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Objective: RNA-binding proteins (RBPs) are essential for most post-

transcriptional regulatory events, which exert critical roles in nearly all

aspects of cell biology. Here, characteristic RBPs of IgA nephropathy were

determined with multiple machine learning algorithms.

Methods: Our study included three gene expression datasets of IgA

nephropathy (GSE37460, GSE73953, GSE93798). Differential expression of

RBPs between IgA nephropathy and normal samples was analyzed via

limma, and hub RBPs were determined through MCODE. Afterwards, three

machine learning algorithms (LASSO, SVM-RFE, random forest) were integrated

to determine characteristic RBPs, which were verified in the Nephroseq

database. Immune cell infiltrations were estimated through CIBERSORT.

Utilizing ConsensusClusterPlus, IgA nephropathy were classified based on

hub RBPs. The potential upstream miRNAs were predicted.

Results: Among 388 RBPs with differential expression, 43 hub RBPs were

determined. After integration of three machine learning algorithms, three

characteristic RBPs were finally identified (DDX27, RCL1, and TFB2M). All of

them were down-regulated in IgA nephropathy than normal specimens, with

the excellent diagnostic efficacy. Additionally, they were significantly linked to

immune cell infiltrations, immune checkpoints, and pyroptosis-relevant genes.

Based on hub RBPs, IgA nephropathy was stably classified as two subtypes
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(cluster 1 and 2). Cluster 1 exhibited the relatively high expression of pyroptosis-

relevant genes and characteristic RBPs. MiR-501-3p, miR-760, miR-502-3p,

miR-1224-5p, and miR-107 were potential upstream miRNAs of hub RBPs.

Conclusion: Collectively, our findings determine three characteristic RBPs in

IgA nephropathy and two RBPs-based subtypes, and thus provide a certain basis

for further research on the diagnosis and pathogenesis of IgA nephropathy.

KEYWORDS

IgA nephropathy, RNA binding proteins, machine learning, diagnosis, subtypes,
immunity, pyroptosis

Introduction

Immunoglobulin A (IgA) nephropathy is the most

frequent form of primary glomerulonephritis globally

(Moldoveanu et al., 2021). About one-third of IgA

nephropathy patients will develop end-stage renal disease

within 20 years after diagnosis by kidney biopsy (Zeng

et al., 2021). IgA nephropathy has been an important cause

of end-stage renal disease among young adults. The

predominant histological characteristics are immune

deposits dominated by granular diffuse IgA (primarily

comprising polymeric IgA1) in the mesangial region,

usually linked to increased mesangial cells along with

matrix expansion (Xie et al., 2021). In China, IgA

nephropathy occupies 45.26% of primary glomerular

diseases, and remains the most common cause of uremia

FIGURE 1
The overall flowchart of our study.
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(26.69%) (Li Y. et al., 2021). Currently, the comprehension of

the pathophysiology of IgA nephropathy remains undefined,

which involves multiple potential players (composed of

mucosal immune system, complement system, microbiome,

etc.) (Suzuki and Novak, 2021). Nevertheless, the absence of

gene models to diagnose IgA nephropathy limits personalized

risk-based therapeutic options.

RNA binding proteins (RBPs) exert critical roles in

nearly all aspects of cell biology (Sternburg and Karginov,

2020). They orchestrate post-transcriptional regulatory

events of gene expression (messenger RNA (mRNA)

splicing, RNA stability, translation, etc.) (Wu and Xu,

2022). RBPs act as repressors or activators when interacting

with mRNAs, and their binding sites are broad ranging

FIGURE 2
Identification of hub RBPs in IgA nephropathy. (A, B) PCA plots for combined transcriptomic profiling of GSE37460, GSE73953, and
GSE93798 datasets before and after batch correction. (C) Volcano diagram for the up- and down-regulated RBPs in IgA nephropathy than normal
samples. Red, up-regulated RBPs; black, not significant RBPs; green, down-regulated RBPs. (D)Heatmap of the differential expression of RBPs in IgA
nephropathy and normal samples. Red, up-regulation; blue, down-regulation. (E–G) The top ten biological processes, cellular components,
and molecular functions significantly enriched by RBPs with differential expression. (H) KEGG pathways significantly enriched by RBPs with
differential expression. (I) The important module derived from PPI network of RBPs with differential expression. IgAN, IgA nephropathy.
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from 5′-UTR to 3′-UTR. The most updated human RBP

catalog comprises of 1,542 genes (Supplementary Table S1).

