
fninf-11-00061 October 14, 2017 Time: 14:2 # 1

METHODS
published: 17 October 2017

doi: 10.3389/fninf.2017.00061

Edited by:
Pedro Antonio Valdes-Sosa,

Joint China-Cuba Laboratory
for Frontier Research in Translational

Neurotechnology, China

Reviewed by:
Feng Liu,

Tianjin Medical University General
Hospital, China
Diego Vidaurre,

University of Oxford, United Kingdom

*Correspondence:
Regina J. Meszlényi

meszlenyi.regina@ttk.mta.hu

Received: 26 April 2017
Accepted: 03 October 2017
Published: 17 October 2017

Citation:
Meszlényi RJ, Buza K and

Vidnyánszky Z (2017) Resting State
fMRI Functional Connectivity-Based
Classification Using a Convolutional

Neural Network Architecture.
Front. Neuroinform. 11:61.

doi: 10.3389/fninf.2017.00061

Resting State fMRI Functional
Connectivity-Based Classification
Using a Convolutional Neural
Network Architecture
Regina J. Meszlényi1,2*, Krisztian Buza2,3 and Zoltán Vidnyánszky1,2

1 Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary, 2 Brain Imaging
Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary, 3 Knowledge
Discovery and Machine Learning, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Machine learning techniques have become increasingly popular in the field of resting
state fMRI (functional magnetic resonance imaging) network based classification.
However, the application of convolutional networks has been proposed only very
recently and has remained largely unexplored. In this paper we describe a convolutional
neural network architecture for functional connectome classification called connectome-
convolutional neural network (CCNN). Our results on simulated datasets and a publicly
available dataset for amnestic mild cognitive impairment classification demonstrate that
our CCNN model can efficiently distinguish between subject groups. We also show
that the connectome-convolutional network is capable to combine information from
diverse functional connectivity metrics and that models using a combination of different
connectivity descriptors are able to outperform classifiers using only one metric. From
this flexibility follows that our proposed CCNN model can be easily adapted to a
wide range of connectome based classification or regression tasks, by varying which
connectivity descriptor combinations are used to train the network.

Keywords: classification, convolutional neural network, Dynamic Time Warping, resting state connectivity,
connectome, functional magnetic resonance imaging

INTRODUCTION

Resting state functional MRI (rs-fMRI) (Biswal et al., 1995) has become the most popular
techniques for the investigation of the human brain’s functional connectivity (Greicius et al., 2003;
Fox et al., 2009; Biswal et al., 2010; Smith et al., 2011). Studying the resting state fMRI functional
connectome offers a unique way to understand large scale functional organization of the human
brain in health and disease. It has been shown recently that the efficacy of resting state fMRI
network based classification can be improved substantially using machine learning techniques
and raised the intriguing possibility of application of machine learning for fast and objective
diagnosis of mental disorders such as autism (Kassraian-Fard et al., 2016; Abraham et al., 2017),
schizophrenia (Arbabshirani et al., 2013; Kim et al., 2016), major depressive disorder (Rosa et al.,
2015), and cognitive impairment (Liem et al., 2017).

Vast majority of these machine learning studies used traditional algorithms for classification,
such as support vector machines (SVMs) and least absolute shrinkage and selection
operator (LASSO). In a recent review encompassing 77 MRI based machine learning papers
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(Brown and Hamarneh, 2016) more than half of the articles
proposed to use SVMs. SVMs has many advantages especially
in relatively small datasets, as these models can resist overfitting
well (Cortes and Vapnik, 1995). Another popular method applies
LASSO, which is a linear regression technique that enforces
sparsity on its weights (Tibshirani, 1996). Sparsity has dual
advantages, as it prevents overfitting in high-dimensional feature-
spaces and creates well-interpretable results by selecting a
relatively low number of important features. LASSO variants
can be also used directly in connectivity matrix estimation prior
to classification to prune less important connections or even
regions and thus decreasing dimensionality (Pineda-Pardo et al.,
2014; Rosa et al., 2015). However recent developments in deep
learning methods and theory shows that especially in case of
complex high-dimensional datasets such as fMRI data, deep
models have an exponential gain in efficiency over traditional
machine learning models, i.e., from the same amount of training
data, deep neural networks can learn exponentially more complex
output function than traditional linear or kernel methods (Bengio
et al., 2005, 2013; Montúfar et al., 2014; LeCun et al., 2015).

Arguably great potential lies in the application of deep
learning techniques for fMRI based classification (Plis et al.,
2014; Vieira et al., 2017). Indeed, fully connected deep neural
networks were successfully applied for fMRI volume classification
in Jang et al. (2017) as well as for functional connectivity based
classification (Kim et al., 2016). Furthermore, recent results
show that convolutional neural network architectures might also
be used for connectome based classification (Kawahara et al.,
2017), which appears to be especially important in light of the
remarkable success of convolutional neural networks in image
classification and object recognition; e.g., at the famous ImageNet
challenge (Krizhevsky et al., 2012; Szegedy et al., 2015).

