developed: (1) the knockout (KO) model that makes the gene
of interest inoperative, and (2) the silent ribonucleic acid (siRNA), in which a small RNA
interferes with the expression of specific genes with complementary nucleotide sequences
by degrading mRNA after transcription, preventing translation. It should be noted that
P2RY12-deficient mouse strains present decreased platelet aggregation and increased
bleeding time [66].

4. Contribution of Microglial P2RY12 to Neuroinflammation

Neuroinflammation is defined as an inflammatory response within the brain or spinal
cord that is triggered by infection or injury. It is mediated by the production of cytokines,
chemokines, reactive oxygen species and secondary messengers by resident CNS cells
and peripherally infiltrating immune cells [67–69]. Neuroinflammation is recognized as
a hallmark of neurological disorders, as excessive and uncontrolled neuroinflammation
induced injury and neural death. However, there are several degrees of neuroinflammatory
responses, some of which are beneficial for the repair of the injured CNS. Microglia, which
play key roles in mediating these neuroinflammatory responses, perfectly reflect this
“friend-foe facet”, which is linked to their polarization states.

As mentioned above, in their “resting” state microglia constantly explore the local
environment through their multiple branches and highly motile processes during normal
physiological conditions. These processes are in continuous motion, protruding and re-
tracting to cover long distances and survey large brain areas. In the case of brain injury
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or neuroinflammation, microglia become highly activated and gradually change from a
ramified shape to an amoeboid form, which is associated with phagocytosis and proinflam-
matory function. This ability to rapidly react has been described as “microglial activation”,
which will depend on the type of stimulus, time after stimulation and factors present in the
local environment. Thus, once activated, microglia can adopt heterogeneous phenotypes
ranging from the “classical” proinflammatory phenotype (M1-like) to the “alternative”
anti-inflammatory one (M2-like) depending on the stimulus and their CNS microenviron-
ment [29]. The M1-like microglia are typically induced by exposure to bacterial products
such as lipopolysaccharide, or proinflammatory cytokines, such as interleukin (IL)-1β,
interferon γ and tumor necrosis factor α, and trigger the production of high levels of
proinflammatory cytokines and cytotoxic oxidative metabolites. Ultimately, M1-like mi-
croglia induce inflammation and neurotoxicity. Regarding the M2-like microglia, three
distinct subsets have been described [33,70]: M2a, involved in repair and regeneration;
M2b, an immune-regulatory phenotype; M2c, an acquired-deactivating phenotype. The
M2a phenotype is induced by anti-inflammatory cytokines, such as IL-4 and IL-13, and
contributes to tissue remodeling. In response to specific anti-inflammatory factors, such
as IL-10, glucocorticoids and growth factors, microglia adopt a M2c state, involved in
inflammation resolution and tissue remodeling. Last, the M2b phenotype, induced by
exposure to immune complexes and ligands of toll-like receptors, seems to have an im-
munoregulatory effect. M2-like microglia are also characterized by an elongated shape and
a higher level of F-actin than M1-like microglia. Nevertheless, it is currently recognized
that microglia display a wide range of reaction states that are far more complex than this
M1/M2 classification [71]. Indeed, Stratoulias and collaborators [72] have recently pro-
posed that microglia might form a community of cells in which each member or subtype
displays distinct properties, performs unique physiological functions, depending on their
regional distribution, gene and protein expression, and responds differently to stimuli.

Relevant to their role as immune sentinels, microglia express a wide range of receptors,
among which is the purinergic one [29]. The purinergic system is one of the fundamental
signaling systems that establish microglial behavior in a wide spectrum condition [47].
Moreover, this system controls inflammatory responses in complex ways [73]. While the
main functions of inflammation are to limit tissue damage and promote tissue repair,
inappropriate inflammatory responses, particularly when chronic, may lead to toxicity and
cell death. Among P2 receptors, P2X4 and 7 and P2Y6, 12 and 13, pertinently expressed on
microglia [47], we focused on the role of P2RY12 in several neuroinflammatory diseases.
Indeed, as first reported by Haynes and collaborators [13], P2RY12 is a primary site through
which nucleotides mediate rapid microglial responses to brain injury. These authors were
the first to report a robust expression of P2RY12 in resting microglia and a diminution after
its morphological transition and activation. Some years later, Amadio and collaborators [17]
highlighted the gradual loss of P2RY12 immunoreactivity in mice, rats and humans as
an early marker of neuroinflammation and microglial activation. Since then, it has been
demonstrated that P2RY12 expression level changes depending on microglial phenotype.
Indeed, P2RY12 is highly expressed on quiescent and activated non-inflammatory M2
microglia [36,38] and less expressed in activated M1 microglia [14]. Consequently, loss of
P2RY12 expression in microglia has been reported in most of the neuropathologies related
to neuroinflammation [15].

