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Abstract: Thyroid diseases, including neoplasms, autoimmune diseases and thyroid dysfunctions,
are becoming a serious social problem with rapidly increasing prevalence. The latter is increasingly
linked to oxidative stress. There are many methods for determining the biomarkers of oxidative stress,
making it possible to evaluate the oxidative profile in patients with thyroid diseases compared to the
healthy population. This opens up a new perspective for investigating the role of elevated parameters
of oxidative stress and damage in people with thyroid diseases, especially of neoplastic nature. An
imbalance between oxidants and antioxidants is observed at different stages and in different types of
thyroid diseases. The organ, which is part of the endocrine system, uses free radicals (reactive oxygen
species, ROS) to produce hormones. Thyroid cells release enzymes that catalyse ROS generation;
therefore, a key role is played by the internal defence system and non-enzymatic antioxidants that
counteract excess ROS not utilised to produce thyroid hormones, acting as a buffer to neutralise free
radicals and ensure whole-body homeostasis. An excess of free radicals causes structural cell damage,
undermining genomic stability. Looking at the negative effects of ROS accumulation, oxidative stress
appears to be implicated in both the initiation and progression of carcinogenesis. The aim of this
review is to investigate the oxidation background of thyroid diseases and to summarise the links
between redox imbalance and thyroid dysfunction and disease.
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1. Introduction

Reactive oxygen species (ROS) are molecules capable of independent existence, which
contain an oxygen atom and unpaired electrons [1]. ROS arise mainly as by-products in a
series of bioenergetic processes of ATP synthesis in mitochondrial respiratory chains [2,3].
Inflammatory processes are an additional source of ROS [1,4]. The most common reactive
oxygen species include radicals derived from the electron reduction of molecular oxygen–
superoxide anion (O2

•−), hydrogen peroxide (H2O2) and the more reactive hydroxyl
radical (HO•), released in reactions involving metal ions [5].

The body’s antioxidant defence against the negative effects of ROS works across a
number of different platforms. It involves preventing the formation of radicals, scavenging
them and repairing ROS-induced damage. The leading role in the body’s defence system is
played by antioxidant enzymes, breaking down ROS molecules and thus protecting cells
from excessive exposure to ROS [6–8]. The repair system of ROS-induced damage partly
relies on autophagy and apoptosis processes, eliminating damaged cells [9–11]. In spite of
the range of internal mechanisms of enzymatic regulation, the antioxidant defence system
should also be supported by non-enzymatic mechanisms. The latter include the action of
molecules with powerful antioxidant properties, notably including glutathione, coenzyme
Q10, as well as exogenous substances—polyphenolic compounds, ascorbic acid, retinol,
β-carotene and tocopherol. Exogenous substances with confirmed antioxidant properties
reinforce the body antioxidant defence, increasing total antioxidant capacity [7,12–14].
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Oxidative stress is an effect of redox imbalance between reactive oxygen species and
antioxidant defence [9,15]. It may be caused both by the excessive production of ROS and
by an inefficient antioxidant system, resulting in molecular damage [16]. Additionally, ROS
generation in different subcellular compartments likely involves a positive feedback mech-
anism, creating a vicious circle of pathological conditions related to oxidative stress [17–19].
Redox homeostasis requires an equilibrium of ROS production and scavenging [20]. Even
though the concept of oxidative stress was introduced in the 1980s, its definition and scope
of research have been continually elaborated and expanded [6].

Thyroid diseases are a common health problem worldwide, especially among women.
The occurrence of subclinical thyroid disorders, which often remain undiagnosed, is also
significant [21–24]. Thyroid diseases are increasingly linked to oxidative stress [25–28]. It
has been shown that thyroid dysfunction can co-occur with metabolic disorders, including
obesity [29–31]. Obesity is a metabolic disease involving mitochondrial dysfunction and
chronic oxidative stress, as in several metabolic disorders [32–38]. Since the incidence of thy-
roid diseases is increased in individuals with increased body weight, the related substrate
of metabolic disorders and thyroid dysfunction seems relevant [30,31,39]. However, current
reports do not distinguish between the causes and consequences of metabolic abnormalities,
so there is a need to develop research on the pathogenesis of thyroid disorders.

2. Physiological Redox Signalling and the Role of ROS in Thyroid Function

Signalling functions in immune responses are initiated when molecular oxygen is oxi-
dised to the reactive superoxide anion radical by the NADPH oxidase (NOX) complex, itself
an additional source of ROS [4]. Subsequently, the superoxide is converted by superoxide
dismutase (SOD) to H2O2. Hydrogen peroxide is associated with a signalling function
regulating cellular processes, due to its capacity to reversibly modify cysteine residues [20].
The process alters redox signalling [17]. Accumulation of excessive concentrations of H2O2
activates thiolate anion (Cys-S-) oxidation pathways. This is an irreversible process, result-
ing in permanent protein damage [40]. Antioxidant systems serve a protective function,
preventing intracellular accumulation of ROS by reversing the modification of cysteine
residues [20].

The role (physiological or pathological) played by ROS depends largely on their
concentration and the conditions accompanying biochemical transformations. The ini-
tial concentration dictates downstream responses [7]. Excessive amounts of ROS at the
subcellular level activates pathways leading to damage in particularly susceptible cell
structures or apoptosis [40]. In turn, at low physiological levels, ROS play a signalling
role, essential for normal cellular processes [8,41]. Reactive oxygen species also serve as
intracellular mediators produced in phagocytic cells, controlling the inflammatory response
and antimicrobial defence [4].

ROS play an important role in normal thyroid function. Thyroid cells release oxidases,
which catalyse ROS production [42–44]. Inositols are also involved in thyroid hormone
synthesis and normal thyroid function, activating a cascade of processes including regu-
lating TSH-dependent signalling (as a TSH transmitter) and generating H2O2 production
used for iodination and coupling of iodotyrosine and iodothyronine [45–48]. Inositol defi-
ciency or impairment of inositol cascades may result in insufficient synthesis of thyroid
hormones, leading to hypothyroidism, which may be further compounded by an increased
need for inositols in response to high TSH levels [45,48]. Myoinositol supplementation in
hypothyroid patients effectively lowers TSH levels. Its effect has been demonstrated in
combination with metformin and selenium compared to treatment without inositol [49,50].

The synthesis of thyroxine (T4) and triiodothyronine (T3) catalysed by thyroid perox-
idase (TPO) in thyroid follicles is a very complex process involving ROS, notably, H2O2
(Figure 1) [51]. ROS are already essential in the initial stages of thyroid hormone produc-
tion, during iodide oxidation [52]. Additionally, thyroid hormones perform a metabolic
regulatory function by affecting mitochondrial activity [53]. Because of the reliance on ROS
in its function, the thyroid is particularly exposed to oxidative damage [54]. Therefore, the
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antioxidant defence system of the thyroid must effectively regulate ROS production and
scavenging [26,55].
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3. Biomarkers of Oxidative Stress in Thyroid Diseases

Enzymatic mechanisms of antioxidant defence constitute the internal system for main-
taining ROS homeostasis (Figure 2). Superoxide dismutases (SOD1, SOD2, SOD3) are
antioxidant enzymes, neutralising O2

•− [17,57]. The key enzyme responsible for neutral-
ising hydrogen peroxide is catalase (CAT), which converts it to water and oxygen [58].
Likewise, glutathione peroxidase (GPX) scavenges and detoxifies H2O2 [20]. Glutathione
serves as an intracellular buffer against oxidation. In response to excessive ROS release, it
forms an oxidised dimer structure by bridging two glutathione molecules. Glutathione
reductase (GR) then restores the reduced form of glutathione, lowering its reactivity [59].
Measurement of antioxidant enzyme activity in serum makes it possible to evaluate the
condition of the antioxidant defence system. Lower levels of this activity, compared to the
control, may be a sign of inadequate defence against free radicals [60].

