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Introduction
A classification tree is a rule for predicting the class of an 
object from the values of its predictors. A tree is built by recur-
sively partitioning and splitting it up further on each of the 
branches. The first tree-structured approach was the Auto-
matic Interaction Detection (AID) program.1 In this program, 
recursive partitioning was used as an alternative to the least 
squares regression for model fitting. Breiman et al.2 developed 
the Classification and Regression Trees (CART) method of 
selecting tree of appropriate size for classification and regres-
sion. CART, THAID,3 and C4.54 search exhaustively for a 
split of a node by minimizing a measure of node heterogeneity. 
These methods may cause a selection bias, because variables 
with more distinct values have a higher chance to be chosen. 
Loh and Vanichsetakul5 proposed a Fast Algorithm for Clas-
sification Trees (FACT) by recursive application of linear 
discriminant analysis. Quick, Unbiased, Efficient Statisti-
cal Trees (QUEST)6 and Classification Rule with Unbiased 
Interaction Selection and Estimation (CRUISE)7 use similar 

approach to test for the split without an exhaustive search. 
CART and QUEST use binary split, while FACT, C4.5, 
CHAID,8 and FIRM9 use multiway split.

In a classification tree, each partition is represented by 
a node in the tree. The process starts with a training set with 
known classes or with a cross-validation. A node in a tree splits 
recursively with the goal of making the data within each node 
more homogeneous according to a splitting criterion until the 
tree is fully grown. A measure of node impurity given a node 
can be defined by the Gini diversity index.2 For growing a 
large initial tree, the nodes continue splitting until a terminal 
node is either pure or it contains a small number of observa-
tions. Pruning is used to remove nodes and branches to avoid 
overfitting.

In CART, after the initial large tree is constructed,  
a nested sequence of subtrees is obtained by progressively 
deleting branches according to the pruning method. Breiman 
et al.2 defined the cost-complexity measure by imposing pen-
alty (complexity parameter) to the number of terminal nodes. 
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To choose the best tree among the nested subtrees, they 
recommend estimating the optimal complexity parameter by 
minimizing the cross-validation or the holdout sample error. 
Besides cost-complexity pruning, various pruning algorithms 
including reduced-error pruning,10 minimum description 
length pruning,11–13 and minimum error pruning14 have been 
developed.

There have been other works aiming at correcting the 
classification bias due to large number of candidate predic-
tors in a more general context not restricted to the tree clas-
sification. Bernau et al.15 developed a bias-correction method 
based on a decomposition of the unconditional error rate of 
the tuning procedure. Tibshirani and Tibshirani16 proposed a 
biased correction method for the minimum value of the cross-
validation error. Ding et al.17 introduced a biased correction 
method based on learning curve fitting by inverse power law.

In this paper, we propose to control the type I error 
accounting for the multiplicity due to many candidate predic-
tors and possible cutoff values for each of them. Employing 
the family-wise error rate concept that is used for multiple 
testing, our type I error rate is defined as the probability to 
have at least one split when none of the candidate predictors 
are associated with the clinical outcome. We also propose 
two permutation-based procedures, called single-step proce-
dure (SSP) and step-down procedure (SDP), to control the  
multiplicity-adjusted type I error. We perform extensive 
simulations to show that the two procedures control the  
type I error accurately and have reasonable power with moder-
ate sample sizes. We apply the proposed methods to the clas-
sification with real microarray data. Through simulation and 
real data analysis, we observe that SDP tends to make larger 
trees than SSP.

Methods
Suppose that there are m splitting variables x =  (x1, …, xm), 
also called candidate predictors, that are believed to predict a 
response variable y, also called clinical outcome. Each splitting 
variable may be discrete (ordered or categorical) or continuous, 
and different variables may have different types like typical 
predictors in clinical data. The response variable may be of 
any type, eg, binary, continuous, or censored survival variable. 
We consider binary classification tree partitioning the target 
dataset into two subsets defined by the values of each vari-
able. If xj is a binary variable, there exists only one possible 
classification by xj. If xj is a continuous or ordered discrete 
variable, then we can classify the current dataset by using each 
observed value of xj in the current dataset. If xj is a categorical 
(ie, nominal discrete) variable with K different categories in 
the current data set, then we can classify the current dataset 
into two subsets by ( )1 2

1
( – ) /K K
k k=∑  different ways, if K(.2) is 

odd, and k
K

k
K

=∑ ( )1
2/  different ways, if K(.2) is even.

Let Rj denote the set of all possible splitting points of 
the current dataset by the values of xj. Note that Rj will be 
unchanged if xj has never been chosen as the splitting variable 

at an intermediate node. As xj is chosen as a splitting variable, 
Rj will get smaller for nodes in a lower level of the tree. Let Zj(c) 
and pj(c) denote the standardized test statistic and its P value, 
respectively, to test the null hypothesis that the distribution of 
the response variable is identical between two groups that are 
defined by a classification c ∈ Rj. If y is a binary variable, Zj(c) 
may be the χ2 test statistic with one degree of freedom; if y is a 
continuous variable, Zj(c) may be the two-sample t-test or Wil-
coxon rank sum test; if y is a censored variable, Zj(c) may be the 
log-rank test statistic. Note that the type of test statistics will 
be identical for all predictors since the test statistic is chosen 
by the type of y and not by the type of a predictor. We assume 
that a large value of the test statistic (or its absolute value) 
implies evidence against the null hypothesis.

In a binary classification tree, we will continue classi-
fying each sub-sample if there exists any predictor with a 
splitting point classifying the current subset with a P-value 
smaller than ø, or equivalently with a standardized test sta-
tistic larger than ζ. We propose a false positivity control by 
maintaining the probability of splitting the original data 
below a certain level α under the null hypothesis H0 that 
none of the m classifiers are associated with the response. 
Toward this aim, we want to find the critical values ø = øα or 
ζ = ζα satisfying

	 0 0( | ) ( | ),P p H P Z Hα φ ζ= ≤ = ≥ 	 (1)

where p pj m c R j cj
= ≤ ≤ ∈min min ( ),1  Z Zj m c R j cj

= ≤ ≤ ∈max max ,( )1  
and R j is the set of all possible partitioning methods by the 
values of xj in the original data. We present two procedures to 
control the type I error rate at a specified level in a classifica-
tion tree.

Single-step procedure. Once we have the significance 
level øα (or critical value ζα) in (1), we will continue the classifi-
cation until we do not find any splitting variable whose P-value 
is smaller than øα (or whose test statistic is larger than ζα)  
for any possible cutoff value. Since we use the same critical 
value at each splitting, we call it an SSP.

Since the splitting variables as well as the test statistics (or 
the P-values) defined by different cutoff values of each split-
ting variable are complicatedly correlated, it is difficult to ana-
lytically derive the critical value ζ (or the significant level ø)  
by solving (1). Hence, we propose to estimate the critical val-
ues by simulating the null distribution of the P-values (or test 
statistics) using a permutation method.

Permutation Procedure for øα
Conduct the following process for B permutations.

1.	 At the bth (b = 1, …, B) permutation,
a.	 Randomly match response variables y1, …, yn with 

splitting variables x1, …, xm.
b.	 Calculate p pb, , from the permuted data.

2.	 Approximate øα by the [αB]th order statistic of p pB1, , ,…  
where [a] denotes the largest integer not exceeding a.
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Permutation Procedure for ζα

1.	 At the bth (b = 1, …, B) permutation,
a.	 Randomly match y1, …, yn with predictors x1, …, xm.
b.	 Calculate Z zb, , from the permuted data.

2.	 Approximate ζα by the [(1  –  α)B]th order statistic of 
z zB1, , .…

We conduct B  =  1,000 permutations in our simula-
tions of Section 3 and in real data analysis of Section 4. The 
exact significance level øα and critical value ζα will depend 
on the dependency among the splitting variables. Note that 
above-mentioned permutation methods provide a signifi-
cance level and a critical value accounting for the dependence 
structure.

When presenting a classification tree, we may want to 
show how significant the classification is for each node with a 
split. To this end, we propose to calculate the P-value adjusting 
for multiplicity as follows. For a node, let ζ̂  and φ̂  denote the 
maximum test statistic value and the corresponding P-value, 
respectively, with respect to all splitting variables and all pos-
sible cutoff values for each splitting variable from the current 
data set. Then, the adjusted P-value for the classification at 
this node is defined by

	 0 0value ˆ ˆ- ( | ) ( | ).P P Z H P p Hζ φ= ≥ = ≤

An approximate P-value can be calculated by approxi-
mating the null distribution of Z  or p using above-mentioned 
permutation method.

Step-down procedure. Although SSP is simple to imple-
ment, it may not have a high power to identify significant 
prognostic predictors since it applies the same strict critical 
value (or significance level) at all partitioning of subtrees that 
have smaller numbers of possible cutoff values than the origi-
nal data. In this section, we propose a multistep procedure, 
called SDP, that is expected to discover more prognostic pre-
dictors than SSP while controlling the type I error rate α at 
the same level.

We define node l ( = 0, 1, …) as the l-th node counting 
from the root node to subsequent levels. At the same level, 
counting goes from left to right. Let Dl denote the subset of 
the original data included in node l. Under the null hypothesis 
Hl, we assume that none of the m classifiers are associated with 
the response in Dl. When partitioning node l, we obtain the 
significance level øl = øl,α and critical value ζl = ζl,α for type I 
error rate α from

	 ( | ) ( | ),l l l l l lP p H P Z Hα φ ζ= ≤ = ≥

where p pl j m c R j clj
= ≤ ≤ ∈min min ,( )1  Z Zl j m c R j clj

= ≤ ≤ ∈max max ,( )1  
and Rj is the set of all possible splitting points by the values of 
xj in the current data set Dl. We split the current node at the 
partitioning with the smallest P-value if it is smaller than øl,α 

or equivalent with the largest test statistic in absolute value if 
it is larger than ζl,α.

As the partitioning continues, the size of current data 
set for each node decreases and the statistical tests to deter-
mine a partition suffer less multiple testing burden, so that 
the critical values for SDP are less strict than those of SSP  
for the subtrees. Hence, SDP may grow a larger tree than SSP. 
The significance level øl = øl,α and critical value ζl = ζl,α can be 
estimated using a permutation method as follows.

Permutation procedure for øl,α. At node l (  =  0, 1, …), 
we want to estimate the critical value and the significance 
level for determining a partition from the current data set 
D y x k nl i i lk k

= ={( , ), , , }1…  with sample size nl (# n). Let Rlj 
denote the set of all possible splitting points by the values of 
xj in Dl.

1.	 At the b-th (b = 1, …, B) permutation,
a.	 Randomly match response variables y yi inl1

, ,…  with 
predictors x xi inl1

, , .…
b.	 Calculate 1 ( )

ˆmin min , ,
ljl j m c R j c bp p p≤ ≤ ∈=  from the 

permuted data.
2.	 Approximate øl,α by the [αB]-th order statistic of 

p pB1, , .…

Permutation procedure for ζl,α

1.	 At the b-th (b = 1, …, B) permutation,
a.	 Randomly match response variablesy yi inl1

, ,…  with 
predictors x xi inl1

, , .…
b.	 Calculate Z Z zl j m c R j c blj

= ≤ ≤ ∈max max , ,( )1  from the 
permuted data.

2.	 Approximate ζl,α by the [(1 – α)B]-th order statistic of 
z zB1, , .…

Note that, while SSP requires permutations only once 
with the entire data, SDP requires a new set of permutations 
with the current data for each node. We repeat above pro-
cedure until all the terminal nodes have no more splits for 
a specified α level. Since Dl becomes smaller as partitioning 
continues, the critical values for SDP at subtrees will be less 
strict than those of SSP.

For node l, let ˆ
lζ  and ˆ

lφ  denote the maximum test statistic 
value and the corresponding significance level, respectively, 
with respect to all splitting variables and all possible cutoff 
values for each splitting variable in Dl. Then, a multiplicity-
adjusted P-value by SDP at this node is defined by

	 value ˆ ˆ- ( | ) ( | ).l l l l l lP P Z H P p Hζ φ= ≥ = ≤

The adjusted P-value can be obtained by approximating 
the null distribution of Zl  or pl  using above-mentioned per-
mutation method. Note that SDP for tree classification may 
give a smaller adjusted P-value for the split of a lower level 
node. This is one of the major differences between our SDP 
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and the SDP to control the family-wise error rate in multiple 
testing.21

Simulations
In this section, we investigate the performance of the proposed 
tree classification method using a survival outcome variable.

For each subject, we generate the splitting variables from 
a multivariate normal distribution and the survival time from 
a log-normal distribution. Under H0, we generate the data as 
follows. For ρ ∈ [0, 1) and independent and identically dis-
tributed N(0, 1) random numbers τi, εi0, εi1,..., εim, we set

	

log( )

.

T

x p p j m
i i

ij ij i

=

= − + ≤ ≤

τ

ε ε1 0  for 1

Note that the survival time T is not associated with any 
candidate predictors (x1, …, xm), which have a multivariate nor-
mal distribution with 0 means, unit variances, and a compound 
symmetric correlation matrix with a common coefficient ρ.  
A censoring time is generated from Uniform (0, c0) with c0 
chosen for 40% censoring. With c0 fixed at this value, a cen-
soring variable for 20% censoring is generated from Uniform  
(c1, c0  +  c1) by choosing a proper c1 value. We set α  =  0.05; 
m = 1000; sample size n = 50 or 100; ρ = 0, 0.3, or 0.6. Under 
each setting, we generate N = 1000 datasets and B = 1000 per-
mutations are conducted for each dataset. An empirical type I 
error rate is calculated by the proportion of simulation samples 
with at least one splitting node. From Table 1, we observe that 
our tree classification method controls the type I error reason-
ably well. Note that SSP and SDP have equal type I error rate.

For power analysis, we assume that the first D predic-
tors are prognostic (ie, associated with the survival outcome).  
For independent and identically distributed N(0, 1) random 
numbers τi0, τi, ei0, εi1, …, εim, we generate the survival time 
and the predictors by

	

log( )T

x
p p j D

p p

i i i

ij

ij i

ij i

= − +

=
− + ≤ ≤

− +

τ η τ η

ε ε τ

ε ε

1

1

1

0

0

0

+  for 1i0

  for +1D ≤ ≤






j m.

Note that the first D predictors are associated with survival 
time with corr (log , ) /T x j = +η η1  and the remaining m – D  

predictors are independent of survival time. The censoring 
time is generated from a uniform distribution as in the type I 
error checking. In order to measure the power of our tree clas-
sification method, we count the number of simulation samples 
among N = 1000 samples that pick up one or more prognostic 
predictors. We use the same simulations as above except that 
we set η = 0.3 or 0.6, and, for SDP, we perform B = 1000 using 
the current data of each node. The simulation results for SSP 
and SDP are shown in Tables 2 and 3, respectively.

The SDP method gives more splits yielding a larger 
tree than the SSP method in general. For both methods, the 
number of splits increases as n, D, and η increases or cen-
soring proportion decreases. We do not observe a monotone 
association between power and the dependency among pre-
dictors ρ.

Real Examples
The proposed method is applied to gene imprinting data20 and 
lung cancer data.19 The former have a binary outcome variable 
and the latter have a censored survival outcome variable to 
represent a wide range of genomic data.

Gene imprinting data. Imprinted genes are unusually 
predisposed to causing disease due to the silencing of expression 
of one of the two homologues at an imprinted locus, requiring 
only heterozygosity for a mutation affecting the active allele to 
cause complete loss of gene expression. It would be valuable to 
know which genes in the human genome undergo imprinting. 
Greally18 described the first characteristic sequence parameter 
that discriminates imprinted regions – a paucity of short inter-
spersed transposable elements (SINEs).

The genomic data collected to study imprinted genes were 
from the UCSC Genome Browser (http://genome.ucsc.edu/). 
Annotation data were downloaded for the human genome 
(hg16, July 2003 freeze). The data contain 131  samples and 
1446 predictors. Among the 131  samples, 43 are imprinted 
and 88 are non-imprinted (control) genes. The current dataset 
has been made available by Greally, and downloadable from 
http://www.ams.sunysb.edu/∼hahn/research/CERP/imprint.
txt. Before applying the methods, we removed the predictors 
that had identical values for more than 98% of the samples. 
For the gene imprinting data, 1248 out of 1446 predictors 
were selected using this criterion.

Both SSP and SDP yielded the same size of tree at 
the type I error level α of 0.05. The corresponding criti-
cal value is ζα = 12.27. Figure 1 displays the tree generated 
by SSP. The number in each circle or square is the sample 
size for the node. The first split occurred on Gene ALU.
DNSC550 (x0) at x0 = 269. The adjusted P-value for this split 
is 0.002 with the corresponding test statistic value of 16.07. 
These data are split into a node containing 79  samples with 
x0  ,269, and the other node containing 52 patients with 
gene x0 $269. Only one of the 52 genes is imprinted in the 
second group. The genes with x0 ,269 were further split on 
CR1.DNSS500 (x1) at x1 = 993. The adjusted P-value of this 

Table 1. Empirical type I error probability for nominal α = 5% with 
m = 1,000, B = 1,000, and N = 1,000.