However, successful application of deep convolutional
networks for connectome based data classification holds a
number of substantial challenges which must be overcome.
An important requirement of deep learning techniques is the
availability of a large amount of training examples (Krizhevsky
et al., 2012). This appears to be a serious concern since in
most structural and functional MRI studies, the number of
measurements are very low (ranging from couple of dozens to a
few 1000s) as compared to the number of examples in datasets
used for object recognition (e.g., the ImageNet’s 1.2 million
instances). Image classifiers may work extremely well with 10s of
neural layers and millions of trainable weights, however, small
sample size results in overfitting in large networks, even with the
most careful regularization. Therefore, in case of connectome
based applications relatively simple convolutional network
architectures should be designed, in correspondence with the
amount of the available data.

Another key to the success of deep convolutional networks is
the weight sharing (Bengio and Lecun, 1995) between different
image regions. In particular, convolutional networks are able to
learn properties of a given pixel’s local neighborhood structure
(usually 3× 3 or 5× 5 pixels), independent from the localization
of that pixel. Sharing these weights simplifies the network and
makes it robust against overfitting by reducing the number of
trainable weights: in case of a fully connected layer design on an

image with, e.g., 128× 128 pixels and 64 output neurons there are
more than one million trainable weights, while a convolutional
layer with 5× 5 patches and 64 filters has only 1600. Additionally,
the learnt representation becomes shift invariant, which is a
crucially important factor in object recognition. With appropriate
architecture or training design other types of invariance can
be achieved like rotational or scale invariance (Xu et al., 2014;
Marcos et al., 2016), that may also be beneficial for the results in
several applications.

The task of classification based on brain connectivity data
shows remarkable similarities to image classification. Both
structural and functional connectomes can be represented as
matrices, where each row and each column corresponds to a
voxel, or in most cases a brain region (ROI) from a given
parcellation scheme, and the value of the (i,j)-th entry of this
matrix describes the connectivity between the i-th and j-th brain
region. These matrices can be treated as images, with matrix
entries analogous to pixels. However, the structure of the local
neighborhood in connectome data is not equivalent to traditional
image datasets, patterns we try to recognize in this case are
by no means shift invariant, and local neighborhoods (3 × 3
or 5 × 5 pixel patches) mean little as the ordering of ROIs is
not necessarily interpretable. In connectome data based learning
one should consider the graph structure behind the connectivity
matrix to determine how to share weights, i.e., as brain graphs are
usually fully connected, the neighborhood of one ROI contains
every other region, and convolutional filters should be designed
to take this into account.

Application of convolutional architectures to connectome
data is in its very early stage (for review see, Vieira et al., 2017). In
a recent study (Kawahara et al., 2017), the authors proposed three
types of convolutional filters for structural connectome data,
edge-to-edge, edge-to-node and node-to-graph filters, which use
different combinations of row and column wise convolutional
filters. Their BrinNetCNN architecture takes tractography-based
(structural) connectivity matrices as input, and is used to
estimate continuous variables like subject age and behavioral
metrics. However, an important feature of convolutional network
architectures was not exploited in these study. Convolutional
networks were designed to be able to treat not only single
grayscale images, but to combine information from color (RGB)
channels (Krizhevsky et al., 2012; LeCun et al., 2015): the
different channels hold information about different aspects of
the same “pixel,” and this information is smartly combined
together with learned weights in the network. Similarly these
networks can straightforwardly combine connectivity matrices
of different metrics, while keeping the information about which
features correspond to the same ROI pairs (i.e., which pixel)
by treating connectivity matrices as color channels in standard
image processing tasks.

In the present study we aimed at investigating the application
of convolutional networks for functional connectome
classification using a simple connectivity fingerprint-based
convolutional filter. In our CCNN model we treated one ROIs
whole connectivity fingerprint, i.e., one row (or column) of the
matrix, as a unit, so that those weights can be shared across the
whole connectivity matrix. The rationale behind our approach
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is the following: if we assume that some (or many) regions
show altered connectivity between the two classes we try to
differentiate, the learned convolutional filter will distribute
large weights to those ROIs, i.e., when we convolve every
ROIs’ fingerprint (every row of the matrix) with the filter, the
connectivity strength with those altered regions will have large
influence on the output. Our proposed filters output one value for
each ROI’s connectivity fingerprint and the number of trainable
weights equals to the number of ROIs. Based on Kawahara
et al. (2017) one output value per ROI can be calculated by
sequentially applying an edge-to-node and a node-to-graph filter
to the connectivity matrix. However, using this filter combination
requires the training of three times as many weights as ours,
largely increasing the size the neural network model that may
lead to the aforementioned disadvantages (overfitting) when the
number of training examples is low.

In addition to implementing our convolutional filter, we also
tested the hypothesis that combination of different functional
connectivity metrics will improve classification accuracy. We
assumed that even though using combined inputs naturally
increase the number of trainable weights of the model, adding
new sources of information might still increase classification
performance. Traditionally, functional connectivity strength is
measured using correlation coefficient calculation. However,
several additional methods have been proposed, that can grasp
the dynamic properties of functional connectivity (Salvador et al.,
2005; Fransson and Marrelec, 2008; Chang and Glover, 2010). For
the purpose of classification it is desirable that the connectivity
matrix is stable between measurements, but it has been shown
that correlation coefficients between resting state time-series are
dynamically changing due to alternating brain states (Chang and
Glover, 2010; Allen et al., 2014; