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Functions of p53 in pluripotent stem cells
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ABSTRACT

Pluripotent stem cells (PSCs) are capable of unlimited
self-renewal in culture and differentiation into all func-
tional cell types in the body, and thus hold great promise
for regenerative medicine. To achieve their clinical
potential, it is critical for PSCs to maintain genomic
stability during the extended proliferation. The critical
tumor suppressor p53 is required to maintain genomic
stability of mammalian cells. In response to DNA dam-
age or oncogenic stress, p53 plays multiple roles in
maintaining genomic stability of somatic cells by
inducing cell cycle arrest, apoptosis, and senescence to
prevent the passage of genetic mutations to the
daughter cells. p53 is also required to maintain the
genomic stability of PSCs. However, in response to the
genotoxic stresses, a primary role of p53 in PSCs is to
induce the differentiation of PSCs and inhibit pluripo-
tency, providing mechanisms to maintain the genomic
stability of the self-renewing PSCs. In addition, the roles
of p53 in cellular metabolism might also contribute to
genomic stability of PSCs by limiting oxidative stress. In
summary, the elucidation of the roles of p53 in PSCs will
be a prerequisite for developing safe PSC-based cell
therapy.
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THE PROMISE AND CHALLENGE OF PLURIPOTENT
STEM CELLS IN HUMAN CELL THERAPY

Human pluripotent stem cells (PSCs) can undergo unlimited
self-renewal and differentiate into all cell types of the human

body. Therefore, as a renewable source of various functional
cells, PSCs hold great promise for the cell therapy of major
human diseases such as neural degenerative diseases,
macular degeneration, heart failure and type 1 diabetes
(Blanpain and Simons, 2013; Kimbrel and Lanza, 2015).
Based on the derivation method, there are two types of
PSCs, human embryonic stem cells (hESCs) and induced
pluripotent stem cells (iPSCs). hESCs are derived from the
inner cell mass of the normal human blastocysts or human
blastocysts established with somatic cell nuclear transfer
technology by inserting somatic cell nucleus into the enu-
cleated egg (Thomson et al., 1998; Tachibana et al., 2013).
iPSCs are derived by nuclear reprogramming of somatic
cells with various cocktails of reprogramming factors such as
OCT4, SOX2, c-MYC and KLF4 (Takahashi and Yamanaka,
2006; Yu et al., 2007; Park et al., 2008). Two studies have
confirmed that mouse iPSCs are fully pluripotent as ESCs
(Boland et al., 2009; Zhao et al., 2009).

Significant progress has been achieved in establishing
the conditions to differentiate human PSCs (hPSCs) into
various lineages of biologically active cells. For example,
hESC-derived cardiomyocytes can improve cardiac function
in animal models after myocardial Infarction (Passier et al.,
2008). hESC-derived oligodendroglial progenitors can
improve neural functions in animal models after spinal cord
injury (Coutts and Keirstead, 2008). In addition, hESC-
derived pancreatic β cells can restore insulin independence
in Type 1 diabetes animal models (D’Amour et al., 2006;
Kroon et al., 2008). Cell therapies with hESC-derived cells
have entered clinical trials to treat macular degeneration,
spinal cord injury and Type 1 diabetes with promising results
(Angelos and Kaufman, 2015). However, the major chal-
lenge that remains for hESC-based cell therapies is the
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allogeneic immune rejection of hESC-derived cells by the
recipients. Using humanized mouse models reconstituted
with a functional human immune system, recent studies
have shown that the expression of CTLA4-Ig/PD-L1 in
hESC-derived cells protects these cells from allogeneic
immune rejection (Rong et al., 2014). The cancer risk of
these immune evasive CTLA4-Ig/PD-L1-expressing
cells could be mitigated by co-expressing a suicidal gene
such as thymidine kinase (He et al., 2017). Recent studies
have also suggested that the cells derived from HLA-defi-
cient hPSCs could be protected from allogeneic immune
cells in vitro or in mouse models reconstituted with human
peripheral blood cells (Xu et al., 2019), however, it remains
unclear whether these cells can be protected from allogeneic
immune system for an extended period of time or in
humanized mice reconstituted with a more vigorous immune
system.