Several RBPs have been proven to correlate with innate

immune response and various programmed cell death types

especially pyroptosis (Zheng and Kanneganti, 2020). Altered

expression and dysfunctions of RBPs result in IgA

nephropathy progression (Hahn et al., 2010; Wu et al.,

2020). In the present study, three machine learning

algorithms (LASSO, SVM-RFE, random forest) were

integrated to determine characteristic RBPs in IgA

nephropathy as well as developed two RBPs-based subtypes,

offering a certain basis for further research on the diagnosis

and pathogenesis of IgA nephropathy. Figure 1 illustrates the

overall design of our study.

Materials and methods

Data collection

This study retrospectively included four gene expression

datasets of IgA nephropathy from the Gene Expression

Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/

gds/), including GSE37460 (Guo et al., 2019), GSE73953

(Nagasawa et al., 2016), and GSE93798 (Liu et al., 2017).

The raw transcriptomic data from the Affymetrix

platform were pre-processed with robust multiarray

averaging method derived from Affy package (Gautier

et al., 2004). The batch effects from different datasets were

eliminated by ComBat method from surrogate variable

analysis (sva) package (Leek et al., 2012). Figures 2A,B

depicted the principal component analysis (PCA) before

and after batch correction. Probe IDs were mapped to

gene symbols on the basis of the corresponding

annotation files, and the expression values of all probes

matching the same gene were averaged as the final value.

Additionally, we retrieved microRNA (miRNA) expression

profiling of IgA nephropathy from GSE25590 dataset (Serino

et al., 2012).

Identification of RBPs with differential
expression

Differential expression of RBPs between IgA

nephropathy and normal samples was analyzed through

linear models for microarray data (limma) (Ritchie et al.,

2015). False discovery rate (FDR)<0.05 was set as the

cut-off criterion. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of RBPs with differential expression

was executed utilizing clusterProfiler package (Yu et al.,

2012).

Analysis of protein-protein
interaction (PPI)

Interaction between RBPs with differential expression was

probed utilizing the Search Tool for the Retrieval of Interacting

Genes (STRING) online database according to the default

criteria. Through Cytoscape plugin Molecular Complex

Detection (MCODE), the important modules in the PPI

network were visualized, and the hub RBPs were identified for

subsequent analysis (Shannon et al., 2003).

Screening characteristic RBPs

Three machine learning algorithms were applied for

selecting characteristic RBPs. Hub RBPs were utilized for

establishing a penalized multivariate Cox proportional

hazard survival model through variable selection on the

basis of L1-penalized Least Absolute Shrinkage and

Selection Operator (LASSO) regression approach from

glmnet package, with 10-fold cross-validation (Goeman,

2010). Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) method was employed to search

for lambda with the smallest classification error to

determine the variables. Random forest algorithm was

implemented for generating decision tree forest with 10-

fold cross-validation. Characteristic RBPs analyzed by

above algorithms were intersected.

Gene set enrichment analysis (GSEA)

GSEA was executed for determining the significant

functional terms between groups (Subramanian et al.,

2005). The “c2. cp.kegg.v7.5. symbols.gmt” was

downloaded from the Molecular Signatures Database

(MSigDB), as the reference gene set (Liberzon et al.,

2015). The gene set was regarded as significant

enrichment if FDR<0.05.

Estimation of immune cell infiltrations and
immune checkpoints

CIBERSORT, a deconvolution algorithm, was execute to

quantify 24 immune cell types via applying 547 gene

expression signatures (Newman et al., 2015). The

permutations were set as 100. Samples with p <
0.05 reflected that the deconvolution results were relatively

reliable, which were included for subsequent analysis. We also

collected common immune checkpoints from published

literature (IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD80,

PDCD1LG2, CD70, TNFSF9, KIR3DL1, CD86, PDCD1,
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LAIR1, TNFRSF8, TNFSF15, TNFRSF14, CD40, TNFRSF4,

TNFSF14, HHLA2, CD244, CD27, LGALS9, CD28, CD48,

TNFRSF25, CD40LG, VTCN1, CD160, CD44, TNFSF18,

BTNL2, TNFSF4, CD200, and NRP1.