The neuroinflammatory cascade relies on the activation of cytosolic multiprotein
complexes called “inflammasomes” [74]. The nod-like receptor protein 3 (NLRP3), which
is the most investigated one, is notably present on microglia. The aberrant activation of
this inflammasome signaling has been demonstrated to contribute to the development
of several neurological diseases, such as cerebral ischemia, traumatic brain injury (TBI),
Alzheimer’s disease (AD) and multiple sclerosis (MS) [75]. Notably, recent data suggest
that microglial P2RY12 could be involved in NLRP3 inflammasome activation [76], which
strengthens the role of P2RY12 in inflammation.
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We propose to present herein the studies that were conducted, using genetic or
pharmacological tools for P2RY12, in order to understand the role of P2RY12 in acute and
chronic cerebral diseases. However, targeting P2RY12 with antagonists in brain diseases
only makes sense under the assumption that ATP (required to activate P2RY12) is a danger
signal in brain diseases [77].

4.1. Cerebral Ischemia

Webster and collaborators [78] were the first to report the deleterious role of P2RY12
in cerebral ischemia. Indeed, in vitro, the addition of P2RY12 deficient microglia (obtained
by using siRNA) to neuron–astrocyte cultures reduced neurotoxicity following oxygen–
glucose deprivation (OGD). Moreover, the migration was less significant in microglia
from P2Y12-/- mice than in those of wild-type (WT) in response to OGD-conditioned
neuronal media. In addition, P2RY12+/- mice or clopidogrel-treated mice subjected to
global cerebral ischemia presented less neuronal injury than control mice. It is worth
noting that homozygote P2RY12-/- ischemic mice could not be used in this study as they
suffered high mortality and showed highly variable neuronal damage. Moreover, in a
permanent model of focal ischemia in rats, blockade of microglial P2RY12 with ticagrelor
reduced the evolution of ischemic lesion and the associated neurologic impairment [79].
This effect was associated with the inhibition of P2RY12-mediated microglial activation and
chemotaxis as, in primary culture of microglia, ticagrelor and cangrelor totally inhibited
ADP-induced chemotaxis. Lastly, the authors also observed a spatial gradient in microglial
P2Y12 expression, reflecting microglial activation status. Thus, P2RY12 expression was
downregulated in the core of the lesion compared to the penumbra area.

4.2. Traumatic Brain Injury

According to recent studies, neuroinflammation is a key player in chronic neurodegen-
eration and related neurological dysfunction following TBI. The activation of microglia and
macrophages occurs in association with tissue damage and late cognitive disorder after
TBI [80]. TBI induces the release of microglial-derived microparticles expressing P2RY12
in the systemic circulation [81]. The cortical injection of these secreted microparticles,
loaded with pro-inflammatory molecules, induces neuroinflammation in non-injured mice
and also contributes to spreading the neuroinflammatory response at more distant sites.
However, to date, the role of P2RY12 remains to be established in TBI.

4.3. Epilepsy

Recent evidence also implicates glial cells, specifically microglia, and neuroinflam-
mation in the pathogenesis of epilepsy. Nowadays, the most widely used animal seizure
models include chemically-induced models using kainic acid or pilocarpine [82]. An in-
creased number of microglia primary processes was observed in the hippocampus during
kainic acid-induced seizure activity [83,84]. Furthermore, P2RY12 genetic deletion in mice
exacerbated seizure outcome associated with reduced microglial processes [84], suggesting
a neuroprotective role of P2RY12-dependent microglial process extension in epilepsy.

