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Integration of three machine
learning algorithms identifies
characteristic RNA binding
proteins linked with diagnosis,
Immunity and pyroptosis of IgA
nephropathy

Xueqin Zhang", Peng Chao?, Hong Jiang?, Shufen Yang?,
Gulimire Muhetaer?, Jun Zhang?, Xue Song** and Chen Lu**

Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqji, China,
2Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumgji, China,
*Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumgji, China

Objective: RNA-binding proteins (RBPs) are essential for most post-
transcriptional regulatory events, which exert critical roles in nearly all
aspects of cell biology. Here, characteristic RBPs of IgA nephropathy were
determined with multiple machine learning algorithms.

Methods: Our study included three gene expression datasets of IgA
nephropathy (GSE37460, GSE73953, GSE93798). Differential expression of
RBPs between IgA nephropathy and normal samples was analyzed via
limma, and hub RBPs were determined through MCODE. Afterwards, three
machine learning algorithms (LASSO, SVM-RFE, random forest) were integrated
to determine characteristic RBPs, which were verified in the Nephroseq
database. Immune cell infiltrations were estimated through CIBERSORT.
Utilizing ConsensusClusterPlus, IgA nephropathy were classified based on
hub RBPs. The potential upstream miRNAs were predicted.

Results: Among 388 RBPs with differential expression, 43 hub RBPs were
determined. After integration of three machine learning algorithms, three
characteristic RBPs were finally identified (DDX27, RCL1, and TFB2M). All of
them were down-regulated in IgA nephropathy than normal specimens, with
the excellent diagnostic efficacy. Additionally, they were significantly linked to
immune cell infiltrations, immune checkpoints, and pyroptosis-relevant genes.
Based on hub RBPs, IgA nephropathy was stably classified as two subtypes

Abbreviations: IgA, immunoglobulin A; RBPs, RNA binding proteins; mRNA, messenger RNA; GEO,
gene expression omnibus; sva, surrogate variable analysis; PCA, principal component analysis; miRNA,
microRNA; limma, linear models for microarray data; GO, gene ontology; KEGG, kyoto encyclopedia
of genes and genomes; PPI, protein-protein interaction; STRING, search tool for the retrieval of
interacting genes; MCODE, molecular complex detection; LASSO, least absolute shrinkage and
selection operator; SVM-RFE, support vector machine-recursive feature elimination; GSEA, gene
set enrichment analysis; MSigDB, molecular signatures database; GSVA, gene set variation analysis;
ssGSEA, single sample gene set enrichment analysis; ROCs, receiver operating characteristic curves.
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Introduction
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(cluster 1 and 2). Cluster 1 exhibited the relatively high expression of pyroptosis-
relevant genes and characteristic RBPs. MiR-501-3p, miR-760, miR-502-3p,
miR-1224-5p, and miR-107 were potential upstream miRNAs of hub RBPs.

Conclusion: Collectively, our findings determine three characteristic RBPs in
IgA nephropathy and two RBPs-based subtypes, and thus provide a certain basis
for further research on the diagnosis and pathogenesis of IgA nephropathy.

KEYWORDS

IgA nephropathy, RNA binding proteins, machine learning, diagnosis, subtypes,
immunity, pyroptosis

of end-stage renal disease among young adults. The

Immunoglobulin A (IgA) nephropathy is the most
frequent form of primary glomerulonephritis globally
2021). About one-third of IgA
nephropathy patients will develop end-stage renal disease

(Moldoveanu et al.,
within 20 years after diagnosis by kidney biopsy (Zeng

et al,, 2021). IgA nephropathy has been an important cause

predominant histological characteristics are immune
deposits dominated by granular diffuse IgA (primarily
comprising polymeric IgAl) in the mesangial region,
usually linked to increased mesangial cells along with
2021). In China, IgA

of primary glomerular

matrix expansion (Xie et al,
45.26%

diseases, and remains the most common cause of uremia

nephropathy occupies

GSE37460, GSE73953, GSE937QD
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FIGURE 1
The overall flowchart of our study.
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FIGURE 2
Identification of hub RBPs in IgA nephropathy. (A, B) PCA plots for combined transcriptomic profiling of GSE37460, GSE73953, and

GSE93798 datasets before and after batch correction. (C) Volcano diagram for the up- and down-regulated RBPs in IgA nephropathy than normal
samples. Red, up-regulated RBPs; black, not significant RBPs; green, down-regulated RBPs. (D) Heatmap of the differential expression of RBPs in IgA
nephropathy and normal samples. Red, up-regulation; blue, down-regulation. (E-G) The top ten biological processes, cellular components,

and molecular functions significantly enriched by RBPs with differential expression. (H) KEGG pathways significantly enriched by RBPs with
differential expression. (I) The important module derived from PPl network of RBPs with differential expression. IgAN, IgA nephropathy.