Consensus clustering analysis

Through ConsensusClusterPlus package (Wilkerson and

Hayes, 2010), a consistency matrix of IgA nephropathy

samples was established based on the expression profiling

of hub RBPs according to item subsampling = 0.8, feature

subsampling = 0.8, distance = 1—Pearson correlation,

iteration = 1,000, and the maximum k value = 9. The

optimal number of clusters was determined through

consensus CDF, tracking plot, and consensus matrix.

Principal component analysis (PCA) was conducted to

verify this classification.

Gene set variation analysis (GSVA)

A single sample gene set enrichment analysis (ssGSEA)

was executed for estimating the enrichment score of the

specified gene signature utilizing GSVA package, with the

“c2. cp.kegg.v7.5. symbols.gmt” as the reference gene set

(Hänzelmann et al., 2013). The enrichment score was

compared between subtypes via limma approach.

External validation

The expression of characteristic RBPs was externally

verified in the Nephroseq database (http://v5.nephroseq.

org/) that combines a large number of publicly available

renal transcriptome profiling. Associations between

characteristic RBPs and clinical features were also evaluated.

Establishment of a miRNA-hub RBP
network

The Encyclopedia of RNA interactomes (ENCORI)

integrates eight distinct databases for predicting miRNA-

mRNA interactions. Here, four databases (Targetscan, PITA,

PicTar, and miRanda) were utilized. MiRNAs were regarded as

upstream miRNAs of hub RBPs if the results appeared

in ≥2 databases. Afterwards, a miRNA-hub RBP network was

visualized via cytoscape software.

Statistical analysis

All statistical analysis was executed with R software

(version 3.6.3). Continuous variables that fit normal

distribution between binary groups were compared utilizing

student’s t-test. Otherwise, Mann-Whitney U test was carried

out. Receiver operating characteristic curves (ROCs) were

plotted to evaluate the diagnostic efficacy of characteristic

RBPs in IgA nephropathy. Associations between variables

were evaluated with Pearson or Spearman coefficients. The

significance was set as p < 0.05, and all statistical tests were

two-sided.

Results

Identification of hub RBPs in IgA
nephropathy

A total of 388 RBPs with differential expression were

identified according to FDR<0.05 (Figures 2C,D;

Supplementary Table S2). GO enrichment results (nucleic

acid binding, RNA binding, mRNA binding, AU-rich

element binding, mRNA 3′-UTR binding, etc.) revealed the

primary biological functions of these RBPs (Figures 2E–G).

Additionally, spliceosome, RNA transport, mRNA

surveillance pathway, ribosome biogenesis in eukaryotes,

RNA degradation and aminoacyl-tRNA biosynthesis

pathways were significantly enriched by these RBPs with

differential expression (Figure 2H). A total of 43 hub

RBPs were identified, including DDX56, UTP3,

MPHOSPH10, DDX10, CEBPZ, TRMT11, NOP14, RRP9,

PA2G4, NGDN, KRR1, UTP14A, MAK16, UTP18, DDX27,

ABT1, DDX24, DNTTIP2, NOP2, IMP3, EXOSC10, DHX32,

RRP1, RRP1B, TFB2M, GNL2, RRP7A, NOC4L, LSG1,

DDX17, EIF4A3, GNL3, DKC1, RSL1D1, NOL6, DDX31,

DDX5, TRMT1, NOLC1, RBM34, RCL1, PNO1, DDX18

(Figure 2I).

Identification of characteristic RBPs in IgA
nephropathy via integrating three
machine learning algorithms

Three machine learning algorithms were applied for

identifying characteristic RBPs in IgA nephropathy.

According to LASSO model, 15 characteristic genes

were identified, composed of DDX56, DDX10, UTP14A,

DDX27, DDX24, DNTTIP2, IMP3, EXOSC10, TFB2M,
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RRP7A, GNL3, RSL1D1, DDX31, TRMT1, and RCL1 (Figures

3A,B). SVM-RFE analysis identified 10 characteristic genes

including TFB2M, RCL1, RSL1D1, RRP7A, DDX56, DDX27,

NGDN, DDX24, TRMT1, and CEBPZ (Figure 3C).