Whatever the brain pathology, it is well known that microglia participate in the
clearance of dead cells or debris through the release or leakage of ATP by injured cells
into extracellular space. As described above, released ATP is detected through P2RY12
and triggers microglial rapid migration and process extension to the lesion site. However,
UDP/UTP is leaked in hippocampal neuron following kainic acid administration in vivo
and in vitro, and those nucleotides can specifically activate P2RY6. P2RY6 activation by
UDP triggers phagocytosis in a concentration-dependent manner. Interestingly, UDP does
not efficiently activate P2RY12, nor can ATP/ADP act on P2RY6. Inoue [85] reported
an increment in mRNA for P2RY6 in activated microglia in hippocampal CA1 and CA3
regions, where neuronal cell death appeared following kainic acid administration in rats.
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4.4. Glial Tumors

Recent studies allow knowledge of a little more about the role of microglia in the
development of glial tumors. Indeed, P2RY12 expression was analyzed in human astro-
cytoma of various malignancy grades in relation to M1 and M2 microglial phenotype
activation profiles [86]. P2RY12 mRNA levels and P2RY12 membrane-bound localization
were inversely correlated with increasing malignancy grade. Interestingly, low-grade
gliomas expressed P2RY12 in cytoplasm, while, in high-grade tumors, P2RY12 expression
shifted to the nucleus. On the one hand, cytoplasmic P2RY12 expression was associated
with the expression of M1-proinflammatory microglial markers. On the other hand, nuclear
P2RY12 expression was associated with the expression of M2-anti-inflammatory markers.
Thus, microglial P2RY12 expression and localization are directly related to tumor grade
and predominant microglial phenotype. Moreover, the expression of P2RY12 was also
positively correlated with overall survival times.

4.5. Alzheimer’s Disease

Neuroinflammation is considered as a key pathological process in neurodegenerative
diseases of aging, including AD [87]. The latter is characterized by a progressive extracellu-
lar amyloid beta (Aβ) plaque formation and phosphorylated tau aggregation, triggering a
synaptic and neuronal cell loss. Sánchez-Mejías and collaborators [88] demonstrated that
in vitro soluble phospho-tau from AD hippocampus were toxic for murine microglial cells.
Microglial P2RY12 expression is reduced in human AD hippocampus [88], while no change
was observed in parenchymal, non-plaque associated microglia in human AD and in the
mouse amyloid model of AD, APPPS1 [89]. In line with these data, in the hippocampus of
AD patients, the majority of microglia around Aβ plaques showed no expression of P2RY12,
while microglia at a distance from the plaque core expressed P2RY12 [15]. Recently, Walker
and collaborators [87] have observed that microglial P2RY12 expression differed depending
on the type of plaques or tangles they were associated with. Thus, authors proposed that
the closer to Aβ plaques microglia were, the lower P2RY12 expression was, suggesting
that low-negative P2RY12 microglia is a marker of inflammatory area within Aβ plaques.
Nevertheless, recent gene expression profiling studies of microglia isolated from AD tissues,
from humans and animals, have provided large amounts of data on microglial properties
and identified potentially new phenotypic markers for studying microglia in diseases.

4.6. Multiple Sclerosis

Some diseases or lesions produce damage in myelin, resulting in a process called
demyelination. Chronic neuroinflammatory diseases, such as MS, are characterized by
the appearance of demyelinating plaques. It is a heterogenous disease characterized by
a leukocyte infiltration in the CNS, a demyelination of grey and white matter, and con-
sequently, an axonal loss [90]. Microglia/macrophages, which accumulate at the sites of
active demyelination and neurodegeneration in MS brain, are major players in the disease
process [91]. In MS, extracellular ATP is an important mediator of CNS system pathology
that can cause oligodendrocyte excitotoxicity [92]. An analysis of the cellular distribution
of P2RY12 protein, performed in post-mortem cortex samples from MS patients as well
as healthy human subjects, showed that P2RY12 was present in myelin and interlaminar
astrocytes but absent from protoplasmic astrocytes in deeper cortical layers, from mi-
croglia/macrophages, and from intact demyelinated axons [92]. More recently, an increase
in microglial activation has been observed in the normal-appearing white matter of MS
patients in comparison to controls, associated with a reduction in P2RY12 expression [91].
Moreover, P2RY12 was totally absent in active and slowly expanding lesions. Interestingly,
inactive lesions contained very few microglia but these cells expressed P2RY12, suggesting
that the loss of P2RY12 immunoreactivity was associated with the lesion activity, i.e., en-
hanced inflammation, which was confirmed in other studies [15,90,93]. Similar results were
reported in the experimental cuprizone demyelination model [94] and in the experimental
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autoimmune encephalomyelitis (EAE) model [93]. However, a target that disappears in the
active phase of brain disease, such as P2RY12, presents actually low therapeutic interest.

