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Abstract

Many important traits in plants, animals, and microbes are polygenic and challenging to improve through traditional marker-assisted selec-
tion. Genomic prediction addresses this by incorporating all genetic data in a mixed model framework. The primary method for predicting
breeding values is genomic best linear unbiased prediction, which uses the realized genomic relationship or kinship matrix (K) to connect
genotype to phenotype. Genomic relationship matrices share information among entries to estimate the observed entries’ genetic values
and predict unobserved entries’ genetic values. One of the main parameters of such models is genomic variance (r2

g), or the variance of a
trait associated with a genome-wide sample of DNA polymorphisms, and genomic heritability (h2

g); however, the seminal papers introduc-
ing different forms of K often do not discuss their effects on the model estimated variance components despite their importance in genetic
research and breeding. Here, we discuss the effect of several standard methods for calculating the genomic relationship matrix on esti-
mates of r2

g and h2
g. With current approaches, we found that the genomic variance tends to be either overestimated or underestimated

depending on the scaling and centering applied to the marker matrix (Z), the value of the average diagonal element of K, and the assort-
ment of alleles and heterozygosity (H) in the observed population. Using the average semivariance, we propose a new matrix, KASV, that di-
rectly yields accurate estimates of r2

g and h2
g in the observed population and produces best linear unbiased predictors equivalent to routine

methods in plants and animals.
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Introduction
Linear mixed model (LMM) analyses are routine in the prediction

of breeding values in plants and animals (Henderson 1977;

VanRaden 2008; Hayes et al. 2009; Albrecht et al. 2011; Endelman

2011; Crossa et al. 2014; Meuwissen et al. 2016; Pincot et al. 2020;

Petrasch et al. 2021) and polygenic risk scores in humans (de los

Campos et al. 2010; Makowsky et al. 2011; Lee et al. 2012;

Dudbridge 2013; Maier et al. 2018; Wray et al. 2019; Truong et al.

2020), partitioning of sources of variance (Searle et al. 1992; Lynch

and Walsh 1998; Visscher et al. 2008; Kang et al. 2010; Piepho 2019;

Schmidt et al. 2019a, 2019b; Feldmann et al. 2021), and controlling

for confounding effects in genome-wide association studies

(GWAS) (Yu et al. 2006; Visscher et al. 2012; Korte and Farlow 2013;

Visscher et al. 2017). Genomic prediction approaches are widely

applied in the study of complex traits in natural and experimen-

tal populations and facilitate the estimation of genomic variance

(r2
g), genomic heritability (h2

g), and other quantitative, population,

and evolutionary genetic parameters (Bulmer et al. 1980; Falconer

and Mackay 1996; Lynch and Walsh 1998; Meuwissen et al. 2001;

Bernardo 2002; Hill et al. 2008; Van Heerwaarden et al. 2008;

Crossa et al. 2010; de los Campos et al. 2015; Huang and Mackay

2016; Lehermeier et al. 2017; Noble et al. 2019), and has been

widely adopted in plant breeding, human genetics, and biology
(Habier et al. 2007; Goddard and Hayes 2007; Heffner et al. 2009;
Bloom et al. 2013).

Genomic variance (r2
g)—the variance explained by genome-

wide associations between the underlying quantitative trait locus
and DNA markers genotyped in the training population—is often
estimated in genetic experiments (Visscher et al. 2007; Gao et al.
2012; Lee et al. 2012, 2013; Lipka et al. 2014; Rutkoski et al. 2014;
Kumar et al. 2015; Piaskowski et al. 2018; Rice and Lipka 2019;
Krause et al. 2019; Pincot et al. 2020; Petrasch et al. 2021; Yadav
et al. 2021) using genomic relationship matrices (GRMs, K), which
measure the relatedness among entries (Yang et al. 2010; Habier
et al. 2013). The selection of K is used directly in solutions to the
mixed model equations and is central to estimating the correct
variance components in LMM analyses (Henderson 1953; Searle
et al. 1992; Lynch and Walsh 1998; Mrode 2014). The phenotypic
variance–covariance (V) is V ¼ Gþ R, where R ¼ Ir2

e is the resid-
ual variance–covariance, and G ¼ Kr2

g is the genomic variance–
covariance (Henderson 1953; Searle et al. 1992; Lynch and Walsh
1998; Piepho 2019). The genomic variance r2

g is a scalar and, thus,
any change in K will impact r2

g estimates. Genomic variance is
found in many ratios throughout modern quantitative genetic re-
search, including genomic heritability, prediction accuracy,
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selection reliability, prediction error variance, and response to ge-
nomic selection (Goddard 2009; Hickey et al. 2009; Gorjanc et al.
2015). Of these ratios, genomic heritability has been the most fre-
quently reported in public research (Speed et al. 2012, 2017; Speed
and Balding 2015; de los Campos et al. 2015; Legarra 2016;
Lehermeier et al. 2017; Yang et al. 2017).