(26.69%) (Li Y. et al., 2021). Currently, the comprehension of RNA binding proteins (RBPs) exert critical roles in
the pathophysiology of IgA nephropathy remains undefined, nearly all aspects of cell biology (Sternburg and Karginov,
which involves multiple potential players (composed of 2020). They orchestrate post-transcriptional regulatory

mucosal immune system, complement system, microbiome, events of gene expression (messenger RNA (mRNA)

etc.) (Suzuki and Novak, 2021). Nevertheless, the absence of splicing, RNA stability, translation, etc.) (Wu and Xu,
gene models to diagnose IgA nephropathy limits personalized 2022). RBPs act as repressors or activators when interacting

risk-based therapeutic options. with mRNAs, and their binding sites are broad ranging
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from 5'-UTR to 3’-UTR. The most updated human RBP
catalog comprises of 1,542 genes (Supplementary Table S1).
Several RBPs have been proven to correlate with innate
immune response and various programmed cell death types
especially pyroptosis (Zheng and Kanneganti, 2020). Altered
of RBPs
nephropathy progression (Hahn et al, 2010; Wu et al,

expression and dysfunctions result in IgA
2020). In the present study, three machine learning
(LASSO, SVM-RFE,

integrated to determine

random forest) were
RBPs in IgA
nephropathy as well as developed two RBPs-based subtypes,

algorithms
characteristic

offering a certain basis for further research on the diagnosis
and pathogenesis of IgA nephropathy. Figure 1 illustrates the
overall design of our study.

Materials and methods
Data collection

This study retrospectively included four gene expression
datasets of IgA nephropathy from the Gene Expression
Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/
gds/), including GSE37460 (Guo et al., 2019), GSE73953
(Nagasawa et al., 2016), and GSE93798 (Liu et al., 2017).
The data the
platform were pre-processed with robust

raw transcriptomic from Affymetrix
multiarray
averaging method derived from Affy package (Gautier
et al., 2004). The batch effects from different datasets were
eliminated by ComBat method from surrogate variable
analysis (sva) package (Leek et al., 2012). Figures 2A,B
depicted the principal component analysis (PCA) before
and after batch correction. Probe IDs were mapped to
the of the

annotation files, and the expression values of all probes

gene symbols on basis corresponding
matching the same gene were averaged as the final value.
Additionally, we retrieved microRNA (miRNA) expression
profiling of IgA nephropathy from GSE25590 dataset (Serino

et al., 2012).

Identification of RBPs with differential
expression

Differential of RBPs between IgA

nephropathy and normal samples was analyzed through

expression

linear models for microarray data (limma) (Ritchie et al,
2015). False discovery rate (FDR)<0.05 was set as the
(GO)
Encyclopedia of Genes and Genomes (KEGG) pathway

cut-off criterion. Gene Ontology and Kyoto
enrichment analysis of RBPs with differential expression
was executed utilizing clusterProfiler package (Yu et al,

2012).
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Analysis of protein-protein
interaction (PPI)

Interaction between RBPs with differential expression was
probed utilizing the Search Tool for the Retrieval of Interacting
Genes (STRING) online database according to the default
criteria. Through Cytoscape plugin Molecular Complex
Detection (MCODE), the important modules in the PPI
network were visualized, and the hub RBPs were identified for

subsequent analysis (Shannon et al., 2003).

Screening characteristic RBPs

Three machine learning algorithms were applied for
selecting characteristic RBPs. Hub RBPs were utilized for
establishing a penalized multivariate Cox proportional
hazard survival model through variable selection on the
Absolute
Selection Operator (LASSO) regression approach from

basis of Ll-penalized Least Shrinkage and
glmnet package, with 10-fold cross-validation (Goeman,
2010).
Elimination (SVM-RFE) method was employed to search
lambda with the

determine the variables. Random forest algorithm was

Support  Vector  Machine-Recursive  Feature

for smallest classification error to
implemented for generating decision tree forest with 10-
fold cross-validation. Characteristic RBPs analyzed by
above algorithms were intersected.

