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Abstract: Bone pathologies such as osteoporosis (OTP) and osteoarthritis (OA) are rising in incidence
with the worldwide rise in life expectancy. The diagnosis is usually obtained using imaging techniques
such as densitometry, but with both being multifactorial diseases, several molecular mechanisms
remain to be understood. Metabolomics offers the potential to detect global changes which can lead
to the identification of biomarkers and a better insight in the progress of the diseases. Our aim was to
compare the metabolic profiles of a cohort of 100 postmenopausal women, including subcapital hip
fragility fracture patients, women with severe OA of the hip that required the implantation of a hip
prosthesis and controls, to find altered metabolites and networks. Nuclear magnetic resonance (NMR)
spectroscopy was used to obtain the metabolomic profiles of peripheral blood derived serum, and
statistical analysis was performed using MATLAB V.6.5. 30 of the 73 metabolites analysed showed
statistically significant differences in a 3-way ANOVA, and 11 of them were present in the comparison
between OA and controls after adjustment by covariates, including amino acids, energy metabolism
metabolites and phospholipid precursors. PLS-DA analysis shows a good discrimination between
controls and fracture subjects with OA patients, and ROC curve analysis demonstrates that control
and fracture subjects were accurately discriminated using the metabolome, but not OA. These results
point to OA as an intermediate metabolic state between controls and fracture, and suggest that some
metabolic shifts that happen after a fracture are also present at weaker intensity in the OA process.

Keywords: osteoarthritis; osteoporotic fracture; metabolomic analysis; postmenopausal women

1. Introduction

Osteoarthritis (OA) and osteoporosis (OTP) are two of the most prevalent muscu-
loskeletal diseases in the elderly in western populations, both causing serious medical and
socioeconomic consequences. These diseases, whose sequelae range from pain and defor-
mity to fractures, dramatically affect patient functional status, and with the increase in life
expectancy, they are predicted to become predominant causes of disability worldwide [1].

OA and OTP are multifactorial pathologies and their onset is influenced by genetic
and environmental factors, and their interactions [2]. Both share common risk factors, such

Metabolites 2022, 12, 677. https://doi.org/10.3390/metabo12080677 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12080677
https://doi.org/10.3390/metabo12080677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0001-6812-653X
https://orcid.org/0000-0003-1852-8439
https://orcid.org/0000-0002-4404-6735
https://orcid.org/0000-0001-8046-0303
https://orcid.org/0000-0002-4803-1573
https://orcid.org/0000-0002-0626-7502
https://doi.org/10.3390/metabo12080677
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12080677?type=check_update&version=2


Metabolites 2022, 12, 677 2 of 11

as age, sex, or inflammatory states. However, there are certain risk factors which differ
between the two of them, such as bone mass index (BMI), bone mineral density (BMD) and
mechanical load [3].

The main causes for the development of OTP are aging and the estrogenic depletion
that occurs during menopause [4]. These processes cause the loss of bone mass and the
deterioration of the microarchitecture of bone tissue, which causes decay in bone quality [4].
This leads to an increase in the risk of fragility fractures, which is a factor of the first
magnitude in morbidity and mortality [5]. Effectively, at age 50, the percentage of women
with OTP in the European Union (EU) who will suffer a fracture of the hip, spine, forearm,
or proximal humerus in the next 10 years is approximately 45% [6]. Importantly, among
the main types of fracture, hip fracture is undoubtedly the most disabling and with worse
prognosis fracture because it is associated with high rates of morbidity and mortality [7].

The hallmark of OA is the alteration of cartilage, though this concept has changed, and
OA is now considered a disease of the whole joint. Effectively, OA is a progressive disorder
characterized by cartilage degradation, osteophyte formation, joint space narrowing, and
subchondral sclerosis [8]. However, OA is a heterogeneous disease with respect to age
of onset, number of affected joints, systemic or local risk factors, bone implication and
inflammation. In fact, with respect to bone implication, three types of OA can be described:
osteoporotic, bone-forming, and erosive [3]. The risk factors for OA include age, female sex,
adiposity, joint biomechanics, repetitive joint use, and genetic factors, with the prevalence
in north American and European adults above 65 years old being 60%, 33% and 5% for OA
hands, knee and hip, respectively [8].