Genomic heritability is

h2
g ¼

r2
g

r2
g þ r2

e
; (1)

where r2
g is the genomic variance and r2

e is the residual variance
on an entry-mean basis. Genomic heritability is often estimated
by substituting restricted maximum likelihood (REML) variance
component estimates into (1). We studied how different forms of
K affect variance component estimates. We found that, even for
large data sets, there are systematic differences in the genomic
variance component estimates arising from different forms of K
(VanRaden 2008; Astle et al. 2009; Yang et al. 2010; Forni et al.
2011; Endelman and Jannink 2012) and that the resulting vari-
ance component estimates may not always be correct when di-
rectly substituted into (1), as is routine practice. Despite this,
researchers often simultaneously use the same approaches for
genomic prediction and variance component estimation and may
consequently report incorrect genomic heritability estimates.

Here, using the average semivariance (ASV), introduced by
Piepho (2019) and expanded by Feldmann et al. (2021), we derive a
new form for K, referred to as KASV, which is the product K ¼
Z Z

T
from the mean-centered marker matrix Z ¼ PZ, where P ¼

In � n�11n1T
n is the idempotent, mean-centering n� n-matrix. The

ASV relationship matrix is

KASV ¼
K

ðn� 1Þ�1trðKÞ
: (2)

This matrix is scaled to the residual variance–covariance ma-
trix and directly yields accurate estimates of r2

g and h2
g regardless

of population constitution, population size, or true heritability. It
is possible to scale other forms of the via a division by
ðn� 1Þ�1trðKÞ or to scale estimates of genomic variance from any
form of K by multiplying ðn� 1Þ�1trðKÞ by r̂2

g to obtain ASV esti-
mates of variance component. We explore the practical implica-
tions of KASV for estimating r2

g and h2
g in a wild population of

Arabidopsis thaliana (Atwell et al. 2010), a wheat (Triticum aestivium)
breeding population (Crossa et al. 2010), a laboratory mouse (Mus
musculus) population (Valdar et al. 2006), an apple (Malus � domes-
tica) breeding population (Kumar et al. 2015), and a pig (Sus scrofa)
breeding population (Cleveland et al. 2012). The ASV approach
that we propose can be used to estimate variance components in
genetic evaluation studies in plants, animals, microbes, and
humans.

The Average Semivariance
The ASV estimator of the total variance (Piepho 2019) is half the
average total pairwise variance of a difference between entries
and can be decomposed into independent sources of variance,
e.g. genomic and residual. There are two alternative ASV deriva-
tions, both leading to the same definitions of the estimators. The
first derivation originated in geostatistics and estimated the
semivariance as half of the variance among all pairwise

differences among genotypic values (g), i.e. 2�1varðgi � gjÞ
(Webster and Oliver 2007; Piepho 2019). Piepho (2019) derived
ASV from a study’s observations, worked out the semivariance
and took the average across all pairs of observations. In our con-
text, there is an equivalent alternative derivation based on the
sample variance of the genotypic values Estaghvirou et al. (2013).
The sample variance among genotypic values is
ðn� 1Þ�1Pn

i¼1ðgi � gÞ2. That is to say that the expected values of
the sample variance of genotypic values are the ASV, i.e.
Eðs2

gÞ ¼ hASV
g . ASV can be used to estimate and partition the total

variance in LMM analyses into parts; such as the total variance,
as in Piepho (2019), the variance explained by large effect
markers and marker–marker interactions, as in Feldmann et al.
(2021), and genomic variance, as shown below.

ASV definitions of genomic variance and
heritability
In complex traits analyses, there is a crucial difference in the
treatment of genotypes and effects in statistical models used for
data analysis vs the quantitative genetics theory (Yang et al. 2010;
Speed et al. 2012, 2017; de los Campos et al. 2015; Speed and
Balding 2015; Legarra 2016). In quantitative genetics theory, be-
tween entry differences in genetic values and genomic variance
are attributed to the a random sampling of marker genotypes
(Bulmer et al. 1980; Lande and Thompson 1990; Falconer and
Mackay 1996; Lynch and Walsh 1998) and, in an LMM framework,
variation stems from a random sampling of the marker effects.
Despite differences in derivation and assumptions regarding the
source of randomness, the resulting variance–covariance struc-
ture between the two coincides under specific experimental, pop-
ulation, and marker sampling conditions (de los Campos et al.
2015; Legarra 2016). With this in mind, we derived an approach
using the ASV that relies on the assumptions of LMM analyses,
e.g. random marker effects, but yields correct estimates of geno-
mic variance.

The analyses shown throughout this paper assume the depen-
dent variables are least squared means (LSMs) or other adjusted
means for entries (y). R ¼ Inr2

e gives the residual variance of the
LSMs. The ASV can efficiently deal with more general forms of
variance–covariance matrices in generalized LMMs (Piepho 2019).
The LMM for this analysis is

y ¼ 1nlþ Ingþ e (3)

where y is the vector of phenotypic LSMs of for n entries, n is the
number of entries, 1n is an n-element vector of ones, l is the pop-
ulation mean, In is the identity matrix of size n, g is an n-element
vector of random effect values for entries with g � Nð0;Kr2

gÞ, and
e is the residual for each entry with e � Nð0; Inr2

e Þ.
The ASV definition of variance from LMM (3) is

hASV
y ¼ ðn� 1Þ�1trðVPÞ ¼ hASV

g þ hASV
e ; (4)