The optimization of iPSC technology has raised the hope
that the cells derived from a patient’s iPSCs can be immune
tolerated by the same patient. However, published studies
demonstrate that certain cells derived from iPSCs are
immunogenic to the autologous immune system (Zhao et al.,
2011, 2015), but certain lineages of cells derived from iPSCs
could be immune tolerated by autologous immune system
due to the overexpression of immune suppressive cytokines
such as IL-10 (de Almeida et al., 2014). In addition, iPSCs
exhibited various types of genetic instability such as somatic
gene mutations and chromosome copy number variations,
raising safety concerns of iPSC-based cell therapy (Mum-
mery, 2011). In support of this notion, while autologous
hiPSC-derived retinal pigmented epithelials have been tes-
ted in clinical trials to treat macular degeneration, the clinical
trial was halted prematurely due to the genetic instability of
hiPSCs (Mandai et al., 2017). The extensive expansion of
hESCs in culture can increase genomic instability (Merkle
et al., 2017). Therefore, to achieve the potential of human
PSCs in cell therapy, it is critical to understand the mecha-
nisms how PSCs maintain genomic stability.

TUMOR SUPPRESSOR P53

Since its discovery forty years ago, the tumor suppressor
p53 gene has become the most intensively studied gene
with over 80,000 relevant publications. While the complex
roles of p53 remain to be elucidated, p53 is known as “the
guardian of the genome” and is required to maintain genomic
stability of mammalian cells (Lane, 1992; Levine, 1997).
Genetic instability, a hallmark of human cancer, promotes
metastasis and drug-resistance (Hanahan and Weinberg,
2011). The critical roles of p53 in tumor suppression is fur-
ther underscored by the findings that the p53 gene is the
most frequently mutated tumor suppressor genes in human
cancers with somatic mutational rate over 50% of all human
cancers (Soussi and Béroud, 2001). In addition to somatic
mutation of the p53 gene, the loss of wild-type (WT) p53
functions in human cancers can also be achieved through

epigenetic silencing or disruption of pathways such as the
ATM pathway that are required for p53 activation after DNA
damage (Inoue et al., 2012; Muller and Vousden, 2013; Jain
and Barton, 2018).

Structural and functional analysis have demonstrated that
p53 is a transcription factor with a sequence-specific DNA-
binding domain in the central region and a transcriptional
activation domain at the N-terminus (Ko and Prives, 1996).
The C-terminus of p53 contains a tetramerization domain
and a regulatory domain. As a transcriptional factor, p53
binds to the specific sequences in the genome and directly
regulates the expression of hundreds of genes that mediate
p53-dependent functions (Menendez et al., 2009). In this
context, p53 activates the expression of hundred of genes,
including p21, MDM2, GADD45, PERP, NOXA and CYCLIN
G. In addition, p53 also suppresses the expression of some
genes, such as MAP4 and NANOG (Murphy et al., 1999; Lin
et al., 2005). The importance of the transcriptional activity of
p53 in tumor suppression is further underscored by the
findings that the hotspot missense mutations of p53 in
human cancers uniformly disrupt the normal DNA-binding
activities of WT p53 (Weisz et al., 2007). In addition to the
loss of WT p53 activity, p53 mutants also gain oncogenic
activities in promoting tumorigenesis (Sabapathy and Lane,
2017).

p53 plays important roles in cellular responses to various
stresses. In response to genotoxic and oncogenic stresses,
p53 induces cell cycle arrest, apoptosis or senescence of the
stressed somatic cells to prevent the passage of the genetic
abnormalities to their offsprings, and thus maintaining the
genomic stability of mammalian cells (Vousden and Prives,
2009; Zhao and Xu, 2010; Eischen, 2016). While p53-de-
pendent apoptosis and cell cycle arrest are not required for
p53-dependent tumor suppression (Janic et al., 2018), they
could collaborate with DNA repair pathways to maintain
genomic stability and tumor suppression (Janic et al., 2018).
In addition, p53 plays complex roles in cellular metabolism,
contributing to p53-dependent genomic stability and tumor
suppression (Labuschagne et al., 2018; Kim et al., 2019; Li
et al., 2019). In the absence of stresses, the activity of p53 is
inhibited by MDM2 and MDMX, two transcriptional targets of
p53, through protein-protein interaction (Hollstein et al.,
1991; Kawamura et al., 2009; Marión et al., 2009; Lee et al.,
2012). In addition, the protein levels of p53 are also main-
tained at low levels in the absence of stresses, because
several E3 ligases such as MDM2 form complex with p53,
leading to the ubiquitination and degradation of p53 (Brooks
and Gu, 2006). Therefore, as potent negative regulators of
p53 stability and activity, MDM2 and MDMX are oncogenes
often overexpressed in human cancers to inhibit p53 function
(Oliner et al., 2016).

