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Abstract

Background: Several motile, filamentous cyanobacteria display the ability to self-assemble into tightly woven or twisted
groups of filaments that form macroscopic yarns or ropes, and that are often centimeters long and 50–200 mm in diameter.
Traditionally, this trait has been the basis for taxonomic definition of several genera, notably Microcoleus and Hydrocoleum,
but the trait has not been associated with any plausible function.

Method and Findings: Through the use of phylogenetic reconstruction, we demonstrate that pedigreed, rope-building
cyanobacteria from various habitats do not form a monophyletic group. This is consistent with the hypothesis that rope-
building ability was fixed independently in several discrete clades, likely through processes of convergent evolution or lateral
transfer. Because rope-building cyanobacteria share the ability to colonize geologically unstable sedimentary substrates, such
as subtidal and intertidal marine sediments and non-vegetated soils, it is also likely that this supracellular differentiation
capacity imparts a particular fitness advantage in such habitats. The physics of sediment and soil erosion in fact predict that
threads in the 50–200 mm size range will attain optimal characteristics to stabilize such substrates on contact.

Conclusions: Rope building is a supracellular morphological adaptation in filamentous cyanobacteria that allows them to
colonize physically unstable sedimentary environments, and to act as successful pioneers in the biostabilization process.
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Introduction

It has long been known that certain filamentous cyanobacteria

can form tightly-woven, rope-like bundles of trichomes (cohesive

rows of cells) that remain held together in a common, tubular,

extracellular polysaccharide sheath [1,2], even though this trait

has not been related to any particular ecophysiological function

(Fig. 1). It has, however, been used in taxonomy as the main

morphological character to define several traditional genera, such

as Microcoleus, Schizothrix or Hydrocoleum [3], with the tacit

phylogenetic implication that rope-building is a synapomorphy,

a case of shared inheritance of this trait in the present-day

descendants of a common ancestor that built such ropes. While the

genetic basis of rope-building has not been studied directly, due to

the lack of genetically modifiable strains, it is likely a genetically

controlled trait, inasmuch as it appears easily lost in spontaneous

genetic variants upon continued cultivation [4]. We use the term

rope to denote the presence of tighly woven filaments in the

multifilament struture, as a special case of the more inclusive terms

bundle or fascicle, that only imply a multiplicity of filaments more or

less tightly held together by a common sheath, and would include

cyanobacterial general like Trichodesmium or Aphanizomenon.

Rope-building cyanobacteria today thrive in habitats as

disparate as desert soils [5,6], marine subtidal stromatolites [7,8],

and intertidal sediments [4]. In natural habitats, multifilament

ropes are the preferred configuration, and single filaments or

trichomes are rare. The nature of the evolutionary advantage

conferred by rope-building, however, is all but evident. In fact,

according to size-scaling models, growth as large aggregated

bundles instead of separate, single trichomes, must certainly bring

about at least some negative physiological effects. For example,

self-shading effects among the filaments in a bundle configuration

will decrease significantly the overall photosynthetic efficiency with

respect to incident radiation, and these effects become particularly

noticeable as cyanobacteria reach sizes larger than some 10 mm in

diameter [9]. Nutrient and metabolite exchange is generally

thought to be the main constraint for attaining large sizes in

organisms without internal transport systems [10]. A bundle

configuration is likely to hamper the efficiency of nutrient uptake

systems, and will likely create significant local accumulation of

metabolic by products, such as the photosynthetically-derived

molecular oxygen. It is thus only logical to expect some trade-off,

an advantage conferred by rope-building determinant enough as

to overcome the competitive burdens brought about by crowding.

We contend that the correct interpretation of the rope-building

phenomenon can be informed by knowledge of the evolutionary

history of the organisms that display this faculty. Particularly if the

phylogenetic distribution of the trait indicates that it was gained,
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and retained, independently in several evolutionarily distant

groups of cyanobacteria, then one can seek evidence for the

nature of its adaptive value in environmental characteristics that

are common to the habitats typical of those particular groups, but

absent in those lacking it. Once this is achieved, and as a means to

validate the correlation, one should seek functional models that

explain the fitness value of the phenotypic trait in terms of a

mechanism exclusively relevant to the shared environments. We

used a phylogenetic investigation of pedigreed strains or field

samples of demonstrated rope-builders to explore this hypothesis,

and provide a fitness value model based on the application of

sedimentary physics to this phenomenon.