where hASV
y is the phenotypic variance, V ¼ Kr2

g þ Inr2
e is the vari-

ance–covariance among observations, hASV
g is the genomic ASV,

and hASV
e is the ASV of the residuals. If we assume G ¼ Kr2

g, where
G is the variance–covariance of the best linear unbiased predic-
tors (BLUPs) of the genotypic values g, it can be inferred that the
magnitude of r2

g in directly inverse to trðKÞ because
V ¼ Kr2

g þ Inr2
e .
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The ASV definition of the genomic variance is

hASV
g ¼ ðn�1Þ�1trðZZTPÞr2

g ¼ ðn�1Þ�1trðZ Z
TÞr2

g ¼ ðn�1Þ�1trðKÞr2
g

(5)

where Z ¼ PZ is the mean-centered marker matrix, and K ¼ Z Z
T

is the realized genomic relationship or kinship matrix described
by VanRaden (2008), omitting the scaling constant 2

P
j pjð1� pjÞ,

where pj is the allele frequency of the jth SNP, which requires
Hardy–Weinberg equilibrium (HWE) to hold (de los Campos et al.
2015), and trðZZTPÞ ¼ trðZ Z

TÞ. The trace of Z Z
T

is a function of
heterozygosity in the observed population (Vitezica et al. 2013,
2017; Legarra et al. 2018). When the observed population is in
HWE, n�1trðKÞ ¼ 1, and when the population is not in HWE due to
inbreeding, the n�1trðKÞ ¼ 1þ f , where f is the in coefficient of in-
breeding (Endelman and Jannink 2012; Legarra et al. 2018). In the
general case, hASV

g ¼ ðn�1Þ�1trðKPÞ
� �

r2
g, where K is any form of

the GRM calculated from Z, without centering, or Z, with center-
ing, because trðKÞ ¼ trðKPÞ.

The ASV definition of the residual variance is

hASV
e ¼ ðn� 1Þ�1r2

e trðInIT
n PÞ ¼ r2

e : (6)

Notably, the genomic variance hASV
g is on the same scale as the

residual variance hASV
e , and both are defined such that (4) is accu-

rate. REML estimates of the residual variance are equivalent to
ASV estimates when best linear unbiased estimators or LSMs are
the response variable y.

Two equivalent methods yield accurate h2
g

estimates
There are two equivalent ways to obtain accurate estimates of
genomic variance and subsequently genomic heritability. The
first method, our recommended approach, utilizes KASV (2) in the
LMM analysis and directly yields accurate estimates of the geno-
mic variance components from the model by rescaling the GRM.
The first method works because V ¼ Kr2

g þ Inr2
e is a true state-

ment regardless of K, but different choices of K change the scal-
ing and interpretation of r2

g. Thus, variance components
estimated by ASV can then be substituted directly into (1) with-
out any adjustment.

The second method is to adjust the genomic variance compo-
nent estimates from any form of K by multiplying them by a scal-
ing factor (ðn� 1Þ�1trðKÞ) defined by the population size (n) and the
diagonals of the chosen GRM (trðKÞ). Through substitution of (5)
and (6) into (1), the ASV estimator of genomic heritability hASV

g is

ĥ
ASV

g ¼
ĥ

ASV
g

ĥ
ASV
y

¼
ĥ

ASV
g

ĥ
ASV
g þ ĥ

ASV
e

¼
ðn� 1Þ�1trðKÞr̂2

g

ðn� 1Þ�1trðKÞr̂2
g þ r̂2

e

: (7)

This formulation can be used directly with any form of K or K
by substituting REML variance component estimates. Note that
ðn� 1Þ�1trðKÞ is the same as the scaling coefficient used in (2).
The second strategy is analogous to the post hoc adjustment ap-
proach Feldmann et al. (2021) proposed.

Materials and methods
Genomic relationship matrices
We calculated and applied seven relationship matrices for each
population, simulated or case example, including KASV. We used

AGHmatrix::Gmatrix() to calculate the Yang et al. (2010) (KY) and
VanRaden (2008) relationship (KVR) matrices (Rampazo Amadeu
et al. 2016), rrBLUP::A.mat() to calculate the Endelman and Jannink
(2012) (KEJ) relationship matrix, and statgenGWAS::kinship() to esti-
mate the Astle et al. (2009) (KAB) and IBS relationship (KIBS) matri-
ces (van Rossum and Kruijer 2020).

The form proposed by VanRaden (2008) is

KVR ¼
Z Z

T

2
Pm

j¼1 pjð1� pjÞ
; (8)

where Z is the marker matrix centered on column means (2pj),
and pj is the minor allele frequency (MAF) for the jth SNP. This
form assumes HWE and obtains pj from a historical reference
population, not the observed population. When pj originates from
the observed population, the centering by 2pj is equivalent to col-
umn centering and KVR only differs from KASV by a scaling factor.

The normalized relationship matrix, KGN, was explicitly intro-
duced as the normalized relationship matrix by Forni et al. (2011) as

KGN ¼
K

n�1trðKÞ
: (9)

This form is the most numerically similar to KASV and only dif-
fers by a single denominator degree of freedom.

