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Abstract: VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic
agents due to their significant physicochemical advantages compared to classical mammalian antibod-
ies. The number of experimentally solved VHH structures has significantly improved recently, which
is of great help, because it offers the ability to directly work on 3D structures to humanise or improve
them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative
ways to get structural information. The methods of structure prediction from the primary amino acid
sequence appear essential to bypass this limitation. This review presents the most extensive overview
of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of
21). Besides the historical overview, it aims at showing how model software programs have been
shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied,
and pertinent examples of their usage are provided. Finally, we present a structure prediction case
study of a recently solved VHH structure. According to some recent studies and the present analysis,
AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from
its sequence.

Keywords: antibodies; frameworks; Complementarity Determining Regions; single-domain anti-
body; secondary structure; sequence–structure relationship; homology and comparative modelling;
threading; deep learning; docking

1. Introduction

Proteins carry out most of the functions in a cell. Among them, antibodies (Abs) or
Immunoglobulins (Ig) play a major role in the immune response. The antibodies are found
in mammals (see Figure 1a) and are classified into five main classes, namely IgA, IgG, IgD,
IgE and IgM, IgG being the most abundant Immunoglobulin. IgM and IgA are multimeric
Abs, while IgG, IgE and IgD are monomeric.
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Figure 1. Antibody domains. Immunoglobulins are found in mammals such as the dachshund 

(Canis familiaris) named Snoopy (a) and a Vicuña (d); both pictures were taken in Normandy 

(France) in August 2021. The immunoglobulins are shown by domains in (b) Classical Immuno-

globulin Gamma (IgG) and (e) HCAb (only found in the Camelidae family). (c,f) Antigen-binding 

domain of IgG and HCAb, namely the VH/VL domain and VHH domain. The FRs in the VH do-

main are shown in grey, in the VL domain in dark blue and in the VHH domain in cyan. The CDRs 

of the heavy chain are represented as CDRH1, CDRH2 and CDRH3, while CDRL1, CDRL2 and 

CDRL3 are CDRs of the light chain. The CDRs are represented in red shades: CDR1 (orange), 

CDR2 (red) and CDR3 (raspberry). Visualisation was performed using PyMOL [8–10]. Please no-

tice that Snoopy was not harmed when taking these pictures and received an optimised dose of 

beef and turkey dog treats that he likes a lot. 

They all contain four chains: two identical heavy chains and two identical light 

chains. The heavy chains comprise three constant domains (CH1, CH2 and CH3), fol-

lowed by one variable domain (VH). In contrast, each light chain has only one constant 

domain (CL1) and one variable domain (VL, see Figure 1b). The major function of anti-

bodies is antigen binding, i.e., the capacity of recognising and binding to a specific target 

determined by the sequence and structural characteristics. The anatomy of the variable 

region (VH and VL) of an antibody can be further detailed with (i) four Framework Re-

gions (FRs) and (ii) three (hyper)variable loops named Complementarity Determining 

Regions (CDRs) (see Figure 1c). CDRs constitute the main part of the so-called paratope 

region and are directly implicated in the interaction with the epitope (part of the antigen 

specifically recognised by the antibody). In terms of affinity, interaction ranges are in the 

nanomolar to micromolar range. This high affinity between a molecule and its antibody 

has led to a number of applications for diagnosis, therapeutics and in research fields [1–

3]. One of the most interesting developments is the emergence of bispecific antibodies 

(BsAbs). BsAbs neutralise two specific targets using two different epitope binding re-

gions formed by two variable fragments from each chain. Three of them are available on 

the market [4]: (i) Catumaxomab is used against chemotherapy-refractory ovarian cancer 

and recurrent malignant ascites by targeting EpCAM antigen on tumour cells and the 

CD3 antigen on T cells [5]; (ii) Blinatumomab against Philadelphia chromosome-

negative (Ph-)-B-cell acute lymphoblastic leukaemia, which acts on CD3 and CD19, and 

Figure 1. Antibody domains. Immunoglobulins are found in mammals such as the dachshund (Canis
familiaris) named Snoopy (a) and a Vicuña (d); both pictures were taken in Normandy (France) in
August 2021. The immunoglobulins are shown by domains in (b) Classical Immunoglobulin Gamma
(IgG) and (e) HCAb (only found in the Camelidae family). (c,f) Antigen-binding domain of IgG and
HCAb, namely the VH/VL domain and VHH domain. The FRs in the VH domain are shown in grey,
in the VL domain in dark blue and in the VHH domain in cyan. The CDRs of the heavy chain are
represented as CDRH1, CDRH2 and CDRH3, while CDRL1, CDRL2 and CDRL3 are CDRs of the light
chain. The CDRs are represented in red shades: CDR1 (orange), CDR2 (red) and CDR3 (raspberry).
Visualisation was performed using PyMOL [1–3]. Please notice that Snoopy was not harmed when
taking these pictures and received an optimised dose of beef and turkey dog treats that he likes a lot.

They all contain four chains: two identical heavy chains and two identical light chains.
The heavy chains comprise three constant domains (CH1, CH2 and CH3), followed by
one variable domain (VH). In contrast, each light chain has only one constant domain
(CL1) and one variable domain (VL, see Figure 1b). The major function of antibodies is
antigen binding, i.e., the capacity of recognising and binding to a specific target determined
by the sequence and structural characteristics. The anatomy of the variable region (VH
and VL) of an antibody can be further detailed with (i) four Framework Regions (FRs)
and (ii) three (hyper)variable loops named Complementarity Determining Regions (CDRs)
(see Figure 1c). CDRs constitute the main part of the so-called paratope region and are
directly implicated in the interaction with the epitope (part of the antigen specifically
recognised by the antibody). In terms of affinity, interaction ranges are in the nanomolar
to micromolar range. This high affinity between a molecule and its antibody has led to
a number of applications for diagnosis, therapeutics and in research fields [4–6]. One
of the most interesting developments is the emergence of bispecific antibodies (BsAbs).
BsAbs neutralise two specific targets using two different epitope binding regions formed
by two variable fragments from each chain. Three of them are available on the market [7]:
(i) Catumaxomab is used against chemotherapy-refractory ovarian cancer and recurrent
malignant ascites by targeting EpCAM antigen on tumour cells and the CD3 antigen on T
cells [8]; (ii) Blinatumomab against Philadelphia chromosome-negative (Ph-)-B-cell acute
lymphoblastic leukaemia, which acts on CD3 and CD19, and a complete remission can be
achieved (which was prevented before the approval of this drug) [9] and (iii) Emicizumab
is used for the treatment of patients with congenital factor VIII deficiency [10].
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Even though promising therapeutic strategies have been developed and are available
in the market, Abs remain quite challenging to tackle in terms of manufacturing and purifi-
cation [11,12]. One of the important limitations lies in the process cost to obtain a stable and
functional molecule. Other factors like stability, bioavailability and the expected immune
response are also difficult to optimise [13]. Hence, one relevant strategy to optimise the
cost of production consists of using in silico approaches beforehand. Since the precise
3D structure plays a major role in the specificity of the recognition, a key step requires
the elucidation of this 3D structure. Besides experimental procedures, theoretical method-
ologies constitute an alternative and promising way for predicting and studying their
structures. Moreover, they are extremely valuable tools for understanding more deeply
their properties and also offer the possibility to design new antibodies [14–16]. In this
context, the analysis and prediction of IgG structures and complexes has been a major
research field for 30 years. Two consecutive competitions, namely AMA-I and –II (Anti-
body Modelling Assessment), were initiated in the 2010s in order to assess the antibody
structure prediction methodologies [17,18]. Their evaluations of state-of-the-art software
like Accelrys [19], PIGS [20] and the Rosetta Antibody modelling suite [21] underlined
the difficulty in properly predicting the conformations of the six CDRs (three from heavy
chains and three from light chains) [17,18].

Interestingly, some animals have developed immunoglobulins with slightly different
architectures that often encompass only one chain. The first one comes from cartilaginous
fishes such as sharks. They have a special antibody called the “New Antigen Receptor
antibody” (IgNAR). The IgNAR is longer than human IgG heavy chains, with dissimilar
sequences [22]. The variable domain of the IgNAR is stable and small in size, which is very
valuable for drug discovery [23]. Nearly thirty years ago, in addition to classical antibodies,
a new class of immunoglobulin was discovered in camelids (this family includes Bactrian
camel, dromedary camel, guanaco, llama, alpaca and vicuña; see Figure 1d) [24,25], where
the light chain and, also, the CH1 domain of the heavy chain were absent. Consequently,
they were named Heavy Chain-only Antibodies (HCAb, see Figure 1e). Interestingly, their
VH domain, named VHH for Variable domain of the Heavy chain of HCAbs or commercially
nanobody, is composed of, as any VH or VL domain, four frameworks and three CDRs (see
Figure 1e). They are less than 130 residues long but often have a longer CDR3 than their
conventional equivalents. Their smaller size makes them easier to manufacture (and at a
low cost) than Abs. Moreover, VHH can be used independently from HCAb, while VH and
VL must be combined for classical Abs [26,27].