4.7. Amyotrophic Lateral Sclerosis

Although the mechanisms are not well understood, there is evidence that the immune
system plays a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Indeed, in
both ALS patients and animal models, inflammatory responses were reported. Moreover,
microglia and astrocytes, which are activated during disease progression, could contribute
to neuronal death. Using the superoxide dismutase 1 (SOD1) mouse model of ALS, Bu-
tovsky and collaborators [95] reported that P2RY12 gene expression was decreased during
disease progression and that protein expression was even absent in spinal cord microglia.
Similar gene downregulation was also found in spinal cord from ALS patients.

5. Conclusions

In this review, we have attempted to give an overview of the importance of microglial
P2RY12 in neuroinflammation. Initially, P2RY12 expression was used as a marker of
non-activated/homeostatic microglia, the key cell of neuroinflammation, and a decreased
expression was associated with proinflammatory activated microglia. However, mod-
ification of P2RY12 expression seems to be different depending on neuroinflammatory
pathologies and on the microglial populations associated with active inflammatory areas.
Even though investigations need to be conducted to clarify this point, an increasing num-
ber of studies have demonstrated its role in inflammatory brain diseases, highlighting its
potential as a therapeutic target. However, given the prominent role of peripheral P2RY12,
the therapeutic potential of P2RY12 antagonists in brain-related diseases should always be
considered in conjunction with the potential immune and hemorheological risks. Moreover,
immune and hemorheological effects should also be considered as a potential mechanism
of action of the systemic administration of P2RY12 antagonists in the outcome of brain dis-
eases. In addition, it is well described that the hemorheological effect of P2RY12 antagonist
is observed in a predominant subset of individuals, whereas a minority of patients may
draw no benefit or even experience detrimental effects. Thus, one may wonder whether
similar interindividual variability of the role of P2RY12 in microglia could exist.

Author Contributions: Conceptualization, V.C.B. and D.L.; writing—original draft preparation,
A.G.M., V.C.B. and D.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the “Fondation des Gueules Cassées” (n◦ 08-2019
to Valérie C. Besson).

Acknowledgments: We thank Valerie Dias for checking the English text.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Aβ Amyloid beta
AC Adenylate cyclase
AD Alzheimer’s disease
ADP Adenosine diphosphate
ALS Amyotrophic lateral sclerosis
AR Adenosine receptor
ATP Adenosine triphosphate
BBB Blood-brain barrier
cAMP Cyclic adenosine monophosphate
CD39 Cluster differentiation 39
CX3CL1 C-X3-C motif chemokine ligand
CX3CR1 C-X3-C motif chemokine receptor 1
Cys Cysteine
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EAE Experimental autoimmune encephalomyelitis
ERK Extracellular signal-regulated kinase
GPCR G protein-coupled receptor
IL Interleukin
KO Knockout
OGD Oxygen-glucose deprivation
MCP-1 Monocyte chemoattractant protein-1
MPC Microglial process convergence
mRNA Messenger ribonucleic acid
MS Multiple sclerosis
NLRP3 Nod-like receptor protein 3
PI3K Phosphoinositide 3-kinase
PKA Protein kinase A
PKC Protein kinase C
PLC Phospholipase C
siRNA Silent ribonucleic acid
SOD1 Superoxide dismutase 1
TBI Traumatic brain injury
THIK-1 TWIK-related halothane-inhibited K+ channel
UDP Uridine diphosphate
UTP Uridine triphosphate
VASP Vasodilator-stimulated phosphoprotein
WT Wild-type
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