The form of the relationship matrix proposed by Endelman
and Jannink (2012) is

KEJ ¼
dSiiIþ ð1� dÞSþ hZ•jihZ

T
•ji

2hpjð1� pjÞi
; (10)

where d � ðn=mÞCV�2 is a shrinkage factor, CV2 is the coefficient
of variation of the eigenvalues of S, S¼m�1Z Z

T�hZ•kihZ
T
•ki; hSiii

is the mean of diagonal elements of S. Notably, at high marker
densities, when d¼0, Endelman and Jannink (2012) is equivalent
to VanRaden (2008).

The method proposed by Yang et al. (2010) also centers the col-
umns of Z by subtracting 2pj

KYik ¼

m�1
Xm
j¼1

ðzji � 2pjÞðzjk � 2pjÞ
2pjð1� pjÞ

; i 6¼ k

1þm�1
Xm
j¼1

z2
ji � ð1þ 2pjÞzji þ 2p2

j

2pjð1� pjÞ
; i ¼ k

;

8>>>>><
>>>>>:

(11)

where zij is the jth SNP in the ith individuals, zjk is the jth SNP in
the kth individual when j 6¼ k, and m is the number of markers.
The diagonals are treated differently than the off-diagonals in
this form.

The method proposed by Astle et al. (2009) is

KAB ¼ ð2mÞ�1
Xm

j¼1

ðzj � 2pj1Þðzj � 2pj1ÞT

2pj 1� pj
� � ; (12)

where zj is the i-element vector of the jth SNP.
The classical identity-by-state definition is (Astle et al. 2009):

KIBS ¼ ð2mÞ�1
Xm

j¼1
ðzj � 1Þðzj � 1ÞT þ 1

2
: (13)

Note that this is the only calculation that is not scaled or cen-
tered by any function of pj.
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For each model and each simulation, we estimated two vari-
ance components (r2

g and r2
e ) using sommer::mmer() and took the

ratio of variance components in R v4.1.0 (R Core Team 2020). We
estimated genomic heritability using the standard form by
substituting REML estimates from (3) into (1).

LMM analysis in R
In the sommer R package (Covarrubias-Pazaran 2016), LMM (3) is
expressed as

mmerðfixed ¼ Y � 1;
random ¼� vsðEntry; Gu ¼ KÞ;
rcov ¼� units;
data ¼ dataÞ

where data is an n� 2 matrix with Y as a column of LSMs, Entry is
a column of factor-coded entries, and K is one of the seven GRMs
in this study given. A large number of statistical computing solu-
tions can fit this model, including regress (Clifford and McCullagh
2006), ASREML (Butler 2021), rrBLUP (Endelman 2011), GEMMA
(Zhou and Stephens 2012), emmREML (Akdemir and Okeke 2015),
brms (Bürkner 2017), and lme4GS (Caamal-Pat et al. 2021).

Simulated data
We generated 36 experiment designs with different heterozygos-
ity H ¼ 0.0, 0.25, 0.5, and 0.75 and different trait heritability h2

g ¼
0.2, 0.5, and 0.8 and for population sizes of n ¼ 250, 500, and
1,000. In all examples, 1,000 populations genotyped at m¼ 5,000
causal loci were used to generate the genetic traits. We simulated
all m¼ 5,000 marker effects following a normal distribution l¼ 0
and r¼ 1. When multiplied by the marker genotypes and
summed, the score is an individual’s true genetic value, g.
Residuals were simulated with l¼ 0 and r2

e ¼ ð1� h2Þ=ðh2s2
gÞ to

obtain a trait with the desired genomic heritability (Endelman
2011) and s2

g ¼ ðn� 1Þ�1Pn
i¼1ðgi � gÞ2 is the sample variance

among genotypic values (Estaghvirou et al. 2013). In this study,
the true value of h2

g ¼ 0:2, 0.5, or 0.8. All plots were made with the
ggplot2 package (Wickham 2016) in R 4.1.0 (R Core Team 2020).

Empirical data
We analyzed four publicly available data sets using seven meth-
ods for calculating the realized relationship matrix and estimated
h2

g. First, we analyzed six traits from Kumar et al. (2015), which
evaluated a breeding population of n¼ 247 apple (Malus � domes-
tica) hybrids genotyped at m¼ 2,829 SNPs with H¼ 0.348 (Kumar
et al. 2015). The reported traits were fruit weight (WT), fruit firm-
ness (FF), greasiness (GRE), crispiness (CRI), juiciness (JUI), and
flavor intensity (FIN). The shrinkage factor d from Endelman and
Jannink (2012) was equal to 0.02. Second, we analyzed the wheat
data set from Crossa et al. (2010), who evaluated n¼ 599 wheat
(Triticum aestivum) fully inbred lines (H¼ 0.0; d ¼ 0:03) for grain
yield (GY) in four environments genotyped for m¼ 1,278 SNPs.
We evaluated each environment (i.e. GY-E1, GY-E2, GY-E3, and
GY-E4) with an independent model. Third, we analyzed data
from Valdar et al. (2006) which evaluated a laboratory population
of n¼ 1,814 stock mice (M. musculus) for body mass index (BMI),
body length, and weight and genotyped for m¼ 10,346 SNPs
(H¼ 0.363; d ¼ 0:01). Fourth, we analyzed a population of
n¼ 1,057 naturally occurring Arabidopsis (A. thaliana) ecotypes
phenotyped for the mean (l) and SD of flowering time under 10�C
(FT10) and 16�C (FT16) and genotyped at m¼ 193,697 SNPs
(H¼ 0.0; d ¼ 0:0) from Atwell et al. (2010) and Alonso-Blanco et al.
(2016). Fifth, we analyzed a commercial pig (S. scrofa) population