Significant progress has been made to elucidate the
mechanisms underlying the rapid activation of p53 in
response to stresses (Fig. 1). While the mRNA levels of p53
are not significantly affected by various stresses, the rapid
posttranslational modifications of p53, including
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phosphorylation, acetylation, methylation and sumoylation,
disrupts the interaction between p53 and MDM2, leading to
the stabilization and activation of p53 (Craig et al., 1999;
Shieh et al., 1999; Unger et al., 1999; Wu et al., 2002; Chao
et al., 2003, 2006; Song et al., 2007). In addition, the
acetylation of p53 at the C-terminus promotes its DNA-
binding activity and its transcriptional activity after various
stresses (Gu and Roeder, 1997; Barlev et al., 2001; Feng
et al., 2005; Tang et al., 2006). The posttranslational modi-
fications of p53 play important roles in dictating the cellular
responses to various stresses. For example, the phospho-
rylation of p53 at Ser46 primarily activates p53-dependent
apoptosis after DNA damage (Saito et al., 2002; Feng et al.,
2006). In addition, the phosphorylation of p53 at Ser315 is
important for suppressing NANOG expression during the
differentiation of ESCs (Lin et al., 2005). The p53 activity can
also be modulated by protein-protein interaction. For exam-
ple, the ASPP family proteins promote the p53-mediated
apoptosis by enhancing p53-dependent induction of pro-
apoptotic genes such as PUMA (Trigiante and Lu, 2006).

ROLES OF P53 IN EMBRYONIC STEM CELLS

To achieve the clinical potential of PSCs, it is required to
expand PSCs for dozens of passages before their differen-
tiation into lineage-specific functional cells. DNA damage
and oncogenic pathways can be induced during the exten-
ded self-renewal and differentiation of ESCs. In this context,
the rate of spontaneous mutation is significantly lower in
ESCs than in somatic cells (Cervantes et al., 2002; Xu,
2005). The disruption of the p53 gene in hESCs indicates
that p53 is required for maintaining the genomic stability of
hESCs (Song et al., 2010). However, in contrast to somatic
cells, ESCs lack p53-dependent cell cycle G1/S checkpoint,
apoptosis, and senescence (Aladjem et al., 1998). Instead,
when activated, p53 induces the differentiation of ESCs by
directly suppressing the expression of the critical pluripo-
tency factor Nanog (Lin et al., 2005). Therefore, it has been
hypothesized that ESCs with unrepaired DNA damage or
oncogenic stress will be eliminated from the self-renewing

pool due to the reduced Nanog expression, and thus
ensuring the genomic stability of self-renewing ESCs (Lin
et al., 2005). Consistent with this notion, ChIP analysis of
p53 and p53-dependent gene expression in ESCs indicates
that p53 induces the expression of the differentiation-related
genes and downregulates the pluripotency genes in
response to DNA damage in ESCs (Li et al., 2012).

In response to the differentiation stimuli such as retinoic
acid (RA), p53 is activated after being acetylated by CBP/
p300 histone acetyl transferases to induce ESC differentia-
tion (Jain et al., 2012). In the absence of stresses, the activity
of p53 must be suppressed to maintain pluripotency. In this
context, the key pluripotency factor OCT4 activates the
expression of histone deacetylase SIRT1, which inactivates
p53 by deacetylation of p53 (Zhang et al., 2014). The
extensive culture of hESCs leads to the accumulation of
hESCs harboring mutated p53, raising the cancer risk of
hESCs after long-term culture (Merkle et al., 2017). In this
context, certain p53 mutants have gain of functions to pro-
mote the expression of pluripotent genes and thus the
preferential expansion of hESCs harboring these p53
mutants (Koifman et al., 2018). Therefore, it is important to
develop culture conditions that avoid the favorable selection
of hESCs harboring p53 mutations during the extended
culture. In summary, p53 plays a key role in maintaining
genome stability of ESCs by coordinating the DNA damage
response with pluripotency (Fig. 2).