Gene set enrichment analysis (GSEA)

GSEA was executed for determining the significant
functional terms between groups (Subramanian et al,
2005). The “c2.
downloaded from the Molecular Signatures Database

cp.kegg.v7.5. symbols.gmt”  was
(MSigDB), as the reference gene set (Liberzon et al.,
2015). The gene set

enrichment if FDR<0.05.

was regarded as significant

Estimation of immune cell infiltrations and
immune checkpoints

CIBERSORT, a deconvolution algorithm, was execute to
quantify 24 immune cell types via applying 547 gene
2015). The
with p <

(Newman et al,
100.

0.05 reflected that the deconvolution results were relatively

expression  signatures

permutations were set as Samples
reliable, which were included for subsequent analysis. We also
collected common immune checkpoints from published
literature (IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD30,

PDCD1LG2, CD70, TNEFSF9, KIR3DL1, CD86, PDCDI,
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LAIR1, TNFRSE8, TNFSF15, TNFRSF14, CD40, TNFRSF4,
TNESF14, HHLA2, CD244, CD27, LGALS9, CD28, CD48,
TNFRSF25, CD40LG, VTCNI1, CD160, CD44, TNFSF18,
BTNL2, TNFSF4, CD200, and NRP1.

Consensus clustering analysis

Through ConsensusClusterPlus package (Wilkerson and
Hayes, 2010), a consistency matrix of IgA nephropathy
samples was established based on the expression profiling
of hub RBPs according to item subsampling = 0.8, feature
0.8, distance =

iteration = 1,000, and the maximum k value = 9. The

subsampling = 1—Pearson correlation,

optimal number of clusters was determined through
consensus CDF, tracking plot, and consensus matrix.
Principal component analysis (PCA) was conducted to

verify this classification.

Gene set variation analysis (GSVA)

A single sample gene set enrichment analysis (ssGSEA)
was executed for estimating the enrichment score of the
specified gene signature utilizing GSVA package, with the
“c2. cp.kegg.v7.5. symbols.gmt” as the reference gene set
(Hénzelmann et al.,, 2013). The enrichment score was
compared between subtypes via limma approach.

External validation

The expression of characteristic RBPs was externally
verified in the Nephroseq database (http://v5.nephroseq.
org/) that combines a large number of publicly available
renal Associations  between

transcriptome  profiling.

characteristic RBPs and clinical features were also evaluated.
Establishment of a miRNA-hub RBP
network

The Encyclopedia of RNA (ENCORI)
integrates eight distinct databases for predicting miRNA-

interactomes

mRNA interactions. Here, four databases (Targetscan, PITA,
PicTar, and miRanda) were utilized. MiRNAs were regarded as
upstream miRNAs of hub RBPs if the results appeared
in >2 databases. Afterwards, a miRNA-hub RBP network was
visualized via cytoscape software.
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Statistical analysis

All statistical analysis was executed with R software
that fit normal
distribution between binary groups were compared utilizing
student’s t-test. Otherwise, Mann-Whitney U test was carried

(version 3.6.3). Continuous variables

out. Receiver operating characteristic curves (ROCs) were
plotted to evaluate the diagnostic efficacy of characteristic
RBPs in IgA nephropathy. Associations between variables
were evaluated with Pearson or Spearman coefficients. The
significance was set as p < 0.05, and all statistical tests were
two-sided.

Results

Identification of hub RBPs in IgA
nephropathy

A total of 388 RBPs with differential expression were
identified FDR<0.05 2C,D;
Supplementary Table S2). GO enrichment results (nucleic
acid binding, RNA binding, mRNA binding, AU-rich
element binding, mRNA 3'-UTR binding, etc.) revealed the
primary biological functions of these RBPs (Figures 2E-G).
Additionally, RNA mRNA
surveillance pathway, ribosome biogenesis in eukaryotes,
RNA  degradation
pathways were significantly enriched by these RBPs with
differential expression (Figure 2H). A total of 43 hub
RBPs were identified, including DDX56, UTP3,
MPHOSPH10, DDX10, CEBPZ, TRMT11, NOP14, RRP9,
PA2G4, NGDN, KRR1, UTP14A, MAK16, UTP18, DDX27,
ABT1, DDX24, DNTTIP2, NOP2, IMP3, EXOSC10, DHX32,
RRP1, RRPI1B, TFB2M, GNL2, RRP7A, NOCA4L, LSGI1,
DDX17, EIF4A3, GNL3, DKC1, RSL1D1, NOL6, DDX31,
DDX5, TRMT1, NOLC1, RBM34, RCL1, PNO1, DDX18
(Figure 2I).