made available by PIC (a Genus company) with n¼ 3,534 entries
genotyped at m¼ 52,843 SNPs (H¼ 0.311; d ¼ 0:0) that were phe-
notyped for five traits: T1, T2, T3, T4, and T5 (Cleveland et al.
2012). For each population, we calculate the seven relationship
matrices (8–9) and apply them in (3) for each trait to estimate ĥ

2

g

with (1).
We performed cross-validation to determine predictive ability

rðĝ; yÞ, or the correlation between BLUPs and LSM, which is a
measure of success commonly reported in genome prediction
studies that indicates how informative the phenotype is as a
measure of the genomic value. We also estimated the prediction

accuracy rðĝ; yÞ=
ffiffiffiffiffiffi
ĥ

2

g

r
, which is a measure of success that scales

the predictive ability to the upper limit (

ffiffiffiffiffiffi
ĥ

2

g

r
) (Crossa et al. 2014).

An ideal situation for genomic prediction is a low value of predic-
tive ability and a high value of prediction accuracy. When the
predictive ability is high, genomic selection is unlikely to outper-
form phenotypic selection. When the prediction accuracy is low,
the model is bad at capturing the variation in genomic values.
We first split each population into 80% train and 20% test and es-
timated genomic BLUPs and then calculated the accuracy as the
correlation between the estimated LSM y and the BLUP ĝ for all
entries in the test set. We performed this cross-validation
scheme 100 times for each population and each trait.

Results
Analysis of simulated data confirms that ASV
yields accurate estimates of genomic variance
The ASV relationship matrix yielded suitable estimates of geno-
mic variance and genomic heritability in the observed popula-
tions, while the other methods varied with the level of
heterozygosity. When heterozygosity H< 0.5, the genomic vari-
ance tends to be underestimated, and when H> 0.5, the genomic
variance tends to be overestimated (Fig. 1) by methods excluding
(2) and (9). This pattern was realized regardless of the population
size, e.g. n ¼ 250, 500, and 1,000. All methods tend to produce ac-
curate estimates when H¼ 0.5, in which case the inbreeding coef-
ficient f¼ 0 and HWE is not violated.

The precision (variance) improved by increasing the popula-
tion size (n), but the accuracy (bias) did not improve. It has been
demonstrated ad nauseam that increasing n increases precision
or lowers the sampling variance of the estimates but does not
eliminate bias (Laird and Ware 1982; Searle et al. 1992; Lynch and
Walsh 1998; Legarra 2016). Notably, the entire parameter space
of h2

g was observed when the population size is small (Fig. 1). Only
KASV and KGN yielded stable precision as H increased (Fig. 2).
Other methods that we examined have variable precision and
variable accuracy depending on the sample size, heterozygosity,
and the true value of h2

g (Figs. 1 and 2). Interestingly, we observed
an interaction between h2

g and H that impacted the precision of
genomic heritability estimation did not affect KGN or KASV.
Precision improved as H increased for high heritability traits and
precision worsened as H increased for low heritability traits. For
traits where h2

h ¼ 0:5, precision was constant.

Analysis of simulated and empirical data
confirms that ASV does not impact BLUPs or
prediction accuracy
Neither the predictive ability (rðĝ; yÞ) nor the BLUPs from genomic
best linear unbiased predictor are affected by ASV. In our simu-
lated populations, the predictive ability was equal across all
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seven GRMs that we tested (Fig. 3), but the prediction accuracy
(ĥ
�1
g rðĝ; yÞ) varies with the choice of GRM and therefore the het-

erozygosity in the sampled populations. In 22 empirical trait �
population examples we evaluated, the differences in the predic-
tion accuracy, when present, appeared to be negligible and do not
lend themselves clearly to “better” or “worse” categories (Figs. 4
and 5). While the choice of K does not impact BLUP, it does im-
pact estimates of genomic variance r̂2

g, genomic heritability ĥ
2
g,

prediction accuracy ĥ
�1
g rðĝ; yÞ (Fig. 5), average prediction error

variance PEV, and selection reliability 1� r�2
g PEV, which all rely

on r̂2
g. Differences in Fig. 5 are more pronounced for the fully in-

bred populations, e.g. Arabidopsis and wheat, than the partially
inbred populations, e.g. pig, mouse, and apple. ASV allows users
to understand how well GS is performing relative to phenotypic
selection and to predict how reliable genomic selection can be for
certain traits in specific populations more accurately than other
methods since it directly yields accurate estimates of r2

g and h2
g

(Figs. 3–5).

The relationship between KASV and KGN

We found that the normalized K, i.e. KGN (9), proposed by Forni
et al. (2011) and further described by Legarra (2016), yields esti-
mates of K that only deviated from KASV by a single degree of free-
dom in the denominator of the matrix scaling factor. Although
these estimators were derived through different approaches and

with different concepts in mind, they are numerically similar,
apart from a single degree of freedom difference in the divisor of
the GRM: Forni et al. (2011) used the number of entries (n),
whereas we used dfg ¼ n� 1 for calculating the sample variance
(Bulmer 1979). KGN, instead of being biased by a factor of 1=ð1þ
f Þ; KGN is biased by a factor of ðn� 1Þ=n. Our simulations confirm
this deviation and the median genomic variance estimates using
KGN were slightly larger than KASV, which was equal to the true
value in the simulations (Fig. 1). This work, Forni et al. (2011), and
Legarra (2016) all arrive at numerically similar solutions through
conceptually different derivations, which we feel is indicative of
the value of these approaches for the plant, animal, and human
genetic studies that rely on genomic relatedness, e.g. GWAS, ge-
nomic prediction, or inferring population structure and ancestry.

KASV yields genomic variance estimates that
naturally account for inbreeding
Inbreeding changes the patterns of among and within entry geno-
mic variance and drives deviations from HWE (Bernardo 2002;
Wricke and Weber 2010; Legarra 2016; Isik et al. 2017). A challenge
of partial inbreeding is that researchers may not know or infer
the reference population, making unadjusted genomic variance
estimates hard to interpret (Legarra 2016). In genomic evalua-
tions in plants and animals, the current population is often inter-
preted as the reference population, but this is an inaccurate

Fig. 1. Effect of heritability (h2
g), population size (n), and heterozygosity (H) on the accuracy of genomic heritability estimates. Phenotypic observations

were simulated for 1,000 samples with n¼ 250, 500, and 1,000 (left to right) genotyped for m¼ 5,000 SNPs and the average heterozygosity H ¼ 0%, 25%,

50%, and 75%. The accuracy of genomic heritability estimates (ĥ
2

g) from LMMs fit using the seven relationship matrices is shown for true genomic

heritability (h2
g) ¼ 0:2 (upper panel), 0.5 (middle panel), and 0.8 (lower panel). The upper and lower halves of each box correspond to the first and third

quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The upper whisker extends from the box to the
highest value that is within 1.5 IQR of the third quartile, where IQR is the interquartile range, or distance between the first and third quartiles. The
lower whisker extends from the first quartile to the lowest value within 1.5 IQR of the quartile. The dashed line in each plot is the true value from
simulations.
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Fig. 2. Precision of genomic heritability estimates from simulations. The SDs from the simulation experiments are plotted against heterozygosity (H),
population size (n), and true genomic heritability (h2

g) for each of the seven GRMs evaluated in this study. Points and lines are jittered around each value
of H to improve clarity as many of the lines are parallel and overlap one another.

Fig. 3. Effect of heritability (h2
g), population size (n), and heterozygosity (H) on the predictive ability rðĝ; yÞ. Phenotypic observations were simulated for

1,000 samples with n¼ 250, 500, and 1000 (left to right) genotyped for m¼ 5,000 SNPs and the average heterozygosity H ¼ 0%, 25%, 50%, and 75%. rðĝ; gÞ
estimates from LMMs fit using the seven relationship matrices is shown for true genomic heritability h2

g ¼ 0:2 (upper panel), 0.5 (middle panel), and 0.8
(lower panel). Each box’s upper and lower halves correspond to the first and third quartiles (the 25th and 75th percentiles). The notch corresponds to
the median (the 50th percentile). The upper whisker extends from the box to the highest value within 1.5 IQR of the third quartile, where IQR is the
interquartile range or distance between the first and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5 IQR
of the quartile.
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interpretation unless the population is at HWE and H¼ 0.5 by de-

sign or happenstance. It may be that the only reference popula-

tion that is concretely defined is the sample population. In

connection to Legarra (2016), our work will allow researchers to

directly obtain accurate estimates of the genomic variance in the

sample population regardless of whether the assumptions of

HWE are met.

When the study populations are entirely, or partially, inbred as

in wheat, Arabidopsis, or inbred per se evaluations in hybrid crops,

such as maize, tomato, rice, the covariance among marker effects

increases. Lehermeier et al. (2017) proposed a novel method (termed

method M2) to account for the covariance of marker effects, which

increases the genomic variance estimates in recombinant inbred

line populations. Our analyses of the same flowering time data with

Fig. 4. Cross-validated predictive ability from five case studies and including 22 phenotypic traits using seven GRMs. Cross-validated predictive ability
(rðĝ; yÞ) results are presented from 100 realizations of 80 : 20 cross-validation using the seven relationship matrices for six traits in an apple population
with n¼ 247 entries genotyped at m¼ 2,829 SNPs (Kumar et al. 2015) (first row), four traits in an Arabidopsis population with n¼ 1,057 entries genotyped
at m¼ 193,697 SNPs (Atwell et al. 2010) (second row), three traits in an mouse population with n¼ 1,814 entries genotyped at m¼ 10,346 SNPs (Valdar
et al. 2006) (third row), and five traits in a pig population with n¼ 3,534 entries genotyped at 52,843 SNPs (Cleveland et al. 2012) (fourth row), four traits in
an wheat population with n¼599 entries genotyped at m¼ 1,278 SNPs (Crossa et al. 2010) (fifth row). For the Arabidopsis data set (second row), KY

systematically produced singular systems in sommer::mmer() and prediction accuracy was not estimated for either FT10l or FT16l. Each box’s upper and
lower halves correspond to the first and third quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The
upper whisker extends from the box to the highest value within 1.5 IQR of the third quartile, where IQR is the interquartile range or distance between
the first and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5 IQR of the quartile.
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ASV yielded equivalent results and patterns to Lehermeier et al.
(2017), suggesting that KASV may be providing an estimate of geno-
mic variance that naturally accounts for linkage disequilibrium (LD)
and the covariance of marker effects (Table 1). We believe that the
similarity in results is because LD is associated with the off-
diagonal elements of K, which is taken into account using ASV.

Discussion
GRMs are routine in human, plant, animal, and microbial genet-
ics in agriculture, medicine, and biology for both prediction of ge-
netic values, e.g. breeding values and polygenic scores (Hayes
et al. 2010; Jensen et al. 2012; Bloom et al. 2013; Gowda et al. 2014;
Lipka et al. 2014, 2015; Goddard et al. 2016; Jivanji et al. 2019;

Fig. 5. Cross-validated prediction accuracy from five case studies and including 22 phenotypic traits using seven GRMs. Cross-validated prediction

accuracy (rðĝ; yÞ=
ffiffiffiffiffiffi
ĥ

2
q

) results are presented from 100 realizations of 80 : 20 cross-validation using the seven relationship matrices for six traits in an
apple population with n¼ 247 entries genotyped at m¼2,829 SNPs (Kumar et al. 2015) (first row), four traits in an Arabidopsis population with n¼ 1,057
entries genotyped at m¼ 193,697 SNPs (Atwell et al. 2010) (second row), three traits in an mouse population with n¼ 1,814 entries genotyped at
m¼ 10,346 SNPs (Valdar et al. 2006) (third row), and five traits in a pig population with n¼ 3,534 entries genotyped at 52,843 SNPs (Cleveland et al. 2012)
(fourth row), four traits in an wheat population with n¼ 599 entries genotyped at m¼ 1,278 SNPs (Crossa et al. 2010) (fifth row). For the Arabidopsis data
set (second row), KY systematically produced singular systems in sommer::mmer() and prediction accuracy was not estimated for either FT10l or FT16l.
Each box’s upper and lower halves correspond to the first and third quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the
50th percentile). The upper whisker extends from the box to the highest value within 1.5 IQR of the third quartile, where IQR is the interquartile range
or distance between the first and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5 IQR of the quartile.
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Pincot et al. 2020; Petrasch et al. 2021; Fan et al. 2021), and for ac-
counting for population structure and relatedness in marker-trait
association analyses (Kang et al. 2010; Yang et al. 2010, 2011; Tian
et al. 2011; Peiffer et al. 2014; Spindel et al. 2016; Alqudah et al.
2016; Pincot et al. 2018; Ferguson et al. 2021; Freebern et al. 2020).
As advocated by Speed and Balding (2015) and Legarra (2016), the
ragged diagonal elements of KASV equal 1, on average, and the
off-diagonal elements equal 0, on average. ASV directly yields ac-
curate estimates of genomic heritability in the observed popula-
tion and can be used to adjust deviations that arise from other
commonly used methods for calculating genomic relationships
regardless of the population constitution, such as inbred lines
and F1 hybrids, unstructured GWAS populations, and animal
herds or flocks (Fig. 1).

The interpretation of genomic variance and heritability esti-
mates was systematically affected by the available methods used
to estimate K. The bias that we show in this paper is independent
of sampling error (large data sets mitigate sampling error) and
exists even for enormous data sets. We derived a new relationship
matrix, KASV, using the ASV that yielded consistent variance com-
ponent estimates. We also derived a correction factor
ðn� 1Þ�1trðKÞ that allowed accurate estimates of genomic herita-
bility in the observed population from LMM analyses using various
software packages (Clifford and McCullagh 2006; Endelman 2011;
Zhou and Stephens 2012; P�erez and de Los Campos 2014; Akdemir
and Okeke 2015; Covarrubias-Pazaran 2016; Bürkner 2017; Runcie
and Crawford 2019; Butler 2021; Caamal-Pat et al. 2021).

Adopting experiment designs that enable screening of a greater
number of entries n yield more precise estimates of key variance
components in research programs (Smith et al. 2006; Moehring
et al. 2014; Borges et al. 2019; Mackay et al. 2019; Hoefler et al. 2020)
and ASV can ensure that those estimates are accurate and compa-
rable across populations. In many plant quantitative genetic

studies, the population sizes are n � 500, which may pose a gen-
eral problem for variance component and ratio estimation as
those variance components can have high sampling variability be-
tween replicated experiments (Fig. 1). For large populations, com-
mon in human and domesticated animal studies, it is possible to
precise (low variance) but inaccurate (high bias) estimates of r2

g

and h2
g resulting from different relationship matrices, unless the

assumptions of HWE happen to be perfectly met in the study pop-
ulation.