For the initial phylogenetic investigation, at least three

alternative hypotheses can be considered, the implications of

which are quite different. If all rope-building cyanobacteria form a

coherent monophyletic group, this implies that the trait evolved

only once and its continued presence in a variety of habitats may

be related to its fitness value, but it may also be a simple legacy of

shared ancestry, similar to the fact that the exact number of legs in

tetrapods is four. Any inferences made from this situation would be

weak (as one cannot infer that four legs are required for

locomotion). Alternatively, we may find that rope-builders

constitute a polyphyletic group, distributed in two or more, well-

separated clades. In this case two explanations are possible. In one,

rope-building appeared in the common ancestor of all filamentous

cyanobacteria, but was subsequently lost in one or more lineages

over time as they evolved and adapted to different habitats. This

situation would not allow us to distinguish strictly between fitness

value vs. evolutionary legacy either, precluding further inferences.

A second, simpler explanation for polyphyly, is that the trait was

not inherited from a common ancestor, but rather gained

independently in each clade during the course of cyanobacterial

evolution. In this scenario, evolutionary legacy can play no role in

determining the trait’s distribution, only positive selection. Here

one can seek evidence for the possible fitness value of rope building

in environmental characteristics common to the rope-building

clades, but absent in other cyanobacteria. We note that two

distinct evolutionary mechanisms may result in the independent

gain of a trait: horizontal gene transfer or convergent evolution.

Simple phylogenetic analyses cannot easily distinguish between

them. The inference about the need for positive selection is the

same, however, regardless of the mechanism.

Results and Discussion

Polyphyly of rope building
To test our hypothesis that rope-building evolved independently

in several groups of cyanobacteria, we reconstructed the

phylogenetic relationships of bona fide rope-building strains and

field samples based on sequence comparisons of two genes (16S

rRNA and kaiC), newly obtained for this work or from traceable

sequences available in public databases. These two genes were

chosen because the number of sequences available from other

genes in relevant cyanobacterial representatives is very limited. We

focused our analyses on rope-building cultures and field samples

from intertidal marine microbial mats and desert soils, for which

we had the largest database coverage, and for which we had easy

access to field samples. Our choice was based on the logical tenet

that if polyphyly could be demonstrated in any one subgroup of

rope-builders, then the results would be necessarily applicable to

the whole. Bayesian analyses of 16S sequences obtained from

cultures and field samples from terrestrial and marine origin, show

that rope formers are indeed polyphyletic, and resolved into

several separate, distinct, and statistically well-supported clades

Figure 1. Rope-building in cyanobacteria. Photomicrograph of a sandy desert soil from the Colorado Plateau colonized by pioneering
Microcoleus vaginatus with visible large ropes spanning the quartz sand grains (left). A microscopic view of ropes built in culture by an isolate of
Microcoleus chthonoplastes from a marine intertidal mat. The single filaments are clearly visible in the photograph.
doi:10.1371/journal.pone.0007801.g001
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within the cyanobacterial phylogenetic tree (Fig. 2a). While these

correspond roughly, if not absolutely, to traditional taxonomic

entities, one should resist the temptation of nomenclatural

distractions: the phylogenetic analysis clearly supports the fact

that pedigreed rope-builders are polyphyletic. In fact, to propose

that the two main clades (purple and green in Fig. 2a) are

monophyletic would require one to break six nodes with statistical

support .0.9 each (Bayesian posterior probabilities), a scenario

with a combined probability ,1/106. Having established this

point, its taxonomic implications may be noteworthy. Our results

are in line with findings of previous studies [4] and a recent report

that proposes a revision of the genus Microcoleus into at least two

genera based on analyses of molecular, morphological, and

structural characters [11]. We can clearly extend the need for

revision to the species M. steenstupii and possibly M. sociatus.

The most logical explanation for this 16S rRNA tree is that that

rope building among cyanobacteria has evolved independently at

least in each of these four clades. However, the ancient trait

explanation, where the common ancestor of all of these distinct,

well-defined clades possessed the trait but it was repeatedly lost

through evolution in most intervening lineages, cannot be rejected

as such. Because of the large evolutionary distance spanned by the

clades of rope-builders, this would require that rope building was a

truly ancestral trait dating back to the early diversification of the

filamentous cyanobacteria.