VHHs are thermostable, robust and can be tailored depending on the goal of their util-
ity [28–31]. Furthermore, they bring advantages similar to classical Abs: they can be used for
in vivo and in vitro diagnosis, therapy and research [31], e.g., in medicine [32], CAR-T [33],
cancers [34–40], the detection of pathogens [41] or as biosensors [42]. For in vivo diagnosis,
VHHs have the capacity to pass through the blood vessels and diffuse rapidly to the tis-
sues, which is helpful for in vivo imaging techniques like SPECT (single-photon emission
computerised tomography) and PET/CT (positron emission tomography/computerised to-
mography). In terms of diagnosis, VHHs have been efficient in diagnosing and monitoring
the evolution [42] of HER2-positive breast carcinoma, atherosclerotic plaques and arthritis.
VHHs are also adapted for enzyme-linked immunosorbent assays (ELISA), a technique
that is used for diagnosis and research purposes [43–45] for quantifying the amount of
molecules in a biological sample. Another example is the Double-Antibody Sandwich
ELISA (DAS-ELISA), where VHHs are used to capture and detect the presence of a molecule
of interest, e.g., to detect the alpha serum protein in foetal blood [46] or Staphylococcal
enterotoxin C in dairy products [47].

VHHs are also highly promising therapeutic molecules [48]. Yet, a humanisation step
is first required to make VHHs an effective therapeutic molecule for humans [49]. As an
example, Caplacizumab was the first therapeutic VHH authorised by FDA against acquired
thrombotic thrombocytopenic purpura (aTTP) [50]. Ozoralizumab and vobarilizumab are
two other VHHs currently utilised in clinical trials for rheumatoid arthritis [51,52]. Very
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recently, in the context of the COVID-19 pandemic, an impressive number of VHHs have
also been developed against the SARS-CoV-2 spike protein [53–65]. Therefore, a large
number of pharmaceutical companies are now developing VHHs. For instance, AbLynx
(now part of Sanofi) has a maximum of six VHHs in different phases, and three out of six
are bispecific VHHs [31].

The production of VHHs is mainly obtained from immunising the response of camelids:
the molecule of interest is injected to the animal, and the produced clones of VHHs are
then recovered. Specific sequences of VHHs (e.g., by using next-generation sequencing)
targeting a given antigen have to be determined, and the best proper clone(s) need to be
expressed. In this aim, different methods have been developed [66] that use, for instance,
phage display libraries or even plants [67–69]. For one particular antigen, a large number
of experiments can be required to identify a lead VHH with a pertinent affinity.

As for classical Abs, the understanding of the interaction between VHH and its partner
of interest is better achieved when the 3D structure of the complex is available [70]. Indeed,
it would allow designing new VHH sequences with improved affinity or specificity or, in
the context of biotechnology, grafting other partners (including VHHs) onto it. Despite the
increasing number of VHH structures available in the Protein Data Bank (PDB) [71] in recent
years, the structures of a large number of VHH sequences are far from being fully solved. It
is therefore necessary to use computational approaches to access this 3D information of
interest [72]. However, as was shown by the first modelling of a VHH targeting the human
DARC (Duffy Antigen/Receptor for Chemokine, now called Atypical Chemokine Receptor
1) protein in 2010, getting a relevant VHH 3D model [73] is quite difficult and remains
extremely challenging, as exemplified by a very recent study [74].

While AMA-I and –II competitions have analysed IgG molecular modelling success,
none have been done for VHHs [17,18]. Similarly, the modelling of IgG structures benefits
from a large number of dedicated tools such as PyIgClassify to classify the structures of their
CDRs [75], but nothing equivalent exists specifically for VHHs. For example, no dedicated
approach to specifically model VHHs had been developed until last year. Accordingly, for
the first time, the present review aims at giving an overview of the specificities of the VHH
3D model proposals and their improvements over the last 12 years. Different tools available
will be presented, and examples from the literature will be discussed. The advantages and
performances of the modelling tools can be more easily compared and discussed, since
they are applied to the same family of interest.

2. VHH Modelling
2.1. General Principle, a Short History

The evolution of sequencing techniques over the last 50 years implies that entire
genomes are now accessible in a few hours, as is their proteome [76,77]. The gap between
the number of protein sequences and experimental structures continues to grow despite the
increased number of structures deposited in the PDB [71,78,79]. Additionally, for more than
40 years, methods for predicting 3D structural models from a sequence using computational
approaches have made impressive progress [80,81]. The first approaches were based on
simplified physicochemical principles, such as lattice folding in the early 1970s [82]. They
were quickly supplanted by the use of analogies between proteins based on evolution. This
paradigm states that mutations within a sequence could happen and accumulate them-
selves, leading to a minor modification in the 3D structure while keeping the same function.
This conclusion gives rise to the following principle: “structure is more conserved than
sequence”. These homology or comparative modelling approaches have been developed
from the 1990s onwards [83] with the famous software called “Modeller” [84]. Nonetheless,
the main pitfall of this approach lies in the threshold of the sequence identity between the
query and the template sequences. When it is too low, it precludes the use of this kind of
method. A solution can be found by looking for the compatibility between known folds and
very distant sequences, namely the threading approach. These techniques had some nice
results in the late 1990s, e.g., GenThreader [85], or, more recently, ORION [86,87], despite a
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higher computational cost. In parallel, approaches that combine small fragments from very
distant proteins and optimise tens of thousands of 3D models are being developed and are
reaching maturity with Rosetta [88,89] and I-Tasser [90]. Finally, very recently, Deep Learn-
ing approaches have allowed reaching a new level, sometimes leading to models of almost
atomic quality with AlphaFold 2 [91] and trRosetta [92,93]. These approaches, composed
of multiple complex neural networks, combine very long-distance evolutionary searches
and advanced local compositional proposals. These advances have been achieved thanks
to the rising computational power of GPUs in the last few years and better mathematical
representations [94].

An important point to consider is the need for accurate metrics to quantify the dis-
tances between 3D structures (or structural models) to estimate the reliability of these
predictions. The most classical, but also the strictest, is the Root Mean Square Deviation
(RMSD) [95], as it corresponds to a classical Euclidean distance between two structures. Its
evaluation therefore depends on the length of the protein of interest. To take into account
the inherent flexibility of proteins (a long and poorly structured loop can lead to a high
RMSD, despite a good overall prediction), many metrics weighting these atomic distances
have been developed, the best known being the GDT_TS [96] and the TM-Score [97,98].
They take into account the quality of the folding compared to the reference structure and
are thus very much used in the evaluation of Critical Assessment for Structure Prediction
(CASP) competitions [99].

2.2. Abs and VHHs Specificities

As presented before, Abs and VHHs have specific global and local topologies, i.e., FRs
and CDRs [100–102], or a VH/VL interface [103,104]. Hence, some specific Abs modelling
tools have been developed. Of course, classical protein modelling tools (see Figure 2a)
can be used for Abs and VHHs. However, because of the various implications of Abs in
biotechnology and biomedical domains and their diversity (Figure 2), the need for dedicated
Abs tools has emerged (see Figure 2b). Abs software can model classical antibodies, but
some of them offer options to model heavy chains or light chains only. VHH sequences
are often compared to heavy chains of antibodies with lengthy CDR3 sequences. These
tools can accept a VHH sequence and predict an associated structural model. In this review,
modelling software programs are classified into simple and more advanced techniques.
The number of VHH structural models remains limited in the literature, but their variety is
quite rare and remarkable.

2.3. Modeller and ModWeb

Modeller [84] is probably the most important software of comparative/homology
modelling. Developed in 1993, it is still maintained (https://salilab.org/modeller/, last
accessed date: 7 February 2022), free for academics and included in commercial packages.
Modeller automatically produces a model encompassing all nonhydrogen atoms based on
(multiple) sequence alignment for a sequence (provided by the user) to be modelled with
known related structures [106]. It takes as the input an alignment file of the sequence query
with one or several sequences of structural template(s). Different refinement options exist.
After multiple cycles of building and model evaluations, the chosen number of structural
models is produced. The user must choose the best one associated with the lowest DOPE
score [107]. Moreover, developers have proposed an online web server named ModWeb
that uses PSI-BLAST [108] and IMPALA [109] to find compatible structural templates and
Modeller to build the structural model [84].

https://salilab.org/modeller/
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Figure 2. Protein structural prediction tools. The above representation is a summary of (a) general
protein modelling tools and (b) Antibody and VHH modelling tools. All the tools are classified
according to their availability (standalone and/or online server, academic or commercial) and the
methodologies used (comparative/homology modelling, threading, ab initio and deep learning).
* The phaser is dedicated to molecular replacement [105].