according to (Figures

spliceosome, transport,

and aminoacyl-tRNA  biosynthesis

Identification of characteristic RBPs in IgA
nephropathy via integrating three
machine learning algorithms

Three machine learning algorithms were applied for
identifying characteristic RBPs in
According to LASSO model, 15 characteristic genes
were identified, composed of DDX56, DDX10, UTP14A,
DDX27, DDX24, DNTTIP2, IMP3, EXOSC10, TFB2M,

IgA nephropathy.
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FIGURE 3
Integration of three machine learning algorithms to determine characteristic RBPs in IgA nephropathy. (A) The regression coefficient of each
independent variable in the LASSO model. (B) Binomial deviance under different log(lambda) in the model. (C) SVM-RFE for feature section. (D)
Random forest for screening characteristic genes. (E) The rank of genes according to the relative importance. (F) Venn diagram of the intersection
results of characteristic genes from three machine learning approaches. (G) Expression of characteristic RBPs in IgA nephropathy and normal
specimens (****p < 0.0001). IgAN, IgA nephropathy.

RRP7A, GNL3, RSL1D1, DDX31, TRMT1, and RCL1 (Figures
3A,B). SVM-RFE analysis identified 10 characteristic genes
including TFB2M, RCL1, RSL1D1, RRP7A, DDX56, DDX27,
NGDN, DDX24, TRMTI1, and CEBPZ (Figure 3C).
Additionally, three characteristic genes were determined

Frontiers in Genetics

based on random forest approach, comprising TFB2M,
DDX27, and RCLI1 (Figures 3D,E). After integration of
above machine learning algorithms, we finally determined
TFB2M, DDX27, and RCL1 as characteristic RBPs of IgA
nephropathy (Figure 3F). Compared with normal specimens,
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Diagnostic efficacy and involved signaling pathways of characteristic RBPs in IgA nephropathy. (A—C) ROCs of (A) DDX27, (B) RCL1, and (C)
TFB2M in diagnosing IgA nephropathy. (D—F) KEGG pathways involved in (D) DDX27, (E) RCL1, and (F) TFB2M.

TFB2M, DDX27, and RCLI expressions were significantly
down-regulated in IgA nephropathy (Figure 3G).

Characteristic RBPs as reliable diagnostic
markers of IgA nephropathy

To evaluate the diagnostic efficacy of the characteristic RBPs
in IgA nephropathy, ROCs were plotted. As a result, the AUC
values of DDX27 (Figure 4A), RCL1 (Figure 4B), and TFB2M
(Figure 4C) were separately 0.82, 0.78, and 0.85. Above analysis
demonstrated that the characteristic RBPs might be reliable
diagnostic markers of IgA nephropathy.

Signaling pathways involved in
characteristic RBPs

DDX27 was positively correlated to histidine metabolism,

glyoxylate and dicarboxylate metabolism, p-alanine

metabolism, glycine serine and threonine metabolism,

Frontiers in Genetics 07

pantothenate and coA biosynthesis, and drug metabolism
other enzymes (Figure 4D). In Figure 4E, RCL1 was
negatively linked to steroid hormone biosynthesis, pentose
and glucuronate interconversions, histidine metabolism,
glycerolipid metabolism, nitrogen metabolism and lysine
TFB2M  exhibited
associations with pentose and glucuronate interconversions,

degradation.  Moreover, positive

steroid hormone biosynthesis, drug metabolism other
enzymes, cysteine and methionine metabolism, starch and
sucrose metabolism and drug metabolism cytochrome P450
(Figure 4F).