In order to find independent confirmation of polyphyly and to

narrow our interpretations, we used a second, independent marker,

kaiC, from a more limited set of samples. The kaiC gene is a member

of a small cluster of genes that are important for maintaining

circadian rhythms in cyanobacteria [12,13]. In general, distinct,

well-resolved, and supported clades were also found for strains and

field samples of the terrestrial M. vaginatus and the marine M.

chthonoplastes based on Bayesian analyses of this gene (Fig. 2b), a

result congruent with our initial explanation of polyphyly based on

16S sequences. In the case of M. sociatus, we note the possibility of a

case of horizontal transfer of the marker gene, since the two sequences

of kaiC available from this species are clearly nested within a clade

otherwise comprised of the more distantly related heterocystous

cyanobacterium Nostoc (Fig. 2b). To propose a monophyletic origin

of the two major clades would require breaking 5 well-supported

nodes (probability ,1/106). The kaiC tree however, offered an

interesting additional piece of information: the ancient trait

interpretation would require postulating that a very ancient, rope-

building, filamentous, ancestor existed that gave rise to most extant

clades of cyanobacteria. It also would necessitate that a large and

diverse group composed exclusively of unicellular or colonial, but

not filamentous, cyanobacteria (Synechoccoccus, Xenococus, Acaryochloris,

Microcystis; see Fig. 2b) had a filamentous ancestor that made ropes,

which is logically untenable.

Thus, our combined analyses speak for a scenario where either

through convergent evolution or horizontal transfer (or both) across

already well-separated evolutionary lineages, rope-building ability

has been retained in phylogenetically separate groups of filamentous

cyanobacteria, presumably by offering fitness contributions impor-

tant enough. The main implication of this finding for our work is

that the fitness value of rope building has to do with some ecological

constraint(s) shared by these ecologically diverse cyanobacteria.

A common denominator
A survey of the literature reveals what is common to all of these

rope-builders: they are pioneers in the colonization of unstable

sedimentary substrates such as sandy soils (M. vaginatus [5,14], M.

steenstrupii [15], M. sociatus [6]), intertidal sand flats (M. chthonoplastes

[5,13]), and subtidal marine carbonate sediments (Schizothrix spp.

[8], Hydrocoleum cantharanidosum [16]). It is important to point out

that these are not the only microorganisms that can stabilize

unconsolidated sediments, since many different microbes are well-

known biostabilizing agents in sedimentary environments

[17,18,19]. Two traits are noteworthy about rope builders among

microorganisms involved in biostabilization; on the one hand they

are typically pioneers, and on the other, they are comparatively

very efficient in stabilizing their own habitat, in both terrestrial (M.

vaginatus [20,21]), and marine (M. chthonoplastes [22]) environments.

It is thus reasonable to hypothesize on the basis of these

correlations that rope building may somehow impart or promote

their biostabilizing abilities. The key, however, is to find a

mechanistic explanation as to why a rope should be superior to a

mesh or a web of single filaments.

The mechanisms of sediment erosion are varied and complex as

soon as sedimentary particles have been set in motion, but the

conditions necessary for initial particle movement are relatively easy

to model [23]. When a fluid such as water or air flows over a

sedimentary bed, it transmits to it part of its momentum, exerting a

tangential shear stress, t0, over the contact surface that can cause

movement of protruding particles and, aided by lift, the entrainment

of sedimentary particles into the flow stream. Opposing this stress,

we have the bed’s shear strength, composed of gravity and internal

cohesive forces. An erosion threshold occurs when stress over-

whelms strength, a critical point commonly used to characterize the

erodibility of sedimentary beds [24,25]. Erosive and cohesive forces

act on sedimentary particles and thus the ‘‘unit’’ of erosion is in

principle a particle or a cohesive group of particles that the forces at

play cannot break apart. The agency of microbes in biostabilization

of sedimentary environments can result from their weaving of

sedimentary particles and biological materials [8], from gluing those

particles together with extracellular polymeric substances [25], or

from particle cementation with biominerals formed in situ as a result

of microbial metabolic activity [8]. In all these cases the net effect is

an increase in the effective particle size subject to erosive forces.

Alternatively, decreasing the surface roughness by means of copious

amounts of polymeric substances can also ameliorate shear stress on

the beds [18].