The VHH fold looks well-conserved in the frameworks [70] but quite variable in CDRs.
Comparative modelling using Modeller is a legitimate solution to predict the unknown
structure of an antibody [110] and of VHH from its sequence. Nonetheless, the high
sequence variability at the CDRs makes it a difficult challenge. Nowadays, Modeller is the
most used software to model VHH structural models in theoretical studies.

In 2010, our team modelled the first VHH [111]. This VHH was optimised against
human DARC/ACKR1, which is the entry point of a malarial parasite, Plasmodium vivax,
into red blood cells. The structure of this anti-DARC VHH (named CA52) was built using
two templates (PDB IDs: 1OP9 and 1JTO), selected using PSI-BLAST against PDB. The
sequence query is 124 amino acids long and has an extra disulphide bond between CDR1
and CDR3 and was constrained as found in the second template. Two hundred models
were generated using Modeller. Comparisons of the models were done by superimposition;
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the model with the median RMSD was selected. This un-classical approach was chosen,
as the DOPE score was non-discriminative enough due to the extremely high structural
similarity of the models. Indeed, this high similarity is explained by two reasons: the extra
disulphide bridge constraint and an entirely equivalent fold of the frameworks [73]. This
model was compared to other (and distinct) VHH clones obtained from the same camel and
helped to search for a peptide able to bind DARC; an analysis of the electrostatic surface
determinants was particularly important [112].

Another example focused on the cytokine TNF, a well-known drug target for several
inflammatory diseases, such as Crohn’s disease. Two anti-human TNFR1 VHHs were
experimentally generated and linked with an anti-albumin VHH to create “TNF Receptor-
One Silencer” (TROS) [113]. The two VHHs were built with Modeller using multiple
templates from four different structures (PDB IDs: 4FZE, 4JVP, 2KH2 and 3P0G). RAMPAGE
software, a tool based on the local protein geometry, was used to validate the generated
models [114]. The best models ranked were used for docking using ClusPro [115] with its
human target TRNF1. This last step revealed the different binding sites of the two VHHs.
The authors used it to design bispecific VHHs and tested them experimentally [113].

Other examples were done using the single structural templates for the design of
VHH focusing on several targets: vascular endothelial growth factor receptor 2 (VEGFR2)
for antiangiogenic strategies in cancer therapy [116], bone morphogenic factor 4 (BMP4,
implicated in carcinogenesis and tumour progression [117]), CD47 molecule, a promising
cancer biomarker [118] and Vascular Endothelial Growth Factor 165 implicated in tumour
angiogenesis and metastasis [119]. One can also cite their use for an antivenom therapy
inhibiting two myotoxic phospholipases from Bothrops jararacussu venom: Bothropstoxin
I and II [120]. Furthermore, multiple templates were employed to model a VHH against
matrix metalloproteinase 8 (MMP8) linked to several pathological conditions, e.g., lethal
hepatitis and the systemic inflammatory response syndrome [121]. All these studies mod-
elled a VHH structure from its sequence and used it to perform docking [122]. Studying the
interaction and affinity between VHH and its target of interest was the major goal of these
papers. Additional experimental information allowed refining the models and/or docking,
e.g., VHH anti-MMP8 second poses were considered better in regards to ELISA data [121]
and the development of a structure-based engineering approach to abrogate pre-existing
antibody binding in Biotherapeutics [123]. Regarding the actual sanitary context, Modeller
was used for the design of a VHH that neutralised SARS-CoV-2. The docking made with
the conceived VHH was in excellent agreement with the experiments and explained the
difference of binding between VHHs [61].

Modeller was also used for the refinement of small-angle X-ray scattering analy-
sis results in the context of the interaction of a VHH interacting with the Disrupted-in-
Schizophrenia 1 (DISC1) protein, involved in neurodevelopment and chronic mental illness.
Modeller, a more supervised approach, was shown to be more efficient than a more complex
method, QUARK (detailed later) [124].

2.4. ABGEN

ABGEN software was made available in 1996. ABGEN is a homology-based algorithm
that models an antibody and has some strong similarities with Modeller. It consists of
two modules called ABalign and ABbuild [125]. ABalign finds templates for the heavy
and light chains and provides an identity score for each template identified. Based on the
best template selected, ABbuild constructs a rigid model for all chains; then, the loops and
side chains are optimised. Finally, ABGEN includes dedicated mechanistic approaches
with XPLOR [126] and GROMOS [127] to refine the obtained models. ABGEN is no longer
accessible and has not been used on VHHs but was the first to specifically optimise the
CDR loops.
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2.5. Web Antibody Modelling

Web antibody modelling (WAM) was a very interesting hierarchical approach pub-
lished in 2000 [128] and dedicated to antibodies. It improved previous works [129,130] and
can be described in five consecutive steps:

1. A similarity search is performed to build the framework (backbone and side chains)
and canonical loop backbones with closer structures (in terms of sequence similarity).

2. Using CONGEN [131], the canonical loop side chains are constructed using an iterative
placement technique searching for the global minimum energy conformation.

3. Depending on the loop length, alternative conformations are produced by using
directly the PDB or CONGEN again.

4. A specific solvent-modified version of the Valence force field is tested to assess the
different conformations.

5. Finally, the conformation is selected from the five lowest energy conformations. The
final model is the conformation with the set of torsion angles closest to the canonical
one, as defined in the chosen clustering approach.

Theoretically, this tool can be used to model a VHH sequence, but this has not been
done, and its website has been unavailable for some years. Still, it represents the first real
attempt to optimise part-by-part an antibody.

2.6. SWISS-MODEL

SWISS-MODEL is a famous online protein homology modelling server that was firstly
published in 2003 [132]. It has been frequently updated with both interface ergonomic
and methodological improvements [133,134], but the basis is rooted in the principles of
the Modeller algorithm (see above). The research of compatible sequences is made by
PSI-BLAST [108], combined with delicate HHblits [135]. Then, the user can select which
template(s) to use. An interesting point is the different measures provided to assess the
qualities of the several models built, i.e., the Global Model Quality Estimate (GMQE) [133].
Building of the structural model is done with locally developed OpenStructure, i.e., an
integrated software framework for computational structural biology [136]. In a similar way,
they also developed measures to assess the quality of the models, i.e., QMEAN scoring
function [137]. While it is a generic approach, it has been used for the modelling of different
classical antibodies [138–141].

Their in-house software ProMod3 was recently provided freely to download as a
standalone package [142]. It can be used to identify structural templates after sequence
alignments for a given VHH sequence. Then, it produces multiple homology models in
batch mode.

SWISS-MODEL was used to generate structural models of humanised VHHs. Mu-
rakami and co-workers used SWISS-MODEL directly to generate their humanised VHHs
and later relaxed the 3D structural models with advanced molecular dynamics (MD) simu-
lations. They previously classified CDR3 conformations into four clusters carried out on
MD to see their stability. Indeed, their clusters seemed highly biologically relevant [143].
SWISS-MODEL was also used to generate a structural model of a VHH that binds to the
famous spike protein of SARS-COV-2. This particular VHH was used to understand the
structural basis for the induction of a spike trimer [144]. Noorden and co-workers built a
complex of a VHH and SAN2 protein and provided further comprehension of a nuclear
pore complex structure [145]. Thanongsaksrikul and co-workers developed libraries of VHs
and VHHs against botulism. They succeeded in the identification of Abs against the light
chain of type A Clostridium botulinum (BoTxA/LC) neurotoxin. Using SWISS-MODEL, they
obtained VH and VHH structural models. The interface binding between BoTxA/LC and
the selected VH/VHH was determined by using ZDOCK and RDOCK modules on Discov-
ery Studio 2.1 (Accelrys Inc., now the Biovia-Dassault System). As they noted, “BoTxA/LC
neutralization by the VHH should be due to the VHH insertion into the enzymatic cleft
of the toxin, which is usually inaccessible to a conventional antibody molecule” [146].
Higashida and Matsunaga modelled all their VHHs with SWISS-MODEL before doing
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advanced molecular dynamics, especially to look at the important parameters to properly
gain the inner flexibility of VHH CDR3 [147]. Orlov and co-workers also modelled a VHH
with SWISS-MODEL to gain the structural basis of VHH recognition of grapevine fanleaf
virus implicated in the virus resistance loss. The proposition of this structural model
allows a better understanding of the epitope and helps to design experiments to confirm
it [148]. Mahajan and co-workers used SWISS-MODEL VHH structural models (refined
by molecular dynamics) in structure-based computational methods to optimise the bind-
ing affinity of the non-amyloid component of human α-synuclein, a natively disordered
protein implicated in the pathogenesis of Parkinson’s disease (with a large number of
experiments) [149].

2.7. MoFvAb

MoFvAb was published in 2015 [150] and focuses on “Modelling the Fv region of
Antibodies”. In the first step, it annotates FRs and CDRs using the WolfGuy numbering
system [151]. Based on the segments, templates are identified for heavy and light chains.
For all chains, rigid models are produced, except for CDR-H3. The latter undergoes de
novo building. In the next step, the CDRs are relaxed, and a side chain refinement is per-
formed based on the neighbourhood algorithm. The final steps involve VH/VL orientation
prediction and refinement, rotamer optimisation and CHARMM minimisation [150]. The
methodology was tested on the AMA-I and -II datasets with good results but was never
applied on VHH. It might be adapted for VHH, but the approach is not currently available.

2.8. Prediction of Immunoglobulin Structure

These web servers were developed by Anna Tramontano’s group. Anna Tramontano
worked previously on antibody structures, sequence–structure relationship and modelling
using classical approaches [152–155]. The first version named “Prediction of ImmunoGlob-
ulin Structure” (PIGS) was published in 2008 [20], as the authors found that WAM had
numerous limitations and was not very flexible. On the basis of the results from previous
research, CDRH3 was modelled differently according to its length [156]. PIGS proposed
structural models of the complex VH/VL for the user-provided sequences. The evaluation
of the approaches was tested in the original paper but also in AMA-I and -II competi-
tions, with good results [17,18]. The second version, named PIGS PRO, was proposed in
2017 [157]. As WAM, it can be divided into five steps:

1. Frameworks are prepared: Structural templates for the frameworks are selected using
sequence identity with protein structures from PDB.

2. Five of the six CDRs are built: CDRs L1–L3 and H1 and H2 are modelled by getting
conformations from antibodies with the same canonical structures discarding the
identity sequence.

3. To complete, a CDRH3 loop is proposed using the structural template with the highest
sequence identity with the query sequence.

4. All is merged: The complex VH–VL is modelled.
5. At last, SCWRL is used to optimise the side chain conformations of the predicted

model.

Interestingly, the user had the possibility of providing a VHH sequence instead of a
VH sequence by putting in a “fake” canonical VL sequence to initiate the prediction job.
This VHH/VL structural model could have provided an interesting approach. The web
server is not currently online.

2.9. AbodyBuilder

ABodyBuilder is a dedicated tool developed in Deane’s lab for antibody structure
prediction. The algorithm first annotates and finds templates for VH and VL alone and for
the complex VH–VL [158]. A new update has been deployed, and it is now also usable
for VHH alone [159]. The approach is hierarchical, as often seen. The FREAD algorithm
tries to identify the templates for CDRs. If no templates are found, then the Sphinx loop is
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triggered ab initio. The final step is to use PEARS to predict the side chain conformations
using the IMGT position-dependent rotamer library. An interesting feature is the estimation
of the expected RMSD with a confidence value of the resulting antibody model [158]. As
a valuable example, this method has been used recently for the analysis of SARS-CoV-1-
specific VHH to apprehend the conformational diversity of the CDR region, its affinity and
stability [160].

2.10. LYmphocyte Receptor Automated Modelling

LYmphocyte Receptor Automated modelling (LYRA) was an improved approach to
predict B- and T-cell receptor structural models [161], presented as an online web server
(https://services.healthtech.dtu.dk/service.php?LYRA-1.0, last accessed date: 8 February
2022). The authors have done important developments regarding curation both in terms
of sequences and structures. The sequences have been annotated and numbered with the
Kabat–Chothia approach adopted by Abhinandan and Martin [162] and reduced in terms
of redundancy. Research of the compatible optimal sequences was done using a Hidden
Markov Model [163]. The best-scoring profile is used to deduce the receptor (TCR or BCR)
and chain type (heavy or light). At this stage, the alignments are recertified to correctly
identify the heavy and light chains. An important point is the generation of different
variations of the scenario by looking at (most of) 20 different structural templates to ensure
there are no clashes. Similarly, to refine it, CDRs are searched on a defined library based
on a specific CDR clustering [164]. Finally, to create the final model, the templates from
both chains are assembled, and the side chains are repacked [161]. This job process is fast
and takes less than a minute on average. The user can replace the heavy sequence with
the VHH sequence and get a model for this VHH sequence in a similar way to PIGS and
PIGS PRO.

2.11. Phyre2

Phyre [165] and its successor Phyre2 [166] are generic approaches very similar to
techniques such as SWISS-MODEL that combine evolutionary information with a dedicated
analysis of the protein structure dataset. It is an available online web server (http://www.
sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index, last accessed date: 9 February 2022).
Phyre2 has two modes: a normal and an intensive mode.

The normal mode consists of three steps:

1. Related sequences (with or without structures) are detected by HHblits [135] and
HHsearch [167] to produce multiple-sequence alignment and to search for adequate
templates for the input sequence. Once the templates are identified, the models are
constructed but roughly only with the backbone.

2. A specific step is done to optimise the loop modelling where the indels (insertions
and deletions) in these models are found.

3. The side chains are grafted to build the final Phyre2 model.

The intensive mode has two steps. The first step produces many alternative models
of the same query with the basic mode. Different metrics are then tested related to the
confidence interval and coverage. When a region is considered not covered by “homologs”,
then the Poing algorithm enters the stage to predict the structure using ab initio components.
This algorithm mimics a virtual ribosome by performing a folding process only with Cα

atoms. It focuses at first on repetitive structures, then the loops [168]. At the end, the
backbone is completed with the Pulchra algorithm [169], and the side chains are finally
added with R3 [170], such as for the normal mode.

Different VHH structural models were generated with Phyre2. A first example implies
Urease C (UreC) of Helicobacter pylori has an important role to play in bacterial colonisation
of the gastric mucosa. Loss of its activity has been speculated to arrest H. pylori colonisation,
i.e., a pertinent target for therapeutic intervention. Different clones of VHH were produced
against UreC. A high-affinity VHH, called HMR23, was optimised and selected for further
analysis. To understand the difference of binding properties between parent anti-UreC

https://services.healthtech.dtu.dk/service.php?LYRA-1.0
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
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VHH and HMR23, structural models were generated using Phyre2. The modelling of parent
and mutant VHHs was essential to understand the structural conservation in terms of fold
in the latter [171].

A second example focuses on Acinetobacter baumannii, a multidrug-resistant bacterial
species responsible for many hospital-derived infections. Its ability to form biofilms helps
its survival in hospital conditions. Inhibiting the formation of biofilms can contribute
to the reduction of infection. In a previous study, researchers detected an efficient VHH
clone against the Biofilm-associated protein (Bap) of this bacterium [172]; the purpose
of this study was to go further using 3D structural information. An interesting point to
notice is the use of multiple methodologies to propose the structural models. They were
produced with (i) Phyre2 [166], (ii) the Protein Structure Prediction Server (PS2V2) [173]
that builds the models with Modeller [84] and (iii) LOMETS [174]; the last two approaches
are methodologically equivalent. A total of ten models for each template were generated
with ten distinct structural templates. Model evaluations were done using ProSA [175,176]
and then further refined using Modrefiner [177] to select the best ones. It was one of the
few studies where multiple approaches were really tested. Then, they performed a docking
analysis with ZDOCK [178,179]. Hence, the authors defined important VHH residues
and their interactions for the ligand-binding site. They proposed binding modes between
Bap and the VHH. Finally, the functional residues in the largest cleft implied in ligand
binding were identified [180]. An identical approach was used for a VHH against chronic
inflammatory disease caused by Porphyromonas gingivalis [181].