Characteristic RBPs are linked to immune
cell infiltrations and pyroptosis in IgA
nephropathy

Through CIBERSORT approach, we quantified the
enrichment levels of 24 immune cell types. As illustrated in
Figure 5A, there were dramatic interactions between immune
cells. Compared with normal specimens, CD8 T cells, follicular
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Characteristic RBPs are linked to immune cell infiltrations in IgA nephropathy. (A) Correlations between 24 immune cell types in IgA
nephropathy specimens. (B) Enrichment levels of 24 immune cell types in IgA nephropathy and normal specimens (*p < 0.05; **p < 0.01; ***p <
0.001). (C—E) Associations of (C) DDX27, (D) RCL1, and (E) TFB2M with enrichment levels of each immune cell type. (F—H) Relationships of (F) DDX27,
(G) RCLL, and (H) TFB2M with the expression of pyroptosis-relevant genes. IgAN, IgA nephropathy.

helper T cells, gamma delta T cells, resting NK cells, activated NK
cells, M1 macrophages, M2 macrophages, resting dendritic cells,
activated dendritic cells, endothelial cells and fibroblasts
exhibited higher enrichment levels in IgA nephropathy
(Figure 5B). We also evaluated the correlations between
characteristic RBPs
Figure 5C, DDX27 was positively associated with memory

and immune cell infiltrations. In
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resting CD4 T cells, but was negatively associated with
endothelial cells, M2 macrophages, gamma delta T cells,
fibroblasts, M1 macrophages, resting dendritic
CD8 T cells, and monocytes. RCLI exhibited positive
interactions with regulatory T cells (Tregs), follicular helper
T cells, memory activated CD4 T cells, resting mast cells,
memory B cells, but exhibited negative interactions with

cells,
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FIGURE 6

IgA nephropathy is classified as two subtypes based on hub RBPs. (A) The consensus CDF across different k values. (B) Delta area plot for the
relative change in the area under the CDF curves. (C) Tracking plot for the item cluster membership across different k values. (D) Consensus matrix at
k = 2. (E) PCA plot of two subtypes. (F) Expression of hub RBPs in two subtypes.

endothelial  cells, fibroblasts, M1 macrophages, and
M2 macrophages (Figure 5D). Additionally, TFB2M was
linked to fibroblasts,
MI1 macrophages, M2 macrophages, activated dendritic cells,

negatively endothelial  cells,
activated NK cells, gamma delta T cells, resting NK cells, resting
dendritic cells, CD8 T cells, naive B cells, and MO macrophages
(Figure 5E). Pyroptosis is a type of cell death, that is, crucial for
immunity (Niu et al, 2022). Here, the relationships of
characteristic RBPs with pyroptosis-relevant genes (DDX27,
RCLI, and TFB2M) were analyzed. Among them, TFB2M
displayed significantly negative correlations to NOD2, NLRP1,
TP53, CASP4, and TNF (Figures 5F-H).

IgA nephropathy is classified as two
subtypes based on hub RBPs

Through consensus clustering approach, IgA nephropathy
specimens were stably classified as two subtypes, namely cluster

Frontiers in Genetics

1 and 2 (Figures 6A-D; Supplementary Table S3). PCA plot also
demonstrated the difference between subtypes (Figure 6E).
Additionally, most hub RBPs exhibited higher expressions in
cluster 1 than 2 (Figure 6F).

Differences in signaling pathways,
immune cell infiltrations, immune
checkpoints and pyroptosis between hub
RBPs-based subtypes

In Figure 7A, cytosolic DNA sensing pathway, proteasome,
RNA degradation, nucleotide excision repair, mismatch repair,
DNA replication, spliceosome, basal transcription factors and
RNA polymerase exhibited higher enrichment levels in cluster
1 than 2. Oppositely, linoleic acid metabolism, olfactory
transduction, aldosterone regulation sodium reabsorption,
folate biosynthesis, renin angiotensin system, PPAR signaling
pathway, pyruvate metabolism, citrate cycle TCA cycle, valine
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Differences in signaling pathways, immune cell infiltrations and immune checkpoints between hub RBPs-based subtypes. (A) Heatmap of the
enrichment levels of signaling pathways between subtypes. (B) The enrichment levels of 24 immune cell types between subtypes. (C) The expression
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pyroptosis-relevant genes in IgA nephropathy and normal specimens. (F) The expression of pyroptosis-relevant genes in two subtypes. *p <

0.05; **p < 0.01; ***p < 0.001. IgAN, IgA nephropathy.