There is currently great interest in identifying biomarkers that can inform about the
pathogenesis of an illness. A biomarker represents a quantifiable characteristic of a normal
or pathologic biological process and can help identify the early stages, progress, and
response to treatment in a disease [9]. The most common biomarkers studied to this date
include cytokines, miRNAs and, of course, metabolites [10].

Metabolomics, which represents the global profiling of metabolites in biological flu-
ids, cells, and tissues, has the potential to discover new biomarkers for diseases [11].
Metabolomics can be used to capture the global changes in networks and altered biochemi-
cal pathways due to a pathological process, even in early stages of the disease, which can
lead to the identification of biomarkers for the process. Nuclear magnetic resonance (NMR)
spectroscopy is one of the technological options to analyse the metabolic profile. In recent
years, various studies have performed a metabolomic approach using NMR to identify
discriminatory metabolic profiles for a vast number of diseases, including OTP [12] and
OA [13].

In the present study we have used NMR to analyse serum metabolites in women with
severe hip OA and fragility hip fracture, both requiring prosthetic hip placement, and
control postmenopausal women. Our aim in comparing the metabolic profiles of women
with and without OA with those of fracture patients was the identification of common
and distinctive metabolic profiles which can inform about metabolic networks altered in
these conditions.

2. Results
2.1. General Characteristics of the Population

The study participants’ anthropometric and bone characteristics are shown in Table 1.
Women in the OA and Frac groups were significantly older than those in the Ctrl

group, and women in the Frac group were also significantly older than women in the OA
group. The three groups did not show significant differences in BMI (p = 0.957). As can be
expected, there were major differences between groups in femoral neck bone parameters,
with women in the Frac group showing significantly worse bone parameters than those in
Ctrl and OA groups. Although not significant, the OA group shows a clear trend towards
higher BMD with respect to the Ctrl group, with p = 0.095 for FN-BMD, p = 0.053 for FN
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T-score and p = 0.1 for FN Z-score. No significant differences between groups were found
for LS-BMD related parameters.

Table 1. Anthropometric and bone characteristics of the women in the study cohort.

Subject
Characteristics Control (N = 53) Osteoarthritis (N = 23) Fracture (N = 27) ANOVA

p-Value

Age (years) 70.02 ± 7.13 76.00 ± 9.49 (a) 83.22 ± 7.73 (b, c) <0.000
Weight (Kg) 69.50 ± 11.51 69.50 ± 15.13 68.62 ± 11.77 0.955
Height (cm) 157.67 ± 6.47 158.35 ± 6.25 157.00 ± 4.92 0.795

BMI (kg/m2) 28.04 ± 4.83 27.66 ± 5.53 27.81 ± 4.42 0.957
FN-BMD (g/cm2) 0.79 ± 0.16 0.87 ± 0.12 0.62 ± 0.11 (b, d) <0.000

FN T-score −1.10 ± 1.43 −0.22 ± 1.11 −2.50 ± 0.97 (b, d) <0.000
FN Z-score 0.23 ± 1.43 0.99 ± 1.15 −0.80 ± 0.71 (b, d) <0.000

LS-BMD (g/cm2) 1.01 ± 0.16 1.05 ± 0.18 0.95 ± 0.20 0.226
LS T-score −1.15 ± 1.44 −0.78 ± 1.56 −1.66 ± 1.70 0.240
LS Z-score 0.45 ± 1.58 0.75 ± 1.59 0.41 ± 1.70 0.803

BMI: body mass index, BMD: bone mineral density, FN: femoral neck, LS: lumbar spine. (a): p < 0.01 vs. control,
(b): p < 0.000 vs. control, (c): p < 0.01 vs. osteoarthritis, (d): p < 0.000 vs. osteoarthritis.

Table 2 displays the biochemical characteristics of the cohort. There were statistically
significant differences between groups for cholesterol, HDL and LDL, with OA and Frac
showing lower values than Ctrl in all three parameters. Regarding bone metabolism
parameters, all of them showed significant differences between groups, with Total ALP and
25(OH)D3 being decreased in OA and Frac with respect to Ctrl; and CTx being elevated in
OA and Frac with respect to control. CTx is the only biochemical marker in which we were
able to find significant differences between OA and Frac, with the Frac group presenting
higher levels.