2.12. RaptorX

RaptorX is an automated server that performs template-based tertiary structure mod-
elling [182,183]. It derives from RAPTOR, a classical threading approach [184,185]. The
improvement of RaptorX versus RAPTOR consists in the use of a nonlinear alignment
scoring function with a conditional random field (CRF), providing local entropy. In the first
step, the sequence is cut into domains, and the predictions of different features, such as
disorder prediction, are performed. Then, the templates are searched and ranked through a
threading process. The alignment quality is assessed by Artificial Neural Networks. At
the end, RaptorX provides multiple final models, including models that are produced
based on multiple top-ranked templates. The latest version of RaptorX has now evolved
and includes a deep convolutional neural field (DeepCNF) to predict the secondary struc-
ture [186]. DeepCNF has two components: a deep convolutional neural network (DCNN)
and a conditional random field (CRF) for the input and label (output) layers that are CRFs.
It has recently been enriched by the use of deep learning to predict protein contacts [187].
RaptorX [182,183,188] was used in exciting research on Bordetella pertussis. This aerobic,
non-spore-forming, Gram-negative coccobacillus was implicated in the renewed outbreak
of whooping cough in the elderly. Its adenylate cyclase-haemolysin toxin (CyaA) plays an
important role during the early phase of infection. A specific subdomain named CyaA-RTX
is involved in toxins binding to target cells. Through the screening of a VH/VHH phage
display library, two VHs and two VHHs clones were identified after several optimisation
rounds [146,189–191]. Three-dimensional structural models of these proteins were built
using RaptorX [192]. The loop conformations were obtained using the dedicated FALC
loop modelling web server [193]. The best models were further validated using various
algorithms available on the NIH SAVE server. Then, the best resulting models were well-
refined and optimised by energy minimisation performed with Gromacs software [194].
Afterwards, in order to predict their mode of interaction, the VHH models were docked
on the target CyaA-RTX domains with the ClusPro web server [115]. Interestingly, all the
nanobodies were found to interact with the target, especially in the linker region between
the two domains CyaA and RTX, i.e., in excellent accordance with the experimental data.
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2.13. Rosetta, Robetta, Rosetta Antibody and VHH Modelling Application

Developed under the guidance of David Baker, the Rosetta story began in the last
century. Originally, it mainly consisted in an ab initio approach [195], but progressively,
it evolved towards a de novo strategy that combines small structural fragments obtained
from a sequence search in a dataset. The addition of evolution information and local
protein constraints improved the quality of the results [89,196,197]. A last round of various
improvements led to erasing non-native contacts. Finally, an intensive production of
alternative structural models and the clustering of models coming from homologous
sequences contribute to make Rosetta a great successful tool in the proposition of structural
models [198,199]. Rosetta development was impressive and can be analysed through
different prims. RosettaCM, dedicated to optimise comparative modelling steps, competed
with the best similar approaches [199]. A web server named Robetta is freely available
(https://robetta.bakerlab.org/, last accessed date: 10 February 2022) [200,201].

This powerful tool is also freely downloadable for academics and can be installed
locally. Rosetta software has evolved a lot since its beginning, being highly scriptable and
customisable [93]. Besides 3D predictions, it encompasses extremely valuable services,
e.g., protein design [202] or protein docking [203,204], which are of particular interest in
the context of VHH exploration. Rosetta was applied for the study of an anti-glycoprotein
(cAbAn33), anti-lysozyme (cAbLys3) and anti-prostate-specific antigen (cAbPSA-N7). The
contribution to the stability of these proteins of an extra-disulphide bond (between CDR1
and CDR3) present in camels and llamas was more precisely explored. Fortunately, cA-
bAn33 and cAbLys3 have available protein structures that were used for creating models
of mutants in which the extra cysteines CDR1 and CDR3 were replaced. ESyPred3D [200],
i.e., a methodology based on Modeller and Robetta [200], was used to generate the mutant
models. The authors mentioned that the models from ESyPred correspond to those gen-
erated by Robetta (data were not shown). Hence, molecular modelling in this study has
been useful in understanding the structural conservation of mutants in terms of fold. The
models of the mutants predicted had very few differences compared to their parent VHH
structures [205]. From the generalist Rosetta software, a specific antibody development was
done, namely RosettaAntibody [206]. This tool is available online and can be used through
Rosie (https://rosie.rosettacommons.org/antibody/, last accessed date: 10 February 2022).
The protocol consists of three steps for a given antibody sequence [21,207,208]:

1. In the initial step, the CDRs are identified using the Kabat CDR definition, and the
residues are renumbered using the Chothia scheme. The template selection is then
carried out for all the frameworks, and five of the six CDRs (CDRH1 and CDRH2 and
CDRL1–CDR3),

2. From the selected templates, a preliminary model is created using homology mod-
elling, as it was shown to be more accurate than a completely de novo approach.

3. CDRH3 de novo loop modelling completes the model prediction, along with the
optimisation of the VH–VL interface.

As the Rosetta modelling suite also incorporates a docking approach, this last was
optimised for antibodies [209]. However, RosettaAntibody appeared less efficient with
single-chain antibodies and, so, with VHHs. Accordingly, a specific adaptation in the
loop definition was done [210] to better take account of the specificity of the VHH CDRs,
especially CDR3 [211]. Until 2021, it was the only specific development and assessment
dedicated to VHHs. This study underlines the difficulty in VHH modelling and, specifically,
the fact that an approach for IgG is not optimal for VHH. For a while, the specific script for
VHH was not available in the new versions of RosettaAntibody, but it is now usable again.
Even if the tool is not used directly, it has been frequently cited as an analysis of CDRs that
is quite precise, i.e., for optimising synthetic VHHs [212].

2.14. AbPredict2

AbPredict is implemented in the Rosetta modelling suite through two versions: ABPre-
dict 1 [213] and ABPredict 2 [214]. It can be downloaded (http://abpredict.weizmann

https://robetta.bakerlab.org/
https://rosie.rosettacommons.org/antibody/
http://abpredict.weizmann.ac.il/bin/steps
http://abpredict.weizmann.ac.il/bin/steps
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.ac.il/bin/steps, last accessed date: 14 February 2022) and is also free for academia. In
short, AbPredict exploits known antibody 3D structures and optimally combines backbone
conformations with a low-energy Monte Carlo search. A few details are given in the
next section.

AbPredict methodology is based on five independent databases comprising backbone
torsion angles of the segments of VH, VL, CDRH3, CDRL3 and rigid body orientation of
heavy and light chains. The initialisation starts by combining random segments from the
five databases. A biased simulated annealing Monte Carlo (SA-MC) sampling is performed,
with thousands of independent trajectories. The lowest energy conformation is extracted
from each of these trajectories. From the latter list of conformations, the final predicted
antibody model is the one that has the lowest energy.

AbPredict has been benchmarked using the AMA-II antibody set and compared
to the methods presented therein. It performed in the upper third of all the compared
methods [208]. It was recently compared to RosettaAntibody and RosettaCM, a generic
version, in the case of long CDRH3. Surprisingly for these very hard cases, RosettaCM
was slightly better than the two other dedicated methodologies [215]. Thus, despite some
success in Ab modelling, it seems that ABPredict is not used for VHH modelling nowadays.

2.15. Biovia Discovery Studio/Antibody Modelling

Discovery studio (DS) is a commercial toolbox coming historically from the Accel-
rys company located at San Diego, CA, USA (a merging of Molecular Simulations Inc.,
Synopsys Scientific Systems, Oxford Molecular, the Genetics Computer Group (GCG),
Synomics Ltd. located at Witney, Oxfordshire, United Kingdom and some others) and is
now owned by Dassault Systèmes Company. It was renamed BioVia. BioVia Discovery
Studio uses Modeller at the backend to model protein structures from a user-provided
sequence [84]. DS proposes different strategies based on homology modelling but with
dedicated tools to model the antibodies named Biotherapeutics and Antibody modelling.
They were positively tested in AMI-I and -II and validated [216].

The first and simplest strategy (named single template) consists of finding the best
templates (based on the sequence identity) for the heavy and the light chains of a given
antibody sequence. Both of these templates should belong to the same antibody structure.
Spatial orientation or the interface between the heavy and the light chains will also be used
as a template from the same antibody.

In contrast, in the second strategy (named as chimeric), the best templates for the
heavy and light chains and the interface between the chains can come from different
antibody structures. After identifying the top five best templates, five models are built
using Modeller [84]. If the sequence identity between the template and the target is too
low (inferior to 10%), the template is discarded. This initial step is followed by the CDR
refinement of the top five models. The CDR regions are identified using the IMGT, Chothia,
Honegger or Kabat numbering schemes [101]. The CDR templates are searched and ranked
by sequence similarity according to the BLOSUM62 matrix and, finally, rated based on the
crystallographic resolution. The CDR loops are built with Modeller using the best-ranked
templates while maintaining the frameworks in these models.