leucine and isoleucine degradation, proximal tubule bicarbonate
reclamation, drug metabolism cytochrome P450, tyrosine
metabolism, peroxisome, phenylalanine metabolism, glycine
serine and threonine metabolism, arginine and proline
metabolism, glycolysis gluconeogenesis, p-alanine metabolism,
limonene and pinene degradation, steroid hormone biosynthesis,
retinol metabolism and nitrogen metabolism had higher

Frontiers in Genetics

enrichment levels in cluster 2 in comparison to cluster 1.
Compared with cluster 1, cluster 2 was characterized by lower
infiltrations of memory B cells, and higher infiltrations of plasma
cells, M2 macrophages, activated mast cells and neutrophils
(Figure 7B). Additionally, immune checkpoints IDO1, CD86,
LAIR1, TNFRSF14, TNFRSF4, CD48, TNFRSF25, CD44, and
NRP1 were up-regulated in IgA nephropathy than normal
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infiltrations in IgA nephropathy. (F) The network of characteristic RBPs and upstream miRNAs. *p < 0.05; **p < 0.01.

specimens (Figure 7C). Differently, down-regulated LAGS3,
CTLA4, TNEFSF9, PDCD1, TNFRSFS, HHLA2, CD40LG,
BTNL2, TNFSF4, and CD200 were found in IgA nephropathy.
In Figure 7D, cluster 1 was characterized by higher expressions of
IDO1, TNFRSF8, TNFRSF14, CD40, CD48, CD44 and
NRP1 than cluster 2. Most pyroptosis-relevant genes exhibited
higher expression in IgA nephropathy versus normal specimens
(Figure 7E), indicating the activation of pyroptosis pathway in
IgA nephropathy. Afterwards, the heterogeneity in pyroptosis
was measured between subtypes. In comparison to cluster 1,
cluster 2 had lower expression of pyroptosis-relevant genes,
indicating higher activity of pyroptosis in cluster 1 (Figure 7F).
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Association of characteristic RBPs with
clinical features, hub RBPs-based
subtypes and immune cell infiltrations

Characteristic RBPs were further verified in the Nephroseq
database. DDX27 was significantly up-regulated in chronic
kidney disease than normal kidneys, and was negatively
correlated to body mass index (Figures 8A,B). Additionally,
up-regulated TFB2M was examined in chronic kidney disease
compared with normal kidneys (Figure 8C). Moreover, DDX27,
RCL1, and TFB2M expressions were relatively higher in cluster
1 than 2 (Figure 8D). All of them were positively correlated to
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TABLE 1 The list of miRNAs with differential expression in IgA nephropathy.

MiRNAs

miR-107
miR-502-5p
miR-483-5p
miR-362-5p
let-7g
miR-20a
let-7i
miR-374b
miR-20b
miR-564
miR-765
miR-185
miR-134
let-7f
miR-500
miR-132
miR-93
miR-15b
miR-500*
miR-22
miR-23a
miR-103
miR-505*
miR-16
miR-155
miR-98
miR-150*
miR-22*
miR-768-5p_v11.0
miR-18a
miR-886-3p
let-7b
miR-221*
miR-365
miR-200b
miR-18b
let-7a
miR-24
miR-939
miR-30b*
miR-425
miR-760
miR-574-3p
miR-744
miR-671-5p
miR-502-3p
miR-1224-5p
let-7d

Frontiers in Genetics

logFC

—-2321.43
—-18.6207
-57.0214
—92.4143
—14493.6
—4168.57
—5956.43
—274.786
—621.571
-17.4214
-23.4164
—342.464
—38.8429
—8376.14
-10.2871
—-33.5157
—649.364
—7184.29
—45.7143
-2107.14
-2930
-4019.43
—24.9971
-16049.3
—412.071
—-165.936
-21.5014
—17.3843
—247.293
—-160.343
-31.0264
—5087.86
—45.1786
—42.8286
-14.14
-37.7714
-11010.7
—3990.71
—41.4357
-11.1014
—833.143
—11.2556
—40.0929
-30.75
—-25.86
—-50.0714
-31.5171
—2246.86

Mean expression

3942.143
34.11107
62.98214
221.6143
21030.36
7802.143
9032.5
384.8929
1,068.571
28.675
24.74893
552.0536
51.52857
12616.93
18.29929
40.95643
998.6036
12296.43
64.81429
5074.286
5763.571
6833.143
30.57286
31073.93
809.75
218.1036
24.05643
20.66214
294.6393
218.7
31.83679
6656.071
62.58929
60.47857
26.88357
58.52857
15253.21
6935.357
112.7821
18.99
1,305.571
9.521464
48.38929
36.99643
25.20571
69.84286
31.88429
2828.714