A physical mechanism for fitness
By virtue of braiding fibers into yarns or ropes, three major

overall parameters are increased: diameter, overall length span,

and tensile strength. The tensile strength of a rope is actually less

that the sum of the tensile strengths of all the fibers that compose

it, since some strength is lost by fiber obliquity necessary for

twisting [26]. In this sense, rope building does not represent an

improvement in a microbial population’s ability to stabilize

sediment over the combined actions of single filaments, unless

the sedimentary particles are so large that they cannot be spanned

without a rope conformation. But this size (cm range) would imply

gravel-sized sediments, which are practically non-erodible under

most relevant (non-catastrophic) wind or current regimes anyway

[24]. Thus, only the size increase remains a possible avenue for

improvement. What is then the relationship between size of

particles and the stability of sediments? Particle size is an

important factor, since it affects particle weight and inter-particle

cohesion (Fig. 3; adapted from reference [27]). For particles larger

than 75–100 mm, gravity dominates the resistance to erosion so

that the larger and heavier, the harder they are to lift. In this

domain, microbial stabilization can be easily achieved through

gluing or weaving particles together into a larger effective particle.

But below 75–100 mm, in the silt and clay ranges, cohesive forces

become increasingly important, sediments becoming more stable

as particle size diminishes (Fig. 3). Gluing or weaving together of
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Figure 2. Phylogenetic relationships of bona-fide, rope-building cyanobacteria based on 16S rRNA (A) and kai C (B) sequences.
Topologies shown are a Bayesian consensus of 200 trees sampled from stationarity (post burnin) derived from each analysis. Branches with posterior
probabilities .0.95 are indicated by bold lines; all other branches have posterior probabilities of 0.50–0.95. Different, congruent clades of rope-
builder are indicated in color. Gloeobacter violaceus was designated as the outgroup for all analyses. Entries are not all labeled for clarity, and some
clades are given names based on the overall composition. Complete trees are available as additional information. Results from maximum parsimony
analyses of both the 16S rRNA and kaiC sequences were largely congruent with Bayesian analyses shown here, although many clades receive only
low to moderate support by non-parametric bootstrap analysis in the most parsimonious trees identified (data not shown).
doi:10.1371/journal.pone.0007801.g002
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particles in this domain can actually make the substrate more

prone to erosion, unless an opportunity is present to bind a

number of particles large enough to exceed the critical size range.

It is precisely this crucial size range, in the order of magnitude

around 100 mm, that is reached during the formation of

cyanobacterial ropes out of cyanobacterial filaments 4–6 mm

thick. The differential effect of binding sedimentary particles with

ropes becomes now clear: the ‘‘unit particle’’ of erosion reaches

unavoidably the gravitationally dominated part of the curve

regardless of the sedimentary particles size, as they are bound,

entangled or glued to the common exopolysaccharide sheath of a

100 mm rope, with an immediate stabilizing effect upon contact

with the biological agent.

The bimodal relationship between particle size and sediment

stability thus imposes the necessity of ‘‘large body size’’ for

stabilization by contact. We believe it is in this way that

populations of rope-makers can expand laterally into virgin

habitat in areas of high erosion potential, securing particle after

particle along the path of an extending rope by sequentially

affixing them to a macroscopic, practically non-erodible, organo-

sedimentary complex particle. This can proceed independently of

the length of periods or environmental stability, implying that

rope-makers will obtain a selective advantage in high-energy,

highly erodible habitats. Because of the pioneer condition, any

competitive disadvantages involving self-shading or uptake ineffi-

ciency become moot, as they find no competition, a condition that

might eventually be lost as the habitats becomes bio-stabilized and

colonized by secondary populations. Such predictions are

consistent with the successional dynamics observed in some

ecosystems initially dominated by rope builders, such as

stromatolites [8] or desert biological soil crusts [28].

Materials and Methods

Criteria for rope-formation in samples, microbial strains
and public DNA sequences

Given the confusion between taxonomic systems for the

cyanobacteria, the high level of entry errors found in public

databases, and the facility with which rope building is lost upon

cultivation, we included in our phylogenetic analyses only those

sequences originating from cyanobacteria known to make ropes in

a traceable and explicit manner. For field samples this meant

sequences from isolated filaments obtained after direct microma-

nipulation of large ropes, either by us, or from the literature, when

explicitly described as such in the original publication. For

cultivated strains it meant isolates that form ropes presently, or

those that have been documented to form ropes at one time, if an

explicit reference was available. Table 1 lists the criterion for each

sequence in detail.
Figure 3. Erosivity by wind of sedimentary beds as a function
of particle size. Threshold shear stress is estimated here as the
threshold friction velocity (u*t) above which particle movement will
occur. Friction velocity (u*) is an integrated measure of the steepness of
the velocity gradient and the roughness of the surface against flow,
related to bed shear stress as t0 = r0 (u*)2, where r0 is fluid density.
Threshold friction velocities are a direct function of particle size for large
particles where gravitational forces are dominant, but an inflexion point
and minimum occurs around roughly 75 mm, where cohesive forces
become more important and below which friction velocities actually
decrease with particle size. The particle size dependence holds also for
water erosion over sediments, and the values of the minimum range
between 50 and 200 mm under a wide variety of conditions and
sediment bulk densities [23].
doi:10.1371/journal.pone.0007801.g003

Table 1. Sources for assignment of rope-building ability.