Table 2. Biochemical characteristics of the study cohort.

Metabolites Control (N = 53) Osteoarthritis (N = 23) Fracture (N = 27) ANOVA
p-Value

CTx (ng/mL) 0.347 ± 0.147 0.457 ± 0.156 (a) 0.709 ± 0.306 (b, c) <0.000
Total ALP (U/L) 88.4 ± 32.3 145.0 ± 81.1 (a) 176.8 ± 96.4 (b) <0.000

25(OH)D3 (ng/mL) 35.3 ± 52.4 15.2 ± 9.1 14.8 ± 14.0 0.043
Cholesterol (mg/dL) 205.4 ± 32.8 158.4 ± 38.8 (b) 141.9 ± 36.1 (b) <0.000

Triglycerides (mg/dL) 105.1 ± 43.5 113.8 ± 43.3 115.2 ± 48.9 0.585
HDL (mg/dL) 62.8 ± 14.6 47.3 ± 13.9 (b) 39.6 ± 9.1 (b) <0.000
LDL (mg/dL) 124.8 ± 30.5 97.0 ± 25.1 (a) 88.8 ± 27.8 (b) <0.000

Glucose (mg/dL) 112.4 ± 31.4 109.3 ± 27.6 127.4 ± 30.4 0.100

CTx: carboxy-terminal telopeptides of collagen I, ALP: alkaline phosphatase, 25(OH)D3: 25-hydroxycholecalciferol.
(a): p < 0.05 vs. control, (b): p < 0.000 vs. control, (c): p < 0.01 vs. osteoarthritis.

2.2. Metabolic Profiles

We quantified 73 metabolic spectral features in blood plasma samples from 53 control
subjects, 23 osteoarthritic subjects and 27 subjects after fracture. Thirty of these metabolites
show statistically significant differences in a three-way ANOVA (Table 3).
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Table 3. Mean value and standard deviation (SD) for metabolic relative abundance spectral features
z-scores and p-values for non-adjusted (No Adj.) and age, BMI and BMD adjusted (Adj.) comparison
between controls, osteoarthritic patients (OA) and fracture patients (FA).

- Metabolites-
Control OA FA 3 Way Control vs. OA FA vs. OA Control vs. FA

(N = 53) (N = 23) (N = 27) p-Value p-Value p-Value p-Value

Amino acids

Mean ± SD Mean ± SD Mean ± SD No
Adj. Adj. No

Adj. Adj. No
Adj. Adj No

Adj. Adj.

Isoleucine 0.278 ± 0.90 −0.032 ± 0.91 −0.518 ± 1.08 0.003 0.087 0.174 0.164 0.096 0.639 0.001 0.105

Alanine 0.367 ± 0.86 −0.009 ± 0.95 −0.713 ± 0.92 0.000 0.000 0.096 0.020 0.011 0.743 0.000 0.000

Leucine 0.295 ± 0.93 0.039 ± 0.98 −0.613 ± 0.90 0.000 0.001 0.280 0.062 0.018 0.594 0.000 0.000

Glutamate 0.172 ± 1.05 0.101 ± 0.93 −0.423 ± 0.86 0.035 0.045 0.783 0.443 0.043 0.716 0.013 0.012

Glutamine 0.195 ± 1.03 0.080 ± 0.99 −0.450 ± 0.82 0.021 0.018 0.652 0.306 0.044 0.782 0.006 0.005

Aspartate 0.126 ± 1.02 0.027 ± 0.98 −0.270 ± 0.96 0.246 0.360 0.698 0.419 0.284 0.289 0.099 0.129

Glycine 0.241 ± 0.86 −0.179 ± 1.23 −0.320 ± 0.94 0.036 0.049 0.093 0.047 0.650 0.403 0.009 0.073

Threonine 0.387 ± 0.83 0.003 ± 1.08 −0.761 ± 0.80 0.000 0.000 0.097 0.057 0.006 0.838 0.000 0.000

Valine 0.302 ± 0.87 −0.064 ± 0.94 −0.539 ± 1.08 0.001 0.042 0.104 0.081 0.107 0.648 0.000 0.067

Total creatine −0.319 ± 0.80 0.124 ± 1.23 0.522 ± 0.92 0.001 0.026 0.066 0.054 0.198 0.543 0.000 0.023

Phenylalanine 0.266 ± 0.68 0.229 ± 1.50 −0.717 ± 0.60 0.000 0.000 0.883 0.015 0.004 0.694 0.000 0.000

Tyrosine 0.433 ± 0.85 −0.043 ± 0.97 −0.813 ± 0.78 0.000 0.000 0.035 0.030 0.003 0.807 0.000 0.000

Cholesterol
and

lipoproteins

Cholesterol 0.208 ± 1.09 −0.034 ± 0.90 −0.380 ± 0.80 0.043 0.549 0.352 0.507 0.156 0.981 0.015 0.557

HDL apolipopr 0.410 ± 0.87 −0.023 ± 0.99 −0.786 ± 0.77 0.000 0.001 0.060 0.057 0.004 0.780 0.000 0.001

Fatty acids

FA -CH3 0.255 ± 1.04 −0.043 ± 0.86 −0.464 ± 0.87 0.008 0.336 0.234 0.417 0.093 0.877 0.003 0.360

FA BCH2 0.291 ± 0.90 −0.026 ± 0.97 −0.548 ± 1.01 0.001 0.014 0.173 0.082 0.070 0.672 0.000 0.012

FA
=CH-CH2-CH2- 0.341 ± 0.93 −0.126 ± 0.94 −0.562 ± 0.93 0.000 0.022 0.048 0.066 0.108 0.597 0.000 0.038

FA a-CH2 0.183 ± 0.96 −0.061 ± 0.98 −0.308 ± 1.04 0.108 0.142 0.316 0.189 0.394 0.504 0.039 0.087

FA-CH = CH 0.180 ± 0.98 −0.159 ± 1.02 −0.218 ± 0.99 0.168 0.735 0.176 0.421 0.836 0.153 0.092 0.890

Valerate 0.218 ± 0.99 −0.035 ± 0.99 −0.399 ± 0.94 0.031 0.031 0.308 0.149 0.189 0.804 0.009 0.015

Energy
metabolism—

glycolisis

Glucose 0.188 ± 0.88 0.198 ± 1.32 −0.537 ± 0.70 0.004 0.128 0.969 0.515 0.015 0.861 0.000 0.107

Lactate 0.314 ± 0.81 −0.082 ± 1.10 −0.546 ± 1.04 0.001 0.022 0.084 0.043 0.132 0.483 0.000 0.019

2-
phosphoglycerate −0.224 ± 0.61 −0.222 ± 1.26 0.628 ± 1.14 0.000 0.015 0.995 0.339 0.015 0.414 0.000 0.001

Energy
metabolism—

ketone
bodies

3-
hydroxybutyrate 0.253 ± 1.07 −0.109 ± 0.84 −0.403 ± 0.85 0.016 0.430 0.155 0.289 0.226 0.638 0.007 0.623

Acetate 0.409 ± 0.86 −0.050 ± 0.95 −0.760 ± 0.87 0.000 0.000 0.041 0.021 0.008 0.924 0.000 0.000

Fluid balance Creatinine 0.336 ± 0.88 −0.007 ± 1.09 −0.654 ± 0.84 0.000 0.004 0.151 0.105 0.022 0.701 0.000 0.002

Inflammation Glycoprotein A 0.091 ± 0.86 −0.072 ± 1.06 −0.117 ± 1.21 0.634 0.783 0.480 0.458 0.892 0.196 0.378 0.975

Bacterial co-
metabolism

4-
hydroxybutyrate 0.325 ± 0.92 0.020 ± 0.95 −0.655 ± 0.90 0.000 0.001 0.192 0.064 0.013 0.690 0.000 0.000

2-aminobutyrate 0.354 ± 0.89 −0.009 ± 0.97 −0.687 ± 0.90 0.000 0.000 0.116 0.031 0.014 0.980 0.000 0.000

4-aminobutyrate 0.406 ± 0.74 0.070 ± 1.05 −0.856 ± 0.89 0.000 0.000 0.116 0.008 0.001 0.494 0.000 0.000

2-oxobutyrate 0.313 ± 0.93 −0.040 ± 0.92 −0.580 ± 0.97 0.001 0.071 0.131 0.148 0.050 0.751 0.000 0.105

N(CH3)3 0.375 ± 0.93 −0.089 ± 1.00 −0.659 ± 0.78 0.000 0.001 0.054 0.015 0.029 0.717 0.000 0.010

Dimethylamine 0.056 ± 0.35 0.345 ± 1.97 −0.404 ± 0.32 0.024 0.000 0.302 0.049 0.058 0.622 0.000 0.000

Phospholipids
precursors

Phosphocholine 0.275 ± 0.52 0.223 ± 1.63 −0.730 ± 0.61 0.000 0.000 0.834 0.002 0.007 0.572 0.000 0.000

Choline 0.107 ± 0.76 −0.029 ± 1.26 −0.186 ± 1.17 0.462 0.634 0.562 0.733 0.650 0.895 0.179 0.265

Unknowns

U1 0.212 ± 0.93 0.223 ± 1.09 −0.606 ± 0.82 0.001 0.002 0.965 0.959 0.004 0.252 0.000 0.000

U2 −0.203 ± 0.36 0.342 ± 1.96 0.107 ± 0.47 0.074 0.156 0.053 0.043 0.549 0.849 0.002 0.316

U3 −0.091 ± 0.13 0.329 ± 2.10 −0.102 ± 0.20 0.203 0.484 0.148 0.254 0.293 0.929 0.752 0.653

U4 −0.413 ± 0.55 0.081 ± 1.03 0.742 ± 1.22 0.000 0.000 0.008 0.000 0.046 0.907 0.000 0.000

U5 −0.184 ± 0.85 0.067 ± 0.99 0.303 ± 1.22 0.112 0.118 0.264 0.094 0.461 0.384 0.041 0.161

Many of these differences were not present when the data was adjusted for age. BMI
and BMD suggesting, as previously reported, an important influence of these factors
in the plasma metabolome. Only 11 of these significant differences were present in the
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adjusted comparison between OA and controls. Differences included amino acids; energy
metabolism metabolites; some bacterial co-metabolism metabolites such as methylamines,
acetate and butyrate derivatives; and phospholipids precursors. Tyrosine appears as the
metabolite with strongest associations both in OA group and Frac group. The scores plot of
the PLS-DA analysis (Figure 1A) of all the samples in this model show a good discrimination
between controls and fracture subjects with OA patients in a transition region overlapping
with both groups. Twenty out of the 30 significant metabolites also show a PLS-DA VIP
score higher than 1 (Figure 1B). The Receiver-operating curve analysis for the classification
of each individual group based on our metabolome PLS-DA model (Figure 1C) shows that
control (AUC = 0.88) and fracture subjects (AUC = 0.96) were accurately discriminated
using the metabolome both in training and cross-validation. However, the model did not
show any value in discriminating OA patients in this context (AUC = 0.57) due to the high
overlapping with the other two groups.
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Figure 1. (A) Scores plot of the PLS-DA analysis of the metabolome, adjusted by age, BMI and BMD
for the discrimination between Ctrl group (red circles), OA (green squares) and Frac (blue triangles).
(B) Metabolites with PLS-DA VIP score higher than 1 for the same PLS-DA model of the metabolome.
a: OA vs. Ctrl group; b: Frac vs. Ctrl group; c: Frac vs. OA group. (C) Receiver-operating curve
(ROC) analysis for the classification of each individual group (from top to bottom; Ctrl group, OA
group and Frac group based on our PLS-DA model.

3. Discussion

The identification and management of OA remains a clinical challenge. Diagnosis is
usually achieved by imaging techniques after the apparition of symptoms such as pain and
stiffness; and current treatments, whether they are oral or intraarticular, aim to reduce these
symptoms and preserve joint function [14]. However, correlation between the symptoms
and the pathological severity of OA is low, so better mechanistic knowledge is currently
needed [15]. Our study aimed to explore the metabolomic profiles in women with and
without OA and compare them with fracture patients to identify common patterns and
better risk biomarkers for these conditions, mainly in OA. In this work we have studied
a cohort of postmenopausal women including healthy subcapital hip fragility fracture
patients and women with severe OA of the hip that required the implantation of a hip
prosthesis, without other comorbidities. Serum samples from all of them were analysed
with NMR to obtain the metabolic profile. To analyse discrimination among groups, PLS-
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DA and ROC curve analysis were performed, and MSEA analysis was performed to identify
significant changes in metabolic networks.

Although previous studies have explored metabolomic profiles of OA [16], this is
the first time that multivariate PLS-DA models adjusted for confounders, namely age,
BMI and BMD have been used to detect associations and reduce false positive discoveries.
Our multivariate PLS-DA models adjusted for age, BMI and BMD revealed that although
differentiation between OA and controls seems difficult and is not possible with just
metabolomics, OA represents a middle state between controls and fracture. Although the
interpretation of these results is far from simple, the scores plot suggests that some of the
metabolic shifts that happen after a fracture are also present at weaker intensity in the
OA process. Moreover, twenty metabolites show statistical association with OA and/or
fracture and had high contribution (VIP greater than 1) to the discrimination models.

The metabolites identified as relevant in this study cover a wide spectrum of com-
pounds in the organism. In general, it is well-known that metabolic homeostasis and
regulation worsens with age [17]. Loss of muscle to fat mass ratio contributes to this dysreg-
ulation and explains some of the metabolic consequences of age [18]. We observed that OA
further decreases total creatine in blood, typically associated to muscle catabolism. Creatine
plays an important role in muscle contraction by transferring of phosphoryl groups to
regenerate ATP through a reversible reaction catalyzed by phosphocreatine kinase. The
increase in blood lactate observed in OA in our study further supports a loss of muscle
metabolic function in our patients. Glycine and serine metabolism is the most significant
metabolic core associated to these three groups in our metabolite set enrichment analysis.
Glycine is a major component of collagen, which in turn is a major component of cartilage
and joints. Tyrosine and phenylalanine are among the metabolites associated to OA and
with high contribution to the models. These aromatic metabolites are major precursors of
some catecholamines, and their changes may be related to stressful situations. In addition,
phenylalanine has been reported in many studies as a marker of metabolic health [19].
The metabolite set enrichment analysis of our metabolites with PLS-DA scores higher
than 1 and p-values < 0.05 (Figure 2) also show a predominant role of phenylalanine and
tyrosine metabolism in the impact of OA. Some studies demonstrated local production
of catecholamines in OA patients for reducing inflammation [20]. Our findings suggest
that this local synthesis mobilize catecholamines precursors in blood. Overall, these results
represent novel metabolomic findings associated to well-known pathophysiological events
in the onset and progression of OA.

Leucine and valine are branched chain amino acids (BCAA) typically associated
with metabolic diseases e.g., type 2 diabetes or obesity [21], and are altered in our OA
patients both at individual level and at metabolite set enrichment level. BCAA have already
been suggested as potential biomarkers for OA [22]. Although people who have type
2 diabetes have an increased risk of OA, this association has been traditionally attributed
to underlying shared risk factors such as age and obesity (mainly to obesity—a risk factor
for type 2 diabetes) rather than to the diabetes itself. However, recent studies suggest that
not only the increased inflammation state associated with diabetes mellitus can escalate
the breakdown of joint tissues; but also lipid metabolism and glycemia alterations directly
impact on cartilage health and subchondral bone [23] accelerating the progression of the
disease and worsening the reported pain. The accumulation of advanced glycation end
products seems to have an effect on the mechanical structure of tendons, inhibiting the
differentiation and promoting the apoptosis of tendon-derived stem cells and interfering
with the type I collagen organization in the extracellular matrix [24]. Our findings on leucine
and valine combined with the results in other metabolites related to glucose metabolism,
even when adjusted for BMD, BMI, and age, further support a potential role of type
2 diabetes on OA beyond obesity and age. The differences observed in total lipids and
cholesterol in the OA group also back a role of metabolic disease in the development of OA
and open new hypotheses to explore in the management and early detection of bone and
cartilage related health problems.
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Figure 2. The metabolite set enrichment analysis of our metabolites with PLS-DA scores higher than
1 and p-values < 0.05 after the analysis with MetaboAnalyst. Metabolic pathways whose name is
indicated are significant (p-value lower than 0.05 after the adjustment using Holm-Bonferroni method
and False Discovery Rate) and have a pathway impact value calculated from pathway topology
analysis over 0. The pathways are represented as circles. The circle color indicates the significance
level from highest (red) to lowest (white) in the enrichment analysis. The circle size is proportional to
the impact value of each road from the topology analysis.

The gut microbe ecosystem modulates and shapes many metabolic, immunological,
structural, and neurological functions [25]. Alterations in gut microbiota and the host-
microbiota co-metabolism are involved in the initiation and progression of inflammation-
driven diseases [26]. Our results show alterations and relevant roles of many of these
host-microbiota co-metabolism in the context of OA. Butyrates derivatives e.g., 2- and 4-
aminobutyrates and 2-oxobutyrate are co-metabolites that are initially produced in the gut
in the form of short chain fatty acids (acetate, Propionate, and butyrate) and are further
processed by human cells. Phosphocholine is also a metabolite that partially comes from the
processing in the gut of dietary carnitine into trimethylamines and cholines. The metabolite
set enrichment analysis also shows threonine and 2-oxobutyrate degradation, closely
related to bacterial co-metabolism, as the second most significantly affected metabolic
core (Figure 2). The identification of changes in these co-metabolites in OA suggests an
important role of alterations in gut microbiota and its pro-inflammatory effects in the onset
and progression of OA.

This study presents some limitations. All the cohorts are comprised of Caucasian
women, so the data obtained may not be fully extrapolated to men or other populations.
The difficulty of obtaining subjects has caused the sample size to be modest and the groups
to have different number of subjects, and we lack data on other co-variables such as the
dietary habits, diabetic status, or physical activity of the participating women. Also, there
are significant age differences among groups, which is why it was selected as a covariate
for the adjustment. Finally, with this being a case-control study, all the results presented
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here are statistical associations and further study will be necessary to determine whether
these associations are causal.

As a conclusion, in this article we present an analysis of the main altered circulating
metabolites in healthy, OTP and OA patients, which point to OA as an intermediate state
between control and fracture; an interpretation that opens paths for further study. Our
findings also back up the current studies linking type 2 diabetes as a trigger for OA, proving
the utility of metabolomics in the investigation of the underlying etiology of the disease.

4. Experimental Design
4.1. Study Subjects

All participating subjects were postmenopausal Caucasian women living in Valencia,
Spain, recruited from the Hospital Clínico Universitario. The patients were consecutively
enrolled in the cohort as Fracture Group (Frac Group), OA Group and Control Group
(Ctrl Group).

The subjects included in the Frac group were 27 women with subcapital hip fragility
fracture. 23 women with severe OA of the hip that required the implantation of a hip
prosthesis were included in the OA group. The Ctrl group was comprised of 53 women
without bone pathologies. Exclusion criteria in this study were: (i) having a history of
bone disease other than primary OTP or OA. (ii) hip fracture due to high-energy trauma
(iii) chemotherapy before densitometric study (iv) previous use of any medication known
to alter bone metabolism, such as corticosteroid treatment, and (v) being under 50 years
of age.

The study was approved by Clinical Research Ethics Committee of our institution,
and the participants read and signed an informed consent according to the guidelines of
the Institute of Health Research; INCLIVA.

4.2. Anthropometric, Biochemical and Bone Density Measurements

Blood samples under fasting conditions were collected from all participants to obtain
serum, which was stored at −80 ◦C until used.

The levels of carboxy-terminal telopeptides of type I collagen (CTx) and 25-Hydroxy-
cholecalciferol (25(OH)D3) were measured by electrochemiluminescence (E170 Modular
Analyzer, Roche Diagnostics, Mannheim. Germany). Levels of total alkaline phosphatase
(ALP), glucose, HDL, LDL, cholesterol, and triglycerides were determined by routine
methods using an autoanalyzer (Olympus 5400. Tokyo. Japan).

Bone mineral density (BMD) quantification was performed in both the lumbar spine
(L2-L4, LS-BMD) and at the non-dominant proximal end of the femoral neck (FN-BMD),
except if this were the site of fracture, using dual energy X-ray absorptiometry (DXA) with
a Lunar DPX densitometer (GE Lunar Corporation. Madison, WI, USA), a Norland XR-36
(Norland Medical Systems Inc; Fort Atkinson, WI, USA), or Hologic (Hologic Explorer.
Marlborough, MA, USA) densitometers. Standardized BMD (sBMD) was calculated for
comparison between subjects [27].

The BMI was calculated for each participant as weight (kg) divided by height squared (m2).

4.3. NMR Metabolomics

A single pulse presaturation experiment was acquired in all samples. The number of
transients was 256 collected into 65 k data points for all experiments. Spectral chemical
shift referencing on the alanine CH3 doublet signal at 1.475 ppm was performed in all
spectra. Spectra were processed using MestReNova 8.1 (Mestrelab Research S.L., Santiago
de Compostela, Spain) and transferred to MATLAB (MathWorks. 2012) using in-house
scripts for data analysis.

The chemical shift region including resonances 0.50–4.70 ppm (the aliphatic region)
and 5.20–10.00 ppm (the aromatic region) was investigated. Metabolite spin systems
and resonances were identified by literature data and Chenomx resonances database
(Chenomx NMR 7.6). Spectra were normalized to total aliphatic spectral area, with lipid
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excluded to eliminate differences in metabolite total concentration. NMR peaks were
integrated and quantified using semi-automated in-house MATLAB peak-fitting routines.
Final metabolite relative spectral abundance was calculated in arbitrary units as peak area
normalized to total spectral area. Chemometrics analysis were performed with PLS ToolBox
8.0 (Eigenvector Inc., Wenatchee, WA, USA) in MATLAB. Finally, each metabolic feature
was normalized to the standard deviation in all the samples to obtain z-scores.

To maximize the separation between samples and to identify discriminant patterns,
partial least-squares discriminant analysis (PLS-DA) was applied. We adjusted the analysis
for age, BMI and BMD by calculating a linear regression model with these 3 variables for
each metabolic feature and using the residues for the PLS-DA analysis. A permutation test
was performed to check overfitting of the PLS-DA models. The multivariate chemometric
models were cross-validated with 10-fold Venetian blind cross-validation. In each run,
10% of data were left out of the training and used to test the model. Spectral regions with
high variable importance in projections (VIP) coefficients obtained during PLS-DA are
more important in providing class separation during analysis, while those with very small
VIP coefficients provide little contribution to classification. A Metabolite Set Enrichment
Analysis (MSEA) over metabolites with VIPs scores higher than 1 and p-values below
0.05 was performed with MetaboAnalyst, and both the Small Molecule Pathway Database
(SMPDB) and the blood samples disease database. MSEA is conceptually similar to Gene
Set Enrichment Analysis and uses a collection of predefined metabolites sets to rank the
lists of metabolites obtained from metabolomics studies. By using this prior knowledge
about metabolite sets, we could identify significant and coordinated changes in metabolic
networks and obtain biological insight.

4.4. Statistical Analysis

Fixed-effects analysis of variance (ANOVA) designs was used to compare means
between groups. Analysis of covariance (ANCOVA) was used to examine differences in
the dependent variables (metabolites) among groups after adjustment for confounding
variables. Age, BMI and BMD were considered as covariates. Levene’s test was used to
assess the homogeneity of variances for each dependent variable across all level combina-
tions of the between-subject factors. Bonferroni’s test (when the variances were assumed to
be equal) and Dunnett’s T3-test (when the variances were assumed to be unequal) were
applied to perform post-hoc pairwise multiple comparisons between groups. Data was
analysed using IBM SPSS statistics for Windows (v.26.0; IBM Corp., Armonk, NY, USA).
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