n = 50 n = 100

Censoring r = 0 0.3 0.6 r = 0 0.3 0.6

20% 0.054 0.048 0.041 0.043 0.047 0.065

40% 0.058 0.054 0.038 0.042 0.047 0.052
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Table 3. Empirical power under m = 1,000, B = 1,000, and N = 1,000 
for SDP.

n = 50 n = 100

η D Censoring # splits r = 0 0.3 0.6 r = 0 0.3 0.6

0.3 5 20% 1 141 137 164 179 201 194

2 30 41 37 70 68 79

3 19 11 7 29 32 26

4 8 0 3 17 19 9

5 0 0 0 1 0 0

40% 1 46 67 49 61 73 74

2 8 15 18 17 23 17

3 10 9 17 11 9 19

4 7 0 4 9 6 10

15 20% 1 181 165 174 376 451 397

2 17 53 34 68 49 58

3 27 27 19 26 41 33

4 7 23 15 19 21 13

5 2 1 0 9 3 10

40% 1 89 111 66 148 199 182

2 13 23 19 26 43 39

3 4 11 14 33 40 29

4 1 7 0 3 12 18

5 0 0 0 1 0 3

0.6 5 20% 1 275 255 278 648 618 634

2 51 64 57 106 108 96

3 68 39 43 87 94 89

4 17 18 24 41 37 39

$5 12 17 13 35 26 41

40% 1 87 143 137 511 601 537

2 52 48 64 87 78 98

3 37 41 47 82 61 53

4 23 24 19 16 37 32

$5 0 0 0 14 27 29

15 20% 1 447 478 432 645 658 701

2 87 68 88 121 107 89

3 68 54 70 102 85 86

4 21 19 13 54 48 57

$5 3 9 7 48 45 45

40% 1 250 278 268 621 663 598

2 79 82 92 99 112 103

3 61 58 62 95 87 91

4 17 22 27 69 56 72

$5 9 18 11 59 46 56

 

Table 2. Empirical power under m = 1,000, B = 1,000, and N = 1,000 
for SSP.

n = 50 n = 100

η D Censoring # splits r = 0 0.3 0.6 r = 0 0.3 0.6

0.3 5 20% 1 200 147 243 321 287 298

40% 1 67 78 110 100 113 91

15 20% 1 225 276 213 531 492 590

40% 1 112 198 85 206 277 301

0.6 5 20% 1 412 416 395 918 893 913

2 0 0 0 7 3 4

3 0 0 0 1 0 1

40% 1 235 187 279 699 758 799

2 0 0 0 3 2 3

15 20% 1 614 678 599 982 922 968

2 0 0 0 6 6 6

3 0 0 0 0 2 5

40% 1 431 411 402 954 965 911

2 0 0 0 6 4 2

3 0 0 0 0 3 0

 

split is 0.036 with corresponding test statistic value of 13.86.  
In the tree generated by SDP at the same type I error level, the 
adjusted P-value for the second split is 0.001 with test statistic 
value of 13.86 and critical value ζα2 = 9.20.

It is difficult to find one measure for classification accu-
racy, because there are several splits in one tree and the classifi-
cation accuracies in nodes at different levels cannot be weighed 
equally. However, the trees obtained in this paper show that 
the classifications are quite accurate. For the gene imprinting 
data, one terminal node contains only one imprinted gene out 
of 52  genes, while the other two nodes dominantly contain 
imprinted genes.

Lung cancer data. Shedden et al.19 studied gene expression- 
based survival prediction in lung adenocarcinoma. The data 
from this multisite study contain survival information for 445 
lung cancer patients with expression of 20,000 genes. Since 
the analysis of these high-dimensional data by our method is 
heavily computer intensive, we selected 1,000 genes using the 
ratio of the between-group to within group sums of squares 
(BW) ratio22 before applying the method. A predictor variable 
containing the indicator of the centers is added to the 1,000 
covariates.

Figure 2 shows the tree obtained using SSP. The type I  
error level α was chosen to be 0.2, and the corresponding 
critical value ζa was 24.5. The first split occurred on Gene 
201303–at at 1620. The adjusted P-value for the split was 
.0.0001 with corresponding test statistic value of 39.5. The 
left child node was split on Gene 215882_at at 10.5 (adjusted 
P-value of 0.086 and test statistic value of 25.3), and the right 
child node was split on Gene 219323_s_at at 192.8 (adjusted 
P-value of 0.191 and test statistic value of 24.5). The median 

survival time varies a lot among the four terminal nodes. The 
median survival time of the first terminal node is more than 
quadruple the fourth terminal node. Figure 3 compares the 
Kaplan–Meier survival curves of the four groups. The groups 
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are numbered from the left node to the right. The critical  
values are 27.1 for a 0.05  significance level and 25.2 for a 
0.1 significance level. The tree will have only one split at the 
0.05 type I error level and two splits (one more at the left child 
node of the root) at the 0.1 type I error level.