Two VHH modelling applications have been done using DS. Jullien and colleagues
worked on histones, proteins implicated in the nucleosome complex. Some posttranslational
modifications of histones are indicators of gene expression. This feature can be exploited
by binding exogenous proteins to these histones, which helps to understand the chromatin
dynamics. In this study, VHH rose against the H2A–H2B complex in the chromatin,
i.e., named chromatibody, and were experimentally tested and automatically modelled
using Modeller from Discovery Studio. The best models were selected based on the
Modeller scoring function (molpdf) and DOPE scores [107] and then refined. This molecular
modelling has been helpful in suggesting the appropriate placement of the chromatin-
binding motif in the β-hairpin region of the CDR3 into the H2A–H2B protein cavity
(Jullien et al. 2016).

http://abpredict.weizmann.ac.il/bin/steps
http://abpredict.weizmann.ac.il/bin/steps
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The second case dealt with a VHH that targets Phospholipase A2 (PLA2), an enzyme
present in snake venom that digests cell membrane lipids. The number of snakebite
cases, especially due to monocled cobras (Naja kaouthia) in Thailand, is on the rise. Hence,
an antibody against PLA2 has practical interest, especially a camelid VHH, due to its
thermostable properties. A humanised dromedary VHH phage library was previously
obtained [146]. Two VHH clones from PLA2 bio-panning (P3-1 and P3-3) were selected for
further studies of modelling and docking. Both VHH clones are classical VHHs, along with
P3-3, having an extra CDR1–CDR3 disulphide bond. The templates were selected using
BLAST against PDB, and the structural models were built with DS. The steric hindrance
of the models was assessed and, also, geometrical properties with the Ramachandran
plot. The best models were selected for docking with PLA2 using ZDOCK. The docking
experiments revealed that the VHH models bind to the Ca2+-binding site, the active site
and the phospholipid-binding site of PLA2 [191]. Despite their interest, these findings have
not yet been experimentally validated.

2.16. MOE/Antibody Pipeline

MOE belongs to the Chemical Computing Groups Company, located at Montreal, QC,
Canada, and has a pipeline for antibody and biologics designs [217]. The tool works for
classical antibodies and VHH. For a VHH sequence, MOE searches for templates in two
databases: in-house-built and PDB databases. In the in-house-built database searching
process, the template will be kept if the sequence similarity with the target is more than
50%. From the in-house-built and PDB databases, the top 10 and top five hits will be
retained, respectively. The templates are then constructed by grafting the frameworks
and the CDRs. Multiple models are built, and then, an energy minimisation is performed.
From this group of models, a consensus model is established, and different optimised final
models are proposed.

With the final model, CDR3 conformations are further explored and, lastly, clustered. A
unique CDR3 conformation is finally grafted in the VHH model. Once again, an energetical
evaluation is done. The top three models with the lowest binding energies will be the final
output of this program [217].

Different studies have been made with classical antibodies. A recent study combined
IgG and VHH as bispecific antibodies. MOE structural models were tested by molecular
dynamics and analysed in light of the experimental data. They could compare different
VHH behaviours and especially observed problematic interactions that were too strong
between one IgG chain and one VHH [218].

2.17. Schrödinger BioLuminate and Antibody Pipeline

BioLuminate is a suite developed by Schrödinger Company, located at New-York, NY,
USA. It is a pipeline for general homology modelling but includes a specific design for
antibodies. The modelling protocol is:

1. Frameworks are detected in a curated antibody database, providing structural tem-
plates (selected using a sequence identity).

2. Next, a set of CDRs are grafted after scanning another custom database containing
only CDRs and a selection based on structural clustering, sequence similarity and
stem residue geometry matching.

3. In the final step, the in-house Prime software repacks the side chains and minimises
the antibody model.

4. A CDR3 loop is built using the ab initio method.

Schrödinger does provide detailed information about BioLuminate’s Antibody mod-
elling tool and tutorials: (https://www.schrodinger.com/training/building-homology-m
odels-multiple-sequence-viewereditor214, https://www.schrodinger.com/training/ant
ibody-visualization-and-modeling-bioluminate-workshop-tutorial214, last accessed date:
15 February 2022).

https://www.schrodinger.com/training/building-homology-models-multiple-sequence-viewereditor214
https://www.schrodinger.com/training/building-homology-models-multiple-sequence-viewereditor214
https://www.schrodinger.com/training/antibody-visualization-and-modeling-bioluminate-workshop-tutorial214
https://www.schrodinger.com/training/antibody-visualization-and-modeling-bioluminate-workshop-tutorial214
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Their antibody pipeline was used in a study on Clostridium difficile Toxin (CDT). This
last is a potent toxin responsible for antibiotic-associated diarrhoea. These toxins belong to
the C2 class of toxins, which means the presence of two subunits (CDTa and CDTb). The
CDTa subunit is responsible for the ADP-ribosylation of actin, and CDTb is responsible
for forming a toxin–pore complex through which the CDTa subunit is internalised. This
study attempted to inhibit the function of the CDTa subunit using VHH from lama. Three
anti-CDT VHH clones were modelled using the BioLuminate package. Two of the clones
had an extra disulphide bond that was preserved in the structural models. These models
were used in a docking experiment to understand their precise mode of interaction with
their target. The models were docked onto CDTa using the PIPER module in Discovery
Studio. All three VHHs were found to bind to the NAD+-binding cavity in CDTa. Two
compete with each other, whereas the last has a different binding site. This study also
reported interactions in FRs of the VHH used to lead to a better understanding of the
experimental data.

2.18. Macromoltek’s SmrtMolAntibody

The Macromoltek Company, located in Austin, TX, USA, created SmrtMolAntibody.
The first step of this algorithm is to search an antibody database to detect templates for
the VH and VL query sequences with the BLAST approach [219]. Then, a similar search is
done on a loop database to find more adequate templates for all six CDRs. Based on the
identified templates, assembling the frameworks and grafting the CDRs allow building
an initial antibody model. A specific modelling step is done for the CDR(H)3 loop. The
top 50 models with the best (energy) CDRH3 loop conformations are retained. For each of
these 50 models, the side chains are repacked, and their torsions are minimised. The above-
mentioned final steps are subject to multiple evaluations based on an energy score with
modified and softened Lennard-Jones associated with side-chain rotamer frequencies [219].

2.19. I-TASSER and C-I-TASSER

During multiple rounds of CASP, with David Baker’s Rosetta, I-TASSER [90] was
the best available method to propose pertinent structural models [220]. I-TASSER is
based on Local Meta-Threading Server (LOMETS) [221]. LOMETS exploits deep learning-
based threading methods and profile-based programs to identify the best templates and to
annotate structure-based protein functions. Once the templates are identified, I-TASSER
uses a Monte Carlo-based simulation to produce and to refine the protein structural model.
The latest development includes deep learning-based contact predictions in the I-TASSER
methodology, which is now named C-I-TASSER [222].

The I-TASSER web server was used to model different VHHs. A first study looked
at the hepatitis C virus (HCV). This virus has six non-structural proteins (NS). Fusion
proteins NS3 and NS4 form a serine protease, which cleaves the linker between NS5A and
NS5B. This last is directly implicated in the virus life cycle and is a good target. Three VHH
clones were generated against the fusion HCV protease NS3/4A. The I-TASSER web server
was used to build the three structural models. They were refined using ModRefiner and
fragment-guided molecular dynamics [177]. Computational docking analyses revealed
that CDR2 and CDR3 of the three VHH would bind to the NS3/4A catalytic triad residues.
Two VHHs residues from FRs were also implicated in interactions with NS3/4A [189]. This
analysis brought up a plausible explanation for better understanding the experimental data
previously obtained.

The second example looks at Staphylococcal Protein A (PrA). It binds to the FC and
sometimes Fab regions of antibodies and makes it an attractive tool for the in vitro isolation
of antibodies. This study attempts to understand the binding of PrA to VHHs. Fridy
and collaborators designed VHHs with minimal CDRs to remove their contribution in
binding to PrA. The LaP-1 (llama antibody against Protein A) VHH was optimised, and
a few mutants were selected [223,224]. The I-TASSER web server was used to model the
structures of these VHHs. The best models were chosen based on the c-score of I-TASSER.
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The models provided insights on the PrA binding to antibodies and, also, into the structural
stability of the mutants and the parent VHH [225].

2.20. QUARK and C-QUARK

QUARK is a reference ab initio structural prediction strategy [226]. It is based on a
force field composed of 11 energetic terms, classically representing three resolution levels
(atomic, residue and topology). The strategy can be described in three stages.

Based on the input sequence, the secondary structures, torsion angles and solvent
accessibility and generated fragments are predicted. Then, Multiple Replica Exchange
Monte Carlo (REMC) simulations, using a semi-reduced protein model, are performed to
build multiple alternative conformations. The final step uses SPICKER for clustering [227]
and performs refinement on the full-atom structure.

The latest version of this software is named C-QUARK [228,229]. When compared
to QUARK, two steps are added at the start: (1) DeepMSA-generated multiple sequence
alignment [230] and (2) contact map prediction based on deep learning methods. Even if
QUARK and C-QUARK performed well in CASP competitions [231,232], they were not
used for antibody and VHH modelling.