Sample/Strain Genetic marker(s) Correlated by

M. vaginatus field sample BW kaiC direct observation

M. vaginatus field sample BW2 kaiC direct observation

M. vaginatus field sample BW3 kaiC direct observation

M. vaginatus field sample BW4 kaiC direct observation

M. vaginatus field sample BW5 kaiC direct observation

M. vaginatus field sample GR2 kaiC direct observation

M. vaginatus ASU LT04 kaiC direct observation

M. vaginatus PCC9802 kaiC description, ref. [5]

M. vaginatus OTA32c150 6A 16S rRNA description, ref. [15]

M. vaginatus BS lac149 4B 16S rRNA description, ref. [15]

M. vaginatus FI5MC4 c1821A 16S rRNA description, ref. [15]

M. vaginatus OTA21c1521B 16S rRNA description, ref. [15]

M. chthonoplastes SAG3898 kaiC direct observation

M. chthonoplastes Ney3 289 kaiC description, ref. [13]

M. chthonoplastes Ney3 407 kaiC description, ref. [13]

M. chthonoplastes Ney4 350 kaiC description, ref. [13]

M. chthonoplastes Ney5 361 kaiC description, ref. [13]

M. chthonoplastes K27FWS kaiC description, ref. [13]

M. chthonoplastes FWS 17 kaiC description, ref. [13]

M. chthonoplastes NDN-1 kaiC description, ref. [4]

M. chthonoplastes PCC7420 kaiC, 16S rRNA description, ref. [4]

M. chthonoplastes GN5 16S rRNA description, ref. [4]

M. chthonoplastes MEL1 16S rRNA description, ref. [4]

M. sociatus SAG2692 kaiC description, ref. [4]

M. sociatus MPI96 MS KID 16S rRNA description, ref. [4]

M. steenstrupii 73 2E 16S rRNA description, ref. [15]

M. steenstrupii 94 2B 16S rRNA description, ref. [15]

M. steenstrupii 52 2A 16S rRNA description, ref. [15]

M. steenstrupii 150 3A 16S rRNA description, ref. [15]

M. steenstrupii 177 7B 16S rRNA description, ref. [15]

doi:10.1371/journal.pone.0007801.t001
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Sequencing and phylogenetic reconstruction. New

sequences of 16S rRNA gene and kaiC were obtained from

either cultures or from field-collected samples (see Supplementary

Table S1). DNA was extracted from culture samples using a kit

(MoBio plant extraction kit). For field samples, ropes of filaments

were excised from the habitat by micromanipulation under a

dissecting microscope, and cleaned by dragging over agar surfaces.

After morphological identification under the compound

microscope, each rope was submerged in TE buffer (pH 8.0),

frozen and thawed three times. Aliquots of each sample were used

as a template for standard PCR amplification using previously

described specific primers for the kaiC gene [10] and 16S rDNA

[4]. All PCR products were purified and sequenced on both

strands using the same primers. New sequences were edited using

Sequencher 4.1 (GeneCodes, Ann Arbor, MI) and then aligned

with relevant sequences available from Genbank using ClustalX

[29]. Phylogenetic analyses were performed as described

previously [30]. Best fitting models for the two molecular

sequence data sets were selected using the Akaike Information

Criterion implemented in the program ModelTest v. 3.07 [31]: a

GTR+I+C model for the 16S rDNA sequences; and a TVM+I+C

model for kaiC. Phylogenetic relationships were estimated with

Bayesian inference using MrBayes v. 3.1 [32], in which two

independent Markov chain Monte Carlo runs of 2–2.56106

generations were conducted using variable rate priors, with

sampling every 1000 generations. Post burn-in sampled

topologies (200) from each analysis were summarized as a

majority rule consensus tree to obtain the posterior probability

(PP) credibility interval for each clade.

Supporting Information

Table S1 List of taxa included in phylogenetic analyses and

Genbank accession number for molecular sequences.

Found at: doi:10.1371/journal.pone.0007801.s001 (0.16 MB

DOC)
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