Biomarkers of oxidative stress also include prooxidant enzymes—NADPH oxidases
(NOX), which are an endogenous source of ROS, especially in thyroid tissue [46]. Their
increased activity is associated with elevated concentrations of reactive oxygen species
in pathological conditions. Direct measurement of ROS concentrations may be a helpful
marker in the evaluation of medical conditions, yet its utility may be limited given the
short half-life of these molecules [15,18].

Malondialdehyde (MDA) is a product of lipid peroxidation by ROS. The marker can
be used to evaluate oxidative damage and measure whole-body or tissue-specific oxidative
stress [61,62]. Advanced glycation end products (AGE) are believed to be associated with
the onset and progression of metabolic disorders, notably diabetes and obesity, due to their
formation both through lipid peroxidation and glycoxidation reactions; that is, in response
to an increased intake of simple carbohydrates [15,63]. Elevated levels are observed in ROS-
damaged tissues, as the final product of peroxidation, making them markers of oxidative
stress in the body [64]. Among DNA bases, guanine is the most easily oxidised, due
to its relatively low redox potential. Its oxidised form (8-oxo-2′-deoxyguanosine) may
therefore serve as a measurement of DNA damage in cells exposed to oxidative stress and
in carcinogenesis. 8-oxo-2′-deoxyguanosine has mutagenic potential [9,65].
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Total antioxidant capacity (TAC) is a parameter indicative of the body’s overall ability
to neutralise oxidants. It takes into account all the antioxidants contained in bodily fluids,
including exogenous and endogenous compounds [15]. In turn, total oxidant status (TOS)
is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidants.
It reflects the oxidation state of bodily fluids, represented by the level of radicals [66].
Oxidative stress index (OSI) is a measure of oxidative stress, calculated as the ratio of total
oxidant status to total antioxidant status and therefore represents the overall oxidation
state of the body [67].

All the biomarkers employed in the determination of the role of oxidative stress in
thyroid diseases in this review are listed in Table 1.

Table 1. Biomarkers of oxidative stress used in thyroid disease research [15].

Biomarkers Mechanism of Development, Role References

ROS Energy metabolism in mitochondria [68]
MDA, HNE Lipid peroxidation products [62]
AGE, ALE Protein oxidation products; Advanced peroxidation end products [64]

SOD, CAT, GPX, GR Antioxidant enzymes [62,68,69]
NOX, DUOX ROS-generating enzymes [70]
GSH/GSSG Reduced/oxygenated glutathione [69]

TAC, TOS Number of moles of oxidants neutralised by one litre of body fluid;
total oxidative status; [71,72]

ROS—reactive oxygen species, MDA—malondialdehyde, HNE—hydroxynonenal, AGE-advanced glycation end products, ALE—advanced
lipoxidation end products, SOD—superoxide dismutase, CAT—catalase, GPX—glutathione peroxidase, GR—glutathione reductase,
NOX—NADPH oxidases, DUOX—dual oxidase, GSH/GSSG—the reduced glutathione/oxidized glutathione ratio, TAC—total antioxidant
capacity, TOS—total oxidant status.

4. Relationship between Oxidative Stress, ROS and Thyroid Diseases
4.1. Thyroid Disorders
4.1.1. Underactive Thyroid (Hypothyroidism)

Ref [61] in hypothyroidism, including its subclinical form, elevated levels of MDA
have been noted, compared to healthy individuals. Apart from inadequate antioxidant
defence, this may be related to altered lipid metabolism in thyroid cells [61]. The treatment
of hypothyroidism, despite lowering lipid peroxidation levels, does not bring serum MDA
concentrations down to the levels observed in healthy individuals, but it may significantly
boost SOD activity [73]. The relationship between hypothyroidism and oxidative stress is
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probably based on the lower activity of the internal antioxidant system, which does not
provide adequate protection to cells against free radical accumulation, leading to oxidative
damage [74]. Similarly, a mutation in the gene encoding NOX activity may contribute to
excessive stimulation of ROS production. Accumulation of oxygen free radicals may inhibit
TPO activity, consequently interfering with thyroid hormone production and leading to
the development of hypothyroidism [46,75].