We did not explore differences that arise from population
structure or rare alleles, which is a limitation to our simulation
approach (Astle et al. 2009; Lee et al. 2012, 2013; Speed et al. 2012).
We believe, but have not demonstrated, that our ASV approach
could be applied to many of the existing methods that have been
proposed to handle these real-world situations. For example, Lee
et al. (2012) propose that K be calculated among different sets of
SNPs with similar MAFs and then the genomic variance for each
MAF bin are jointly estimated and summed to account for unique
variation attributable to common vs rare alleles. Speed et al.
(2012) proposed a scaling factor for each SNP based on its own
sample variance (varðxlÞs), where s ranges from �2 to 2 and xl is a
vector of marker genotypes at the lth locus (Speed et al. 2012; Lee
et al. 2013). This means that SNPs are either being centered and
scaled (s ¼ –1), which is equal to KGN, or that SNPs are being cen-
tered but not scaled (s¼ 0). While Speed et al. (2012) indicate that
s ¼ –1 yields more stable estimates of h2

g, it is not entirely clear
how to optimally select a value of s for each locus.

Our simulations exposed systematic differences between (2)
and other forms of K. Our simulation and empirical experiments
also suggested limited, if any, differences between genomic vari-
ance estimates from five other commonly cited GRMs (Fig. 1;
Table 1). The lack of significant differences is perturbing. In every
case, there are multiple reasons given for using one relationship

Table 1. Genomic heritability (ĥ
2

g) estimates for the 22 traits from five case studies, including six traits in an apple population with
n¼ 247 entries genotyped at m¼ 2,829 SNPs (Kumar et al. 2015), four traits in an wheat population with n¼ 599 entries genotyped at
m¼ 1,278 SNPs (Crossa et al. 2010), four traits in an Arabidopsis population with n¼ 1,057 entries genotyped at m¼ 193,697 SNPs (Atwell
et al. 2010), and three traits in an mouse population with n¼ 1,814 entries genotyped at m¼ 10,346 SNPs (Valdar et al. 2006), and five
traits in a pig population with n¼ 3,534 entries genotyped at 52,843 SNPs (Cleveland et al. 2012) using the seven GRMs compared in this
article.

Case study Trait ASV Forni et al.
(2011)

VanRaden
(2008)

Astle and
Balding
(2009)

Yang et al.
(2010)

Endelman
and

Jannink (2012)

IBS

Apple WT 0.48 0.48 0.49 0.51 0.44 0.50 0.59
GRE 0.51 0.51 0.52 0.52 0.53 0.53 0.62
FF 0.77 0.77 0.78 0.75 0.70 0.79 0.84
CRI 0.54 0.54 0.55 0.50 0.54 0.56 0.64
JUI 0.47 0.47 0.47 0.44 0.41 0.48 0.57
FIN 0.19 0.19 0.19 0.20 0.21 0.20 0.26

Arabidopsis FT10l 0.92 0.92 0.76 0.77 – 0.76 0.83
FT10sd 0.27 0.27 0.09 0.09 0.09 0.09 0.14
FT16l 0.92 0.92 0.75 0.76 – 0.76 0.83
FT16sd 0.55 0.55 0.26 0.26 0.29 0.26 0.36

Mouse BMI 0.21 0.21 0.21 0.23 0.23 0.21 0.26
Length 0.35 0.35 0.34 0.34 0.34 0.35 0.41
Weight 0.60 0.60 0.59 0.59 0.60 0.60 0.66

Pig T1 0.03 0.03 0.03 0.04 0.04 0.03 0.05
T2 0.27 0.27 0.26 0.27 0.31 0.26 0.36
T3 0.23 0.23 0.22 0.27 0.23 0.22 0.31
T4 0.35 0.35 0.34 0.35 0.41 0.34 0.45
T5 0.39 0.39 0.38 0.38 0.46 0.38 0.49

Wheat GY-E1 0.53 0.53 0.35 0.33 0.39 0.36 0.46
GY-E2 0.49 0.49 0.32 0.29 0.41 0.34 0.42
GY-E3 0.40 0.40 0.24 0.27 0.24 0.25 0.33
GY-E4 0.45 0.45 0.29 0.27 0.29 0.30 0.38
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matrix over any other that do not seem to play any role in either
bias (accuracy) or variance (precision) of the genomic variance
component estimates. Both (2) and (9) have the necessary nu-
meric properties advocated by Speed and Balding (2015) that en-
able the variance components from LMM (3) to be interpreted
directly as the genomic variance in the sampled population. We
recommend that the ASV approach be considered for adoption by
genetic researchers working in humans, microbes, or (un)domes-
ticated plants and animals.

Data availability
The input and output data from simulations and analyses have
been deposited, along with the code for the simulations, in a pub-
lic Zenodo repository (https://doi.org/10.5281/zenodo.6211739).
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