2.21. AlphaFold 2

AlphaFold was developed by the industrial laboratory DeepMind [233]. It joined for
the first time the CASP competition in 2018 (CASP13) [234] and won the Free Modelling
category [235], i.e., to predict novel protein folds. The Template-Based Modelling category,
i.e., protein folds already in the PDB, was won by Zhang’s group [90]. Two years later,
they created a shockwave by greatly improving the quality of their methodology [91] and
clearly won this CASP competition. Its inclusion of advanced deep learning approaches
coupled with the GPU power of DeepMind allowed a fantastic success [236,237]. It reduced
the percentage of the dark human proteome [238] and opened opportunities for drug
design [239].

AlphaFold 2 uses multiple sequence alignment (MSA), residue pairing information
and structural templates for a given sequence that should be modelled [91]. A transformer,
called Evoformer, processes all of these inputs. An important innovation point about
this latter is that it allows information exchange between the MSA and residue pairing
blocks. The authors emphasised that this Evoformer block helps in establishing a rational
between the spatial and the evolutionary information of residues. After passing through
Evoformer, the resultant information is processed by structural blocks that output the
coordinates directly. One particularity is that the intermediate MSA, residue pairing
information and the predicted structure are reinjected into the Evoformer blocks. By
default, these intermediate results are reintroduced in the network three times, which
improves the predictions. AlphaFold 2 can be downloaded from a GitHub repository
(https://github.com/deepmind/alphafold, last accessed date: 9 February 2022). However,
users need good computers with performing GPU cards and a good amount of memory.
Interestingly, an online Jupyter notebook can also be used (https://colab.research.goo
gle.com/github/sokrypton/ColabFold/blob/main/batch/AlphaFold2_batch.ipynb, last
accessed date: 9 February 2022). It produces five models by default [240]. For each residue
in the model, a confidence score is provided, and it is used to rank the models among them.

AlphaFold 2 was a hot topic for 2020 and 2021, leading to a revolution in protein
structural model building [241]. However, AlphaFold 2 does not always give 100%
correct/meaningful predictions, i.e., some globular proteins are still not properly mod-
elled [242], and transmembrane proteins are not close to a near-native structure, as they are
hard targets. Antibodies were not specifically tested, but different examples showed, as
seen for Rosetta [207], that classical comparative modelling still performs better. It is so
logical that no VHH modelling has been performed at this time.

https://github.com/deepmind/alphafold
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/batch/AlphaFold2_batch.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/batch/AlphaFold2_batch.ipynb
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2.22. RoseTTAFold and DeepAb

Deep learning has made a paradigm change in structural bioinformatics [243–248].
Therefore, the famous Rosetta has been upgraded and now leverages these new ad-
vances [201]. trRosetta is based on deep learning approaches with an all-atom energy
function [249] combined with inter-residue distance constraints and orientation distribu-
tions [92,250].

Based on the properties and successes of AlphaFold 2 [91], Baker’s team extensively
studied the different neural network architectures and proposed a new deep learning-
based methodology called RoseTTAfold [251]. It is based on a three-track (1D, 2D and 3D)
neural network, which can simultaneously process multiple sequence alignments (MSA),
inter-residue contacts and refinement of the predicted structure. The connections in this
network allow efficient learning about the relationships between the protein sequences,
distances and the coordinates. The interlinked 1D and 2D neural networks take and process
cropped MSA and templates as the input. The 3D track first provides a backbone-only
model, and then, SE(3)-transformer performs an iterative refinement by using the inference
of a relationship between the sequences and the templates. By the end of this stage, the user
will have a full-atom model. The Robetta server with RoseTTAfold methodology provides
predicted models with a confidence index (Å error estimate per position), which is used to
rank the five final models [251]. As for AlphaFold 2, since the approach is extremely recent,
no use in predicting the structure of VHHs has been observed.

While preparing the submission of this review, DeepAb was published [252]. It can be
considered as the natural evolution of RosettaAntibody with deep learning RoseTTAfold.
The algorithm can be divided into two main steps. The first part has a deep residual
convolutional network, which consists of 1D ResNet, a Bi-Long short-term memory (Bi-
LSTM) repertoire encoder and 2D ResNet. The 1D ResNet and Bi-LSTM encoder processes
structural and evolutionary features. The 2D ResNet will output inter-residue distances
and orientations. In the second step, Rosetta minimisation is used with distance and angle
constraints. Concerning VHH modelling, Ruffolo et al. observed that CDR3 resembles that
of CDRH3 [252]. Nevertheless, they suggest that the methodology should be refined with a
database dedicated to VHHs. In the present stage, DeepAb seems to be more specific for
classical antibodies than VHHs.

2.23. NanoNet

NanoNet was proposed to the scientific community in August 2021 [253]. It is truly
the first optimised VHH approach. This deep learning approach was trained with classical
antibodies and VHHs, as a large amount of data is needed to train the neural network and
obtain relevant results. Its architecture is made by a convolutional neural network (CNN)
with two 1D residual neural networks (ResNet). The first ResNet learns the frameworks
and CDR hypervariable loops, while the second will apprehend inter-residue interactions.
After a dropout layer to avoid overfitting, the last layer outputs C-alpha coordinates for a
given input VHH sequence. Full backbone and side chains can then be constructed using
Pulchra [169]. This program is available online (https://github.com/dina-lab3D/NanoNet,
last accessed date: 13 February 2022). In our experience, it took less than 15 s to predict a
full atomic structure of a VHH using a computer with 8 GB RAM, 4 CPUs and an Intel i5
processor. No particular library is required for the use of this program.

The assessment of NanoNet was done against AlphaFold 2 with 16 VHH deposited in
the PDB in 2021, i.e., absent from AlphaFold 2 training. NanoNet performed better with
a mean RMSD of 2.69 (±1.49) Å vs. 3.23 (±2.49) Å for AlphaFold 2 (and 1.57 (±0.41) Å
vs. 2.04 (±2.09) Å on CDR3, reps.). Similar outcomes were obtained with 37 VHHs when
confronted with the Rosetta Antibody modelling suite. NanoNet performed better with a
mean RMSD of 1.68 (±0.57) Å vs. 2.71 (±1.13) Å for Rosetta Antibody (and 2.99 (±1.48) Å
vs. 5.73 (±2.33) Å on CDR3, resp.).

https://github.com/dina-lab3D/NanoNet
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Hence, NanoNet appears to be a very interesting and promising new tool dedicated to
VHH with excellent results. It has been, in particular, used to optimise CDR3 loop predic-
tions (associated with the experimental data) in optimising anti-SARS-CoV-2 VHHs [254].

3. Discussion

In the previous sections, we listed the different methodologies, provided their specifici-
ties and gave examples of VHH structural modelling. They are all very different and mainly
used for docking purposes. However, it is highly difficult to precisely know the quality of
each of these approaches/results. Indeed, they are all well-established approaches, but no
real benchmark was performed until now, and the evaluations are limited to specific and
extremely rare cases. A few examples are detailed hereafter.

(i) The dedicated development of VHH scripts for the RosettaAntibody modelling suite is
as expected associated with a specific evaluation [211] but mainly focuses on classical
RosettaAntibody modelling than another tool [207].

(ii) More recently, as Modeller [84] remains the most used comparative modelling ap-
proach, we evaluated the Modeller quality in VHH modelling [74]. Using 100 different
VHHs, different template selection strategies for comparative modelling using Mod-
eller have been extensively assessed. This study analysed the conformational changes
in both the FRs and CDRs using an original strategy of conformational discretisation
based on a structural alphabet [255,256]. It showed that, often, multi-template is the
best method to obtain a correct VHH model and that the DOPE score is a relevant
measure to select this model [107]. Nonetheless, it remains difficult to propose sat-
isfactory models for some VHHs. Even sometimes, to use the closest VHH in terms
of the RMSD is not always the best choice to obtain a good model, underlying the
possibility for future improvement.

(iii) Finally, NanoNet has demonstrated its superiority over RosettaAntibody and Al-
phaFold 2 but with a limited number of examples (see the previous subsection) [253].

To better understand this complexity, we decided to evaluate and show a rather
classical example of VHH modelling. We selected a structure of VHH that binds with
lanthanides (PDB ID: 6XYF) [257] deposited in the PDB recent enough to never have been
used in any of the previously cited approaches. 6XYF was obtained by X-ray crystallography
with a very good resolution of 1.11 Å. Please note that this case is a “classical” case of
structural prediction, i.e., representative of VHH modelling, as others were also tested.
Eight different methods were carried out with six different software and online tools:
Modeller with single-template and multi-template [84], ModWeb [258,259], SwissModel
with the best sequence identity template and a second time with the best GMQE score [134],
AlphaFold 2 [91], RoseTTAfold [251] and NanoNet [253].

At first, Modeller was used with the simplest approach, i.e., a single template. A
template was selected with the highest sequence identity, i.e., a VHH domain (PDB ID:
5LMW chain A) used as a crystallisation chaperone for different constructs associated
with the type IX secretion system from Porphyromonas gingivalis [260]. PDB 5LMW had a
sequence identity of 89.9% with the target sequence. In addition, Modeller was used in a
multiple-template approach with three templates. We decided to use this method because
of its remarkable efficiency, as demonstrated in Reference [74]. Two new VHH structures
were selected: anti-HIV VHH (PDB ID: 3R0M chain B) [261] and anti-HIV-1 gp120 VHH
(PDB ID: 2XA3 chain A) [262], in addition to the 5LMW template. They also shared high
sequence identity with 6XYF VHH: 89.3% and 88.9%, respectively. Each time, 100 models
were generated, and the best model was selected using the DOPE score [107].
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The ModWeb server was also used to model the 6XYF sequence. This online job
provided one unique model based on a single template (PDB ID: 6XYM [257]) that had an
extremely high sequence identity percentage (98%) with the target sequence. Indeed, this
VHH came from the same lab as our test VHH [257].

These approaches can be easily compared to SwissModel. The first step with this
method is to look at the best sequence identity. A VHH anti-SARS-CoV-1 (PDB ID: 6WAQ
chain A) [54] was identified that shares 82.3% sequence identity with our target. An
alternative model with the best GMQE score was built with a VHH anti-Vsig4 (PDB ID:
5IML chain B) with a sequence identity of 80.0%.

Regarding more advanced techniques, deep learning-based methodologies (RoseTTAfold,
AlphaFold 2 and NanoNet) were used to model 6XYF. RoseTTAfold predicted five mod-
els. Their mean estimated RMS errors (in Å) per position were 1.10 ± 0.87, 1.13 ± 0.82,
1.12 ± 0.8, 1.12 ± 0.79 and 1.13 ± 0.84, respectively (displayed according to their ranks).
AlphaFold 2 gave five models. These models had mean confidences (representing the
accuracy in terms of the RMS) that were the following: 91.45 ± 10.38, 90.71 ± 11.05,
90.44 ± 11.54, 90.42 ± 11.83 and 89.99 ± 12.16. NanoNet produced only a single model for
each query sequence.

Figure 3 shows every best structural model superimposed with the corresponding
X-ray structure. The model with the best DOPE score obtained with a single-template
Modeller approach showed a RMSD of 2.28 Å (see Figure 3a). This value was slightly
improved with the addition of two close VHHs, dropping to 2.18 Å (see Figure 3b). The
template used by the ModWeb server resulted in a model with a RMSD value of 1.97 Å
(Figure 3c), but we chose to discard this option, as this template was made by the same
research group as the query [257]. Please note that, in our experience, ModWeb sometimes
provides incomplete models. Actually, it depends on the pertinence of the identified
template and the structural coverage. Concerning SwissModel, the best sequence identity
model had the best RMSD of all the comparative approaches, with a value of 1.85 Å (see
Figure 3d; the GMQE score and QMEANDisCo Global score [263] were 0.78 and 0.77 ± 0.07,
respectively). For the SwissModel solution, considering the best GMQE, its RMSD was
2.05 Å (see Figure 3e; GMQE score = 0.81 and QMEANDisCo Global score = 0.79 ± 0.07).

The results for the deep learning-based techniques were also very relevant. The
RoseTTAfold model ranked first had a RMSD of 1.87 Å (see Figure 3g) but was surpassed
by the models from NanoNet and AlphaFold 2 with RMSDs of 1.55 Å (see Figure 3h) and
1.62 Å (see Figure 3f), respectively.

According to our case study based on 6XYF, it was demonstrated that NanoNet and
AlphaFold 2 predicted the closest models to the experimental structure. This tendency was
also found when CDR3 was specifically analysed. NanoNet and AlphaFold 2 ranked first
and second (1.81 and 1.98 Å). SwissModel (with the best sequence identity) also performed
well here, with a similar accuracy to AlphaFold 2, while the other methods were less
efficient, with RMSDs ranging between 2.05 and 3.80 Å.
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Figure 3. Superimposition of the VHH structural models with the X-ray structure of PDB ID: 6XYF.
The VHH structure (in green) is superimposed with a structural model from the (a) Modeller best
model for single-template (in yellow, RMSD = 2.28 Å, RMSD CDR3 = 3.80 Å), (b) Modeller best
model for multi-template (in red, RMSD = 2.18 Å, RMSD CDR3 = 3.32 Å), (c) ModWeb (in orange,
RMSD = 1.92 Å, RMSD CDR3 = 2.05 Å), (d) SwissModel best model with the best sequence identity
(in yellow ochre, RMSD = 1.85 Å, RMSD CDR3 = 1.98 Å), (e) SwissModel best model with a GMQE
score (in purple, RMSD = 2.05 Å, RMSD CDR3 = 2.75 Å), (f) AlphaFold 2 (in wheat, RMSD = 1.62 Å,
RMSD CDR3 = 1.98 Å), (g) RoseTTAfold (in chocolate brown, RMSD = 1.87 Å, RMSD CDR3 = 2.56
Å) and (h) NanoNet (in blue, RMSD = 1.55 Å, RMSD CDR3 = 1.81 Å). Visualisation was performed
using PyMOL [1–3].

4. Conclusions and Perspectives

VHHs have been known for almost 30 years, but in recent years, they have received a
phenomenal revival of interest from an experimental point of view. Regarding bioinfor-
matics, it has taken much longer to gain insight into their structures and functions due to
inherent limitations. For example, the number of precise analyses of the sequence–structure
relationship analyses of VHH domains, which is required to develop their in silico design
and optimisation, is still limited [72,264,265].

There have also been some recent developments of web repositories dedicated to
VHHs. For instance, the Institute Collection and Analysis of Nanobodies (iCAN) has the
first collected large number of VHH sequences coming from scientific publications and
patents (http://ican.ils.seu.edu.cn, not operative at the moment of reviewing this paper, last
try: 19 February 2022) [266]. Llamanade is a dedicated open-source computational pipeline
for robust VHH humanisation [267]. More recently, an integrated nanobody database
for immunoinformatics (INDI) lists VHHs from all the major public outlets of biological

http://ican.ils.seu.edu.cn
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sequences and patents (http://research.naturalantibody.com/nanobodies, last accessed date:
11 February 2022) from GenBank, next-generation sequencing repositories and structure
databases and publications [268]. Even the famous SAbDab has an extension for VHH with
SAbDab-nano (http://opig.stats.ox.ac.uk/webapps/newsabdab/nano/, last accessed date:
12 February 2022) [159]. All VHH structures could also be mined from the PDB.

Concerning the structural features of VHHs, specific developments are quite rare. We
have shed light on the first optimised VHH structural modelling approach, NanoNet [253].
Since VHH docking is a key point in the development of those methods, a dedicated
reranking approach of the VHH docking poses has been proposed with interest, namely
NbX [269], but unfortunately, no tool is currently available to test it. Similarly, they can be
positively integrated into epitope prediction approaches, as developed in Reference [270].
For a few years, the number of VHH structures deposited in the PDB greatly increased (see
Figures 4 and A1), which confirms the increasing interest in these small protein domains.
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Figure 4. Number of VHH structures deposited in the PDB per year. Structures solved using
different experimental methods are colour-coded accordingly (electron microscopy, solution NMR
and X-ray diffraction has been represented in red, green and blue respectively). Data extracted from
Reference [159].

Besides 3D model production, there is also an interesting number of molecular dy-
namics simulations of VHHs that are often used for their design optimisation [271–275].
Yet, there is no dedicated approach to globally apprehend their dynamics. An important
point is that their CDRs are supposed to be variable and flexible. Moreover, molecular
dynamics simulations are also interesting for going further with antibodies [276], as stated
in his pioneer works by Nobel Prize Martin Karplus [277,278].

In this review, we have seen the limitations of our knowledge, i.e., the difficulty to
apprehend the ability of each methodology for VHH modelling. The number of scenarios
used to build VHH structural models is impressive and is often successful for apprehending
atomistic-level epitopes–paratopes docking and experimental data. A more extensive
modelling assessment would be good, especially with recent deep learning approaches
such as AlphaFold 2 [91] and NanoNet [253], since multiple examples have shown how
pertinent they might be.

http://research.naturalantibody.com/nanobodies
http://opig.stats.ox.ac.uk/webapps/newsabdab/nano/
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