4.1.2. Overactive Thyroid Gland (Hyperthyroidism)

Thyroid hormones also stimulate mitochondrial respiration, leading to an increase in
ROS release in the respiratory chain. Overproduction of thyroid hormones therefore causes
oxidative stress through the overproduction of free radicals, unlike in hypothyroidism,
where redox imbalance can be attributed to an inefficient antioxidant defence system [74].
Consequently, overproduction of thyroid hormones (hyperthyroidism) may be associated
with oxidative damage to cell structures. Individuals with hyperthyroidism present higher
rates of lipid peroxidation than euthyroid individuals, which is indicative of oxidative
damage to membrane lipids [76,77]. In addition, in a study investigating the effects of lead
exposure on the parameters of thyroid function and antioxidant markers, thyroid hormones
were shown to be positively correlated with MDA, with a positive relationship between
TSH and glutathione. These findings suggest a close relationship between hyperthyroidism
and the progression of oxidative stress [27].

4.1.3. Thyroid Multinodules Goitre and Nodules

Elevated MDA levels were observed in tissues collected from patients with toxic and
non-toxic multinodular goitre, with reduced activity of SOD, GPx and selenium content,
compared to adjacent, non-pathologic tissue. Patients did not unequivocally demonstrate
hyperthyroidism before surgery, as their thyroid parameters were stabilized in a euthyroid
state before sampling [62]. Moreover, tissues of benign thyroid nodules show significantly
reduced TAS and reduced OSI [71]. In addition, it was demonstrated that the size of thyroid
nodules may decrease as a result of supplementation with extracts of plants with powerful
antioxidant and anti-inflammatory properties [78]. The presence of elevated oxidative
stress parameters and levels of SOD and CAT activities in toxic multinodular goitre with
hyperthyroidism and decreased plasma GPx and GR activities, compared with the control
group, were also demonstrated [68]. These findings suggest an impaired redox status and
antioxidant defence in patients with thyroid nodules and nodular goitre.

4.1.4. Autoimmune Thyroid Diseases

Chronic lymphocytic thyroiditis, also known as Hashimoto’s thyroiditis, is an autoim-
mune thyroid disease which presents with inflammatory cell infiltration of the thyroid
gland and is characterised by the production of autoantibodies to thyroglobulin (anti-TG)
and thyroperoxidase (anti-TPO) [79,80]. Inflammatory lesions in the thyroid gland result
in the destruction of follicular cells and fibrosis, leading to hypothyroidism [67]. NOX
participation in the production of hydrogen peroxide for the purposes of thyroid hormone
synthesis may be associated with the pathophysiology of autoimmune thyroid diseases,
through interacting with thyroperoxidase and thyroglobulin (TG) and altering their activity,
promoting immunogenicity [75,81]. Excessive iodine intake is regarded as an additional
risk factor for the development of autoimmune thyroid disease due to enhancing ROS
production and, at the same time, reducing internal antioxidant levels. Anti-TPO anti-
bodies show a dependence on glutathione levels, demonstrating an inverse relationship
in individuals with Hashimoto’s thyroiditis. Additionally, both antibodies (anti-TG and
anti-TPO) show a positive correlation with TOS and OSI. Decreased glutathione levels
appear to be a distinctive parameter related to the activation and development of oxidative
stress in Hashimoto’s thyroiditis, as oxidative stress is associated with thyroid hormone
deficiency, inflammation and autoimmune parameters. Patients also present with elevated
AGE levels. In addition, increased TOS and OSI parameters were shown to precede findings
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of hypothyroidism in autoimmune thyroiditis and could therefore be treated as predictors
of thyroid cell damage [25,64,67,69,72,82].