p53 also plays an important role in maintaining pluripo-
tency by regulating the expression of genes important for
pluripotency. In this context, p53 activates the expression of
LIF, which is important for maintaining pluripotency of ESCs
(Hu et al., 2007). p53 also regulates the expression of long
non-coding RNAs (LncRNAs) that are important for pluripo-
tency. LncRNAs are longer than 200 nucleotides and often
poly-adenylated without evident ORFs (Fatica and Bozzoni,
2014; Rinn, 2014). p53 directly regulates the expression
of over 40 LncRNAs in hESCs, such as HOTAIRM1 and
lncPRESS (p53-regulated and ESC-associated) (Jain et al.,
2016). Some LncRNAs are highly expressed in hESCs and
are repressed by p53 during differentiation. For example,

Mdm2/
MdmX

P53

AcUb

Degradation

Mdm2/
MdmX

P53

ARF/ATM/
Chk1/CBP
-P300

Stabilized and activated

M
S P

P P

Cell cycle arrest,
apoptosis,
senescence,
metabolism, 
DNA repair

Genome
stability

No stress Stress

Figure 1. The roles of p53 in somatic cells. In the absence of stress, p53 is inactive and unstable due to its interaction with its

transcriptional targets Mdm2/MdmX. In response to stresses, various posttranslational modifications of p53 can stabilize and activate

p53 by disrupting the interaction between p53 and Mdm2/MdmX, leading to cell cycle arrest, apoptosis, senescence, DNA repair and

metabolic change.
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lncPRESS1 is involved in deacetylating H3K56ac and
H3K9c in the chromatin of ESCs by releasing SIRT6 (Jain
et al., 2016). In addition, lncPRESS4, also known as TUNA,
is required for maintaining pluripotency by directly binding to
the promoter of Nanog, Sox2 and Fgf4 (Lin et al., 2014).

Oxidative stress, a byproduct of mitochondrial oxidative
phosphorylation, is the major physiological inducer of DNA
damage. In this context, p53 is important to activate the
expression of anti-oxidant genes and help to reduce the levels
of oxidative stress (Liu and Xu, 2010). In addition, PSCs pri-
marily rely on glycolysis for energy and substrates for biosyn-
thesis, providing another mechanism to maintain genetic
stability by minimizing the DNA damage induced by oxidative
stress (Cliff and Dalton, 2017). Recent studies have demon-
strated an unexpected role of p53 in suppressing oxidative
phosphorylation (Kim et al., 2019). In this context, p53 acti-
vates the expression of PUMA, which suppresses oxidative
phosphorylation by reducing the mitochondrial pyruvate
uptake through the disruptive interaction between PUMA and
mitochondrial pyruvate carrier complex. Therefore, p53 plays
diverse roles in maintaining the genomic stability of ESCs.

ROLES OF P53 IN INDUCED PLURIPOTENCY

The breakthrough of iPSC technology was first achieved by
simultaneously expressing four reprogramming factors
(Oct4, Sox2, Klf-4 and c-Myc) in mouse fibroblasts (Taka-
hashi and Yamanaka, 2006). This iPSC technology is evo-
lutionarily conserved because the same cocktail of genes

can be used to reprogram somatic cells into iPSCs of various
species, including rats, monkeys and human (Trounson,
2009). Other combinations of reprogramming factors have
been discovered to achieve induced pluripotency, including
the cocktail of Oct4, Sox2, Lin28 and Nanog (Yu et al.,
2007). Oct4 and Sox2 appear to be critical for induced
pluripotency and are sufficient to reprogram progenitor cells
into iPSCs (Kim et al., 2008, 2009a, b; Giorgetti et al., 2009).
Small chemical cocktails can also improve the efficiency of
reprogramming (Shi et al., 2008; Li et al., 2009). In theory,
human iPSCs (hiPSCs) derived from patients could become
a renewable source of autologous cells, and therefore, have
great potential in human cell therapy. Patient-specific
hiPSCs also provide a unique opportunity in modeling
human diseases for mechanistic studies and drug discovery
(Song et al., 2010; Boulting et al., 2011; Soldner and Jae-
nisch, 2012; Matsa et al., 2016).

One of the key bottlenecks for IPSC technology is the
extreme low efficiency of the successful reprogramming. In
search for the technology to improve the reprogramming
efficiency, it has become apparent that p53 is a key bottle-
neck for reprogramming (Zhao et al., 2008; Banito et al.,
2009; Kawamura et al., 2009; Utikal et al., 2009; Smith et al.,
2010). All reprogramming factors are oncogenic and often
overexpressed in human cancers, especially c-Myc and Klf4
that are potent oncoproteins (Zhao and Xu, 2010). The
overexpression of such oncoproteins in somatic cells will
activate p53, leading to cell cycle arrest, apoptosis and
senescence that can all block successful iPSC
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Figure 2. p53 inhibits pluripotency to maintain genomic stability of pluripotent stem cells. (A) Activation of p53 by genotoxic

and oncogenic stresses in ESCs leads to the suppression of Nanog expression and the differentiation of ESCs, ensuring the genomic

stability of self-renewing ESCs. (B) p53 inhibits the nuclear reprogramming of somatic cells into iPSCs. DNA damage and oncogenic

stress during nuclear reprogramming activate p53, leading to cell cycle arrest, apoptosis and senescence, all of which suppress

reprogramming. Transient inactivation of p53 during reprogramming will greatly improve the reprogramming efficiency at the expense

of genomic stability.
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reprogramming (Fig. 2). In addition, the activation of p53 in
reprogramming cells will suppress the expression of Nanog
that is required for maintaining pluripotency (Lin et al., 2005).
Therefore, the silencing of the p53 gene during reprogram-
ming has become an effective approach to increase the
reprogramming efficiency (Zhao et al., 2008; Banito et al.,
2009; Kawamura et al., 2009; Utikal et al., 2009; Smith et al.,
2010). In addition, proteins such as Oct4 and ZSCAN4 can
promote the reprogramming efficiency by inhibiting p53
(Jiang et al., 2013; Zhang et al., 2014). The silencing of the
genes that are responsible for p53-dependent cell cycle
arrest and apoptosis, such as p21 and Puma, can also
increase the frequency of nuclear reprogramming into
induced pluripotency (Lake et al., 2012; Son et al., 2013).

If the transient inactivation of p53 activity is a prerequisite
of successful reprogramming into iPSCs, considering the
critical roles of p53 in maintaining genomic stability of mam-
malian cells, this raises a serious concern for the genomic
instability of iPSCs. In this context, a series of studies have
demonstrated that iPSCs harbor increased genetic abnor-
malities (Gore et al., 2011; Chen et al., 2012; Ji et al., 2012; Li
et al., 2014). In addition, the identification of the oncogenic
mutations harbored by iPSCs has halted the first iPSC-based
clinic trial to treat macular degeneration (Mandai et al., 2017).
The genomic instability could also contribute to the
immunogenicity of iPSC-derived autologous cells (Robertson
et al., 2007; Zhao et al., 2011; de Almeida et al., 2014; Zhao
et al., 2015; Todorova et al., 2016). Recent studies also
demonstrate that mitochondrial DNA mutations in iPSCs
contribute to the immunogenecity of iPSCs (Deuse et al.,
2019). These safety concerns must be addressed before the
clinical development of iPSC-based human cell therapy.

CONCLUDING REMARKS

Accumulating data have demonstrated that p53 is required
to maintain the genomic stability of PSCs but with mecha-
nisms distinct from somatic cells. In this context, p53 inhibits
pluripotency by suppressing the expression of critical
pluripotency factors, Nanog, LIF and LncRNA, and thus
eliminates the stem cells with unrepaired DNA damage from
the self-renewing pool. In addition, p53 activates the
expression of anti-oxidant genes and suppresses oxidative
phosphorylation, reducing the levels of oxidative stress that
is the key physiological inducer of DNA damage. The tran-
sient loss of these roles of p53 during nuclear reprogram-
ming of somatic cells into iPSCs contributes to genetic
instability of iPSCs. The optimization of the reprogramming
technology and the culture conditions of PSCs will improve
the feasibility to develop PSC-based human cell therapy.
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