12

—3.39383
—3.49096
—-3.50524
-3.53117
—3.57942
—3.57568
-3.63129
—-3.65338
-3.64612
-3.64029
-3.68064
-3.76167
-3.78016
-3.87417
-3.85099
—3.84859
—3.84438
—-3.88947
-3.93033
-3.95775
-3.97519
—3.99784
—4.011
—-4.02855
-4.12935
—4.23831
—4.27624
—4.31855
—4.47032
—4.45712
—4.44651
-4.56311
—4.55652
—4.62946
-4.61704
—4.68006
—4.66164
—4.92572
—4.84519
-4.82164
—4.79374
-5.75194
—5.65536
-5.55679
—5.3493
—5.27775
—5.20559
—5.12838

10.3389/fgene.2022.975521

p-value

0.005061
0.004216
0.004104
0.003909
0.003571
0.003596
0.00324

0.003109
0.003152
0.003186
0.002955
0.00254

0.002455
0.002062
0.002152
0.002162
0.002179
0.002004
0.001858
0.001767
0.001711
0.001641
0.001602
0.001551
0.001289
0.001057
0.000987
0.000914
0.000696
0.000713
0.000726
0.00059

0.000597
0.000524
0.000536
0.00048

0.000495
0.000312
0.000359
0.000374
0.000393
7.84E-05
9.17E-05
0.000108
0.000152
0.000171
0.000194
0.000221

FDR

0.046251
0.039431
0.038844
0.037443
0.035905
0.035905
0.033456
0.03333

0.03333

0.03333

0.032779
0.029271
0.028697
0.026242
0.026242
0.026242
0.026242
0.026213
0.025039
0.024474
0.024285
0.024155
0.024023
0.023707
0.020916
0.018676
0.017831
0.016902
0.014804
0.014804
0.014804
0.013556
0.013556
0.013304
0.013304
0.013129
0.013129
0.011569
0.011569
0.011569
0.011569
0.009833
0.009833
0.009833
0.009833
0.009833
0.009833
0.009833

(Continued on following page)
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TABLE 1 (Continued) The list of miRNAs with differential expression in IgA nephropathy.

MiRNAs logFC Mean expression
miR-378* -40.9929 56.29643

miR-501-5p -13.0314 14.50571

miR-501-3p ~12.5657 13.22

miR-23a* -11.2007 12.90679

let-7¢ -450.336 552.1893

most immune checkpoints in IgA nephropathy samples
(Figure 8E).

Upstream miRNAs of hub RBPs

We further predicted the upstream miRNAs of hub RBPs.
Firstly, we determined miRNAs with differential expression in
IgA nephropathy from GSE25590 dataset (Table 1). In Figure 8F,
miR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107
were potential upstream miRNAs of hub RBPs after prediction.

Discussion

Currently, anatomopathological evaluation of renal biopsies is
crucial for diagnosing IgA nephropathy (Li H. et al, 2021).
Nevertheless, percutaneous renal biopsies are often not carried
(Oxford
classification system, etc.) have a few shortcomings (Kouri et al.,

out, and proposed histological  classifications
2021). As the undesirable clinical outcomes of patients with IgA
nephropathy is in part the results of delayed diagnosis, reliable non-
invasive biomarkers are urgently required, which could be applied to
routine clinical practice (Moresco et al.,, 2015).

Through integration of three machine learning approaches
(LASSO, SVM-RFE, random forest), we finally determined three
characteristic RBPs of IgA nephropathy: DDX27, RCLI, and
TFB2M. All of them displayed remarkable down-regulation in
IgA nephropathy. DDX27 is a member of the DEAD-Box
nucleic acid helicase family. Previous evidence demonstrates that
DDX27 is involved in tumorigenesis. Specifically, DDX27 facilitates
hepatocellular carcinoma progression via activating ERK signaling
(Xiaogian et al., 2021), and enhances stem cell-like features with
undesirable survival outcome of breast cancer (Li S. et al., 2021) and
colorectal cancer (Yang et al., 2019). Moreover, it heightens colony-
forming capacity of gastric cancer cells and results in terrible
survival outcome (Tsukamoto et al, 2015), and strengthens
colorectal cancer growth and metastasis (Tang et al, 2018).
Other studies demonstrate that DDX27 modulates skeletal
muscle growth and regeneration through translational processes
(Bennett et al,, 2018), and modulates 3’ end generation of ribosomal
47S RNA and stably correlates to the PeBoW-complexing (Kellner
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t p-value FDR