Graves’ disease (GD) is the most common cause of hyperthyroidism and oxidative
DNA damage appears to play an important role in its pathogenesis [83,84]. Enhanced in-
flammatory response modulates the upregulation of autoimmune response [85]. Oxidative
stress, in inducing and augmenting inflammation in the thyroid, disrupts self-tolerance,
consequently leading to autoimmune thyroid dysfunction. The antibodies found in GD
(TSAb, thyroid stimulating antibodies) are involved in oxidation processes. The degree
of DNA damage in individuals with untreated GD was shown to be significantly higher
than in patients with toxic nodular goitre and individuals without thyroid dysfunction.
At the same time, lipid peroxidation markers were higher than in the control. The above-
mentioned parameters of oxidative stress, as well as prooxidant enzyme activity, showed a
positive correlation with TSAb, suggesting their involvement in the disruption of redox
homeostasis [86].

4.1.5. Thyroid Cancer

Oxidative genetic damage caused by the interaction between ROS and DNA, dis-
rupting genomic integrity, leads to mutagenesis. Thus, oxidative stress may cause DNA
damage, initiating neoplastic processes [26,87]. A simplified chart of the mechanisms of
carcinogenesis, including the free-radical background, is presented in Figure 3. In murine
models, oxidative damage is observed much more often in the thyroid gland than in other
organs [88]. Patients with different thyroid conditions, in particular neoplasms, present
higher baseline genome damage compared with healthy controls [56,89].
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Patients with different types of thyroid cancer have higher serum ROS levels than
healthy individuals. Apart from increased whole-body oxidation, they also present
with lower activity of internal antioxidants belonging to the antioxidant defence sys-
tem [60,76,89,90]. Because of the reduced activity of antioxidant enzymes in thyroid cancer
cells, the inefficient defence system is not able to neutralise ROS overproduction, resulting
in oxidative stress [91]. In a study evaluating the change in biomarkers of oxidative stress in
individuals with thyroid cancer before and after thyroidectomy, a significant difference was
demonstrated between the study and the control group in terms of glutathione peroxidase
activity and MDA levels. Surgical removal of the thyroid had a significant effect on the
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parameters under analysis, improving oxidative status in favour of antioxidants; however,
lipid peroxidation levels remained significantly higher than in healthy individuals [92].
In addition, thyroid tissues in cancer patients have altered metabolic pathways, aimed
at improving cancer cell adaptation to unfavourable conditions. Metabolic pathways are
shifted to promote glycolysis, more resistant to the conditions of high oxidative stress in
cells. This might be an additional target for therapies aimed at processes related to cancer
cell metabolism [91]. Apart from higher rates of oxidative processes in cancer patients
compared to healthy individuals, those with papillary thyroid cancer had a worse oxida-
tive profile than patients with autoimmune thyroid disease [28]. Obese patients were also
found to be at an increased risk for thyroid cancer [93]. There are many reports identifying
metabolic links between obesity and mitochondrial dysfunction, excessive ROS generation
and oxidative stress [74,94–97]. The relationship between the development of thyroid
diseases and obesity, as well as the mechanisms involved, are nevertheless unclear and
require in-depth analysis and more detailed research.

5. Conclusions

It is most likely that many of the mechanisms participating in the development of
thyroid pathologies are still unknown. However, there is a notable connection of increased
ROS generation and findings of oxidative damage with the development of thyroid cancer
and other diseases described here. In addition, thyroid disorders may also initiate or
increase ROS release and oxidative stress, enhancing oxidative damage. The most recent
studies suggest a close link between thyroid diseases and oxidative stress.

Taking into consideration research findings to date, it would appear that preventive
nutrition therapy against redox imbalance, in enriching the daily diet in products with
a high antioxidant value and supporting the internal antioxidant defence systems, may
constitute a promising approach to preventing the development of many chronic thyroid
diseases. This creates a prospect for developing measures precisely targeted at the free-
radical background, which can be used in the treatment and prevention of thyroid diseases
as well as other oxidative diseases.
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