As shown in Figure 4, the SDP approach at the type I 
error level of 0.05 gave two more splits to the tree generated by 
SSP. Regarding the splits at the children nodes of the root, the 
adjusted P-value for the split at the left child node is 0.009 (test 
statistic value 25.3, critical value 23.7) and the adjusted P-value 
for the split at the right child node is 0.013 (test statistic value 
24.5, critical value 20.6). Among the terminal nodes in the 
third level of the tree in Figure 2, the second node from left 

is further split on Gene 207307_at at 7.35 (adjusted P-value, 
0.005; test statistic value, 18.5; critical value, 16.8), and the 
fourth node from left is split on Gene 201509_at at 244.6 
(adjusted P-value, 0.01; test statistic value, 18.3; critical value, 
17.6). The median survival time of the left child node is more 
than double that of the right child node in each of these splits.

For lung cancer data, the type I error level was chosen to 
be 0.2 in order to provide more information on classification 
using SSP. Because the P-value for the first split was .0.0001, 
we can find the classification tree with two terminal nodes 
when we use the significance level of 0.05 from Figure 2. This 
figure provides more information than using the 0.05 level. 
Because SDP adjusts the significance level at lower levels of 
the tree, we were able to get a large tree with the initial sig-
nificance level of 0.05.

Discussion
We have proposed a method to control the type I error rate 
for tree classification by adopting the multiple testing concept. 
Our method allows us to avoid overfitting issues in tree clas-
sification when there are a large number of candidate predic-
tors as in a prediction problem based on microarray data. Also 
proposed are two procedures, called SSP and SDP, to control 
the type I error rate using permutation method. Through sim-
ulations, we observe that both procedures control the type I  
error rate well. While SDP requires more computing time 
than SSP, the former tends to generate a larger tree than the 
latter when there exist prognostic predictors. To reduce the 
computing time, we may use SSP to construct a tree and then 
apply SDP to the terminal nodes derived from SDP.

Although SDP requires more computing time than SSP, 
SDP is preferred because it might provide more informative 
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Figure 1. Classification tree for the gene imprinting data generated by 
SSP with α = 0.05.
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Figure 2. Classification tree for the lung cancer data generated by SSP with α = 0.2. The median survival time is in months.
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Figure 4. Classification tree for the lung cancer data generated by SDP with α = 0.2. The median survival time is in months.
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Figure 3. Kaplan–Meier survival curves for the samples in the terminal 
nodes of the tree in Figure 2 for the lung cancer data.

results and the computing power keeps improving. The type I  
error level was preassigned in this paper. To determine the 
type I error probability, we may search an optimal type I error 
probability in cross-validation at the training phase.

Matlab was used for the simulation and real data analy-
sis. In the simulation, the computing time for generating a 
tree was approximately 20 seconds if there was no split. For 

trees with several splits, it took 45 seconds to 1 minute. For the 
gene imprinting data, it took approximately 9 hours to generate  
the tree by SSP on a Windows Vista 2.0 GHz machine. It will 
be much more efficient if SAS, R, or C is used. Using parallel 
computing might be practical for users.

We present an analysis of computing time under general 
settings. Assume n is the number of patients, m is the number 
of genes, and B is the number of permutations. Then, the run-
ning time of the log-rank statistic is O(n3m), and the running 
time of the critical value is O(n3mB). Here, we assume that the 
time spent for permutation for an array is constant. However, 
it is associated with n.

Once we find a splitting node, the n patients are split 
into two groups with sample sizes of n1 and n2 (n1 + n2 = n). 
We repeat the above process. Then, the running time of SSP 
is O(n3mB) + L⋅O(n3m) = O(n3mB). Here, L is the number of 
splits, which is negligible compared to B. The maximum pos-
sible value of L is log(n), which is the depth of a binary tree 
of n objects. The running time of SDP is L⋅O(n3mB)  +  L⋅O 
(n3m) = O(Ln3mB). Hence, the SDP approach is sensitive to 
the size of the tree.
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