-5.0917 0.000235 0.009833
-5.09133 0.000235 0.009833
~6.85034 1.45E-05 0.004227
~6.77226 1.62E-05 0.004227
~6.44259 2.66E-05 0.004227

et al,, 2015). RCL1 is essential for co-transcriptional steps in 18 S
rRNA biogenesis (Horn et al, 2011). Evidence suggests that
RCL1 weakens hepatocellular carcinoma progression (Jiaze et al.,
2022). TFB2M is a mitochondrial transcription factor (Basu et al.,
2020), and its C-terminal tail is a part of the autoinhibitory
mechanisms that modulate DNA binding (Basu et al, 2020).
However, no studies have reported the roles of DDX27, RCLI,
and TFB2M in IgA nephropathy. Our ROCs demonstrated the
excellent efficacy of these characteristic genes in diagnosing IgA
nephropathy.

Our GSEA results demonstrated that DDX27, RCL1, and
TFB2M were significantly involved in metabolism pathways such
as histidine metabolism, glyoxylate and dicarboxylate metabolism,
B-alanine metabolism, glycine serine and threonine metabolism,
indicating their crucial roles in RNA metabolism. Most immune cell
types exhibited increased infiltration levels in IgA nephropathy,
comprising CD8 T cells, follicular helper T cells, gamma delta
T cells, resting NK cells, activated NK cells, M1 macrophages,
M2 macrophages, resting dendritic cells, activated dendritic cells,
endothelial cells, and fibroblasts, consistent with previous research
(Chen et al.,, 2021; Tang et al., 2021). Especially, DDX27, RCL1, and
TFB2M were significantly linked to most immune cell populations
and immune checkpoints, indicating that above characteristic RBPs
might participate in modulating immune cell infiltrations during
IgA nephropathy progression. Pyroptosis has gained increasing
attention due to its relationship to innate immunity and diseases
(Yu et al, 2021). Among characteristic RBPs, TFB2M negatively
correlated to several pyroptosis-relevant genes, indicating that
TFB2M might modulate pyroptosis pathway during IgA
nephropathy.

Genome-wide meta-analysis has uncovered the remarkable
molecular heterogeneity across IgA nephropathy patients (Li
et al, 2020). Here, based on the hub RBPs, we classified IgA
nephropathy two subtypes. Most hub RBPs exhibited higher
expressions in cluster 1 than 2. There was the notable
heterogeneity in pyroptosis between subtypes, with higher
activity of pyroptosis in cluster 1. Additionally, most metabolism
pathways displayed higher activity in cluster 2 in comparison to
cluster 1. We also noted that cluster 2 had lower infiltrations of
memory B cells as well as higher infiltrations of plasma cells,
activated mast cells

M2 macrophages, and neutrophils.

Meanwhile, cluster 1 was characterized by elevated expressions
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of IDO1, TNFRSF8, TNFRSF14, CD40, CD48, CD44 and NRP1.
Altogether, the hub RBP-based subtypes exhibited widespread
differences in signaling pathways, immune cell infiltrations and
immune checkpoints.

Accumulated evidence shows that miRNAs exert crucial roles in
the pathogenesis of IgA nephropathy (Noor et al., 2021; Pawluczyk
etal, 2021; Xu et al,, 2021). Our further analysis demonstrated that
miR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107
were potential upstream miRNAs of hub RBPs, which might post-
transcriptionally regulate the expression of hub RBPs during IgA
nephropathy. Despite this, the limitations of our study should be
pointed out. First, although we tried our best to collect IgA
nephropathy public datasets, the sample size was relatively small.
Furthermore, the post-transcriptional mechanisms of hub RBPs will
be experimentally verified.

Conclusion

the three
characteristic RBPs as potential diagnostic biomarkers of IgA

Collectively, present study determined

nephropathy patients through integrating three machine
learning approaches (LASSO, SVM-RFE, random forest).
Additionally, we classified IgA nephropathy as two RBPs-
based subtypes. Altogether, our findings provided a novel clue
on the diagnosis and mechanisms of IgA nephropathy.
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