Additionally, three characteristic genes were determined

based on random forest approach, comprising TFB2M,

DDX27, and RCL1 (Figures 3D,E). After integration of

above machine learning algorithms, we finally determined

TFB2M, DDX27, and RCL1 as characteristic RBPs of IgA

nephropathy (Figure 3F). Compared with normal specimens,

FIGURE 3
Integration of three machine learning algorithms to determine characteristic RBPs in IgA nephropathy. (A) The regression coefficient of each
independent variable in the LASSO model. (B) Binomial deviance under different log(lambda) in the model. (C) SVM-RFE for feature section. (D)
Random forest for screening characteristic genes. (E) The rank of genes according to the relative importance. (F) Venn diagram of the intersection
results of characteristic genes from three machine learning approaches. (G) Expression of characteristic RBPs in IgA nephropathy and normal
specimens (****p < 0.0001). IgAN, IgA nephropathy.
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TFB2M, DDX27, and RCL1 expressions were significantly

down-regulated in IgA nephropathy (Figure 3G).

Characteristic RBPs as reliable diagnostic
markers of IgA nephropathy

To evaluate the diagnostic efficacy of the characteristic RBPs

in IgA nephropathy, ROCs were plotted. As a result, the AUC

values of DDX27 (Figure 4A), RCL1 (Figure 4B), and TFB2M

(Figure 4C) were separately 0.82, 0.78, and 0.85. Above analysis

demonstrated that the characteristic RBPs might be reliable

diagnostic markers of IgA nephropathy.

Signaling pathways involved in
characteristic RBPs

DDX27 was positively correlated to histidine metabolism,

glyoxylate and dicarboxylate metabolism, β-alanine
metabolism, glycine serine and threonine metabolism,

pantothenate and coA biosynthesis, and drug metabolism

other enzymes (Figure 4D). In Figure 4E, RCL1 was

negatively linked to steroid hormone biosynthesis, pentose

and glucuronate interconversions, histidine metabolism,

glycerolipid metabolism, nitrogen metabolism and lysine

degradation. Moreover, TFB2M exhibited positive

associations with pentose and glucuronate interconversions,

steroid hormone biosynthesis, drug metabolism other

enzymes, cysteine and methionine metabolism, starch and

sucrose metabolism and drug metabolism cytochrome P450

(Figure 4F).

Characteristic RBPs are linked to immune
cell infiltrations and pyroptosis in IgA
nephropathy

Through CIBERSORT approach, we quantified the

enrichment levels of 24 immune cell types. As illustrated in

Figure 5A, there were dramatic interactions between immune

cells. Compared with normal specimens, CD8 T cells, follicular

FIGURE 4
Diagnostic efficacy and involved signaling pathways of characteristic RBPs in IgA nephropathy. (A–C) ROCs of (A) DDX27, (B) RCL1, and (C)
TFB2M in diagnosing IgA nephropathy. (D–F) KEGG pathways involved in (D) DDX27, (E) RCL1, and (F) TFB2M.
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helper T cells, gamma delta T cells, resting NK cells, activated NK

cells, M1 macrophages, M2 macrophages, resting dendritic cells,

activated dendritic cells, endothelial cells and fibroblasts

exhibited higher enrichment levels in IgA nephropathy

(Figure 5B). We also evaluated the correlations between

characteristic RBPs and immune cell infiltrations. In

Figure 5C, DDX27 was positively associated with memory

resting CD4 T cells, but was negatively associated with

endothelial cells, M2 macrophages, gamma delta T cells,

fibroblasts, M1 macrophages, resting dendritic cells,

CD8 T cells, and monocytes. RCL1 exhibited positive

interactions with regulatory T cells (Tregs), follicular helper

T cells, memory activated CD4 T cells, resting mast cells,

memory B cells, but exhibited negative interactions with

FIGURE 5
Characteristic RBPs are linked to immune cell infiltrations in IgA nephropathy. (A) Correlations between 24 immune cell types in IgA
nephropathy specimens. (B) Enrichment levels of 24 immune cell types in IgA nephropathy and normal specimens (*p < 0.05; **p < 0.01; ***p <
0.001). (C–E) Associations of (C)DDX27, (D) RCL1, and (E) TFB2Mwith enrichment levels of each immune cell type. (F–H) Relationships of (F)DDX27,
(G) RCL1, and (H) TFB2M with the expression of pyroptosis-relevant genes. IgAN, IgA nephropathy.
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endothelial cells, fibroblasts, M1 macrophages, and

M2 macrophages (Figure 5D). Additionally, TFB2M was

negatively linked to endothelial cells, fibroblasts,

M1 macrophages, M2 macrophages, activated dendritic cells,

activated NK cells, gamma delta T cells, resting NK cells, resting

dendritic cells, CD8 T cells, naïve B cells, and M0 macrophages

(Figure 5E). Pyroptosis is a type of cell death, that is, crucial for

immunity (Niu et al., 2022). Here, the relationships of

characteristic RBPs with pyroptosis-relevant genes (DDX27,

RCL1, and TFB2M) were analyzed. Among them, TFB2M

displayed significantly negative correlations to NOD2, NLRP1,

TP53, CASP4, and TNF (Figures 5F–H).

IgA nephropathy is classified as two
subtypes based on hub RBPs

Through consensus clustering approach, IgA nephropathy

specimens were stably classified as two subtypes, namely cluster

1 and 2 (Figures 6A–D; Supplementary Table S3). PCA plot also

demonstrated the difference between subtypes (Figure 6E).

Additionally, most hub RBPs exhibited higher expressions in

cluster 1 than 2 (Figure 6F).

Differences in signaling pathways,
immune cell infiltrations, immune
checkpoints and pyroptosis between hub
RBPs-based subtypes

In Figure 7A, cytosolic DNA sensing pathway, proteasome,

RNA degradation, nucleotide excision repair, mismatch repair,

DNA replication, spliceosome, basal transcription factors and

RNA polymerase exhibited higher enrichment levels in cluster

1 than 2. Oppositely, linoleic acid metabolism, olfactory

transduction, aldosterone regulation sodium reabsorption,

folate biosynthesis, renin angiotensin system, PPAR signaling

pathway, pyruvate metabolism, citrate cycle TCA cycle, valine

FIGURE 6
IgA nephropathy is classified as two subtypes based on hub RBPs. (A) The consensus CDF across different k values. (B) Delta area plot for the
relative change in the area under the CDF curves. (C) Tracking plot for the item cluster membership across different k values. (D)Consensusmatrix at
k = 2. (E) PCA plot of two subtypes. (F) Expression of hub RBPs in two subtypes.
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leucine and isoleucine degradation, proximal tubule bicarbonate

reclamation, drug metabolism cytochrome P450, tyrosine

metabolism, peroxisome, phenylalanine metabolism, glycine

serine and threonine metabolism, arginine and proline

metabolism, glycolysis gluconeogenesis, β-alanine metabolism,

limonene and pinene degradation, steroid hormone biosynthesis,

retinol metabolism and nitrogen metabolism had higher

enrichment levels in cluster 2 in comparison to cluster 1.

Compared with cluster 1, cluster 2 was characterized by lower

infiltrations of memory B cells, and higher infiltrations of plasma

cells, M2 macrophages, activated mast cells and neutrophils

(Figure 7B). Additionally, immune checkpoints IDO1, CD86,

LAIR1, TNFRSF14, TNFRSF4, CD48, TNFRSF25, CD44, and

NRP1 were up-regulated in IgA nephropathy than normal

FIGURE 7
Differences in signaling pathways, immune cell infiltrations and immune checkpoints between hub RBPs-based subtypes. (A) Heatmap of the
enrichment levels of signaling pathways between subtypes. (B) The enrichment levels of 24 immune cell types between subtypes. (C) The expression
of immune checkpoints in IgA nephropathy and normal specimens. (D) The expression of immune checkpoints in two subtypes. (E) The expression of
pyroptosis-relevant genes in IgA nephropathy and normal specimens. (F) The expression of pyroptosis-relevant genes in two subtypes. *p <
0.05; **p < 0.01; ***p < 0.001. IgAN, IgA nephropathy.
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specimens (Figure 7C). Differently, down-regulated LAG3,

CTLA4, TNFSF9, PDCD1, TNFRSF8, HHLA2, CD40LG,

BTNL2, TNFSF4, and CD200 were found in IgA nephropathy.

In Figure 7D, cluster 1 was characterized by higher expressions of

IDO1, TNFRSF8, TNFRSF14, CD40, CD48, CD44 and

NRP1 than cluster 2. Most pyroptosis-relevant genes exhibited

higher expression in IgA nephropathy versus normal specimens

(Figure 7E), indicating the activation of pyroptosis pathway in

IgA nephropathy. Afterwards, the heterogeneity in pyroptosis

was measured between subtypes. In comparison to cluster 1,

cluster 2 had lower expression of pyroptosis-relevant genes,

indicating higher activity of pyroptosis in cluster 1 (Figure 7F).

Association of characteristic RBPs with
clinical features, hub RBPs-based
subtypes and immune cell infiltrations

Characteristic RBPs were further verified in the Nephroseq

database. DDX27 was significantly up-regulated in chronic

kidney disease than normal kidneys, and was negatively

correlated to body mass index (Figures 8A,B). Additionally,

up-regulated TFB2M was examined in chronic kidney disease

compared with normal kidneys (Figure 8C). Moreover, DDX27,

RCL1, and TFB2M expressions were relatively higher in cluster

1 than 2 (Figure 8D). All of them were positively correlated to

FIGURE 8
Association of characteristic RBPs with clinical features, hub RBPs-based subtypes, immune cell infiltrations and upstream miRNAs. (A)
Expression of DDX27 in normal and chronic kidney disease in the Nephroseq database. (B) Correlation between DDX27 expression and body mass
index of IgA nephropathy samples in the Nephroseq database. (C) Expression of TFB2M in normal and chronic kidney disease in the Nephroseq
database. (D) Expression of characteristic RBPs in two subtypes. (E) Heatmap of the associations between characteristic RBPs and immune cell
infiltrations in IgA nephropathy. (F) The network of characteristic RBPs and upstream miRNAs. *p < 0.05; **p < 0.01.
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TABLE 1 The list of miRNAs with differential expression in IgA nephropathy.

MiRNAs logFC Mean expression t p-value FDR

miR-107 −2321.43 3942.143 −3.39383 0.005061 0.046251

miR-502-5p −18.6207 34.11107 −3.49096 0.004216 0.039431

miR-483-5p −57.0214 62.98214 −3.50524 0.004104 0.038844

miR-362-5p −92.4143 221.6143 −3.53117 0.003909 0.037443

let-7g −14493.6 21030.36 −3.57942 0.003571 0.035905

miR-20a −4168.57 7802.143 −3.57568 0.003596 0.035905

let-7i −5956.43 9032.5 −3.63129 0.00324 0.033456

miR-374b −274.786 384.8929 −3.65338 0.003109 0.03333

miR-20b −621.571 1,068.571 −3.64612 0.003152 0.03333

miR-564 −17.4214 28.675 −3.64029 0.003186 0.03333

miR-765 −23.4164 24.74893 −3.68064 0.002955 0.032779

miR-185 −342.464 552.0536 −3.76167 0.00254 0.029271

miR-134 −38.8429 51.52857 −3.78016 0.002455 0.028697

let-7f −8376.14 12616.93 −3.87417 0.002062 0.026242

miR-500 −10.2871 18.29929 −3.85099 0.002152 0.026242

miR-132 −33.5157 40.95643 −3.84859 0.002162 0.026242

miR-93 −649.364 998.6036 −3.84438 0.002179 0.026242

miR-15b −7184.29 12296.43 −3.88947 0.002004 0.026213

miR-500* −45.7143 64.81429 −3.93033 0.001858 0.025039

miR-22 −2107.14 5074.286 −3.95775 0.001767 0.024474

miR-23a −2930 5763.571 −3.97519 0.001711 0.024285

miR-103 −4019.43 6833.143 −3.99784 0.001641 0.024155

miR-505* −24.9971 30.57286 −4.011 0.001602 0.024023

miR-16 −16049.3 31073.93 −4.02855 0.001551 0.023707

miR-155 −412.071 809.75 −4.12935 0.001289 0.020916

miR-98 −165.936 218.1036 −4.23831 0.001057 0.018676

miR-150* −21.5014 24.05643 −4.27624 0.000987 0.017831

miR-22* −17.3843 20.66214 −4.31855 0.000914 0.016902

miR-768-5p_v11.0 −247.293 294.6393 −4.47032 0.000696 0.014804

miR-18a −160.343 218.7 −4.45712 0.000713 0.014804

miR-886-3p −31.0264 31.83679 −4.44651 0.000726 0.014804

let-7b −5087.86 6656.071 −4.56311 0.00059 0.013556

miR-221* −45.1786 62.58929 −4.55652 0.000597 0.013556

miR-365 −42.8286 60.47857 −4.62946 0.000524 0.013304

miR-200b −14.14 26.88357 −4.61704 0.000536 0.013304

miR-18b −37.7714 58.52857 −4.68006 0.00048 0.013129

let-7a −11010.7 15253.21 −4.66164 0.000495 0.013129

miR-24 −3990.71 6935.357 −4.92572 0.000312 0.011569

miR-939 −41.4357 112.7821 −4.84519 0.000359 0.011569

miR-30b* −11.1014 18.99 −4.82164 0.000374 0.011569

miR-425 −833.143 1,305.571 −4.79374 0.000393 0.011569

miR-760 −11.2556 9.521464 −5.75194 7.84E-05 0.009833

miR-574-3p −40.0929 48.38929 −5.65536 9.17E-05 0.009833

miR-744 −30.75 36.99643 −5.55679 0.000108 0.009833

miR-671-5p −25.86 25.20571 −5.3493 0.000152 0.009833

miR-502-3p −50.0714 69.84286 −5.27775 0.000171 0.009833

miR-1224-5p −31.5171 31.88429 −5.20559 0.000194 0.009833

let-7d −2246.86 2828.714 −5.12838 0.000221 0.009833

(Continued on following page)
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most immune checkpoints in IgA nephropathy samples

(Figure 8E).

Upstream miRNAs of hub RBPs

We further predicted the upstream miRNAs of hub RBPs.

Firstly, we determined miRNAs with differential expression in

IgA nephropathy from GSE25590 dataset (Table 1). In Figure 8F,

miR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107

were potential upstream miRNAs of hub RBPs after prediction.

Discussion

Currently, anatomopathological evaluation of renal biopsies is

crucial for diagnosing IgA nephropathy (Li H. et al., 2021).

Nevertheless, percutaneous renal biopsies are often not carried

out, and proposed histological classifications (Oxford

classification system, etc.) have a few shortcomings (Kouri et al.,

2021). As the undesirable clinical outcomes of patients with IgA

nephropathy is in part the results of delayed diagnosis, reliable non-

invasive biomarkers are urgently required, which could be applied to

routine clinical practice (Moresco et al., 2015).

Through integration of three machine learning approaches

(LASSO, SVM-RFE, random forest), we finally determined three

characteristic RBPs of IgA nephropathy: DDX27, RCL1, and

TFB2M. All of them displayed remarkable down-regulation in

IgA nephropathy. DDX27 is a member of the DEAD-Box

nucleic acid helicase family. Previous evidence demonstrates that

DDX27 is involved in tumorigenesis. Specifically, DDX27 facilitates

hepatocellular carcinoma progression via activating ERK signaling

(Xiaoqian et al., 2021), and enhances stem cell-like features with

undesirable survival outcome of breast cancer (Li S. et al., 2021) and

colorectal cancer (Yang et al., 2019). Moreover, it heightens colony-

forming capacity of gastric cancer cells and results in terrible

survival outcome (Tsukamoto et al., 2015), and strengthens

colorectal cancer growth and metastasis (Tang et al., 2018).

Other studies demonstrate that DDX27 modulates skeletal

muscle growth and regeneration through translational processes

(Bennett et al., 2018), andmodulates 3’ end generation of ribosomal

47S RNA and stably correlates to the PeBoW-complexing (Kellner

et al., 2015). RCL1 is essential for co-transcriptional steps in 18 S

rRNA biogenesis (Horn et al., 2011). Evidence suggests that

RCL1 weakens hepatocellular carcinoma progression (Jiaze et al.,

2022). TFB2M is a mitochondrial transcription factor (Basu et al.,

2020), and its C-terminal tail is a part of the autoinhibitory

mechanisms that modulate DNA binding (Basu et al., 2020).

However, no studies have reported the roles of DDX27, RCL1,

and TFB2M in IgA nephropathy. Our ROCs demonstrated the

excellent efficacy of these characteristic genes in diagnosing IgA

nephropathy.

Our GSEA results demonstrated that DDX27, RCL1, and

TFB2M were significantly involved in metabolism pathways such

as histidine metabolism, glyoxylate and dicarboxylate metabolism,

β-alanine metabolism, glycine serine and threonine metabolism,

indicating their crucial roles in RNAmetabolism.Most immune cell

types exhibited increased infiltration levels in IgA nephropathy,

comprising CD8 T cells, follicular helper T cells, gamma delta

T cells, resting NK cells, activated NK cells, M1 macrophages,

M2 macrophages, resting dendritic cells, activated dendritic cells,

endothelial cells, and fibroblasts, consistent with previous research

(Chen et al., 2021; Tang et al., 2021). Especially, DDX27, RCL1, and

TFB2M were significantly linked to most immune cell populations

and immune checkpoints, indicating that above characteristic RBPs

might participate in modulating immune cell infiltrations during

IgA nephropathy progression. Pyroptosis has gained increasing

attention due to its relationship to innate immunity and diseases

(Yu et al., 2021). Among characteristic RBPs, TFB2M negatively

correlated to several pyroptosis-relevant genes, indicating that

TFB2M might modulate pyroptosis pathway during IgA

nephropathy.

Genome-wide meta-analysis has uncovered the remarkable

molecular heterogeneity across IgA nephropathy patients (Li

et al., 2020). Here, based on the hub RBPs, we classified IgA

nephropathy two subtypes. Most hub RBPs exhibited higher

expressions in cluster 1 than 2. There was the notable

heterogeneity in pyroptosis between subtypes, with higher

activity of pyroptosis in cluster 1. Additionally, most metabolism

pathways displayed higher activity in cluster 2 in comparison to

cluster 1. We also noted that cluster 2 had lower infiltrations of

memory B cells as well as higher infiltrations of plasma cells,

M2 macrophages, activated mast cells and neutrophils.

Meanwhile, cluster 1 was characterized by elevated expressions

TABLE 1 (Continued) The list of miRNAs with differential expression in IgA nephropathy.

MiRNAs logFC Mean expression t p-value FDR

miR-378* −40.9929 56.29643 −5.0917 0.000235 0.009833

miR-501-5p −13.0314 14.50571 −5.09133 0.000235 0.009833

miR-501-3p −12.5657 13.22 −6.85034 1.45E-05 0.004227

miR-23a* −11.2007 12.90679 −6.77226 1.62E-05 0.004227

let-7c −450.336 552.1893 −6.44259 2.66E-05 0.004227
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of IDO1, TNFRSF8, TNFRSF14, CD40, CD48, CD44 and NRP1.

Altogether, the hub RBP-based subtypes exhibited widespread

differences in signaling pathways, immune cell infiltrations and

immune checkpoints.

Accumulated evidence shows thatmiRNAs exert crucial roles in

the pathogenesis of IgA nephropathy (Noor et al., 2021; Pawluczyk

et al., 2021; Xu et al., 2021). Our further analysis demonstrated that

miR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107

were potential upstream miRNAs of hub RBPs, which might post-

transcriptionally regulate the expression of hub RBPs during IgA

nephropathy. Despite this, the limitations of our study should be

pointed out. First, although we tried our best to collect IgA

nephropathy public datasets, the sample size was relatively small.

Furthermore, the post-transcriptional mechanisms of hub RBPs will

be experimentally verified.

Conclusion

Collectively, the present study determined three

characteristic RBPs as potential diagnostic biomarkers of IgA

nephropathy patients through integrating three machine

learning approaches (LASSO, SVM-RFE, random forest).

Additionally, we classified IgA nephropathy as two RBPs-

based subtypes. Altogether, our findings provided a novel clue

on the diagnosis and mechanisms of IgA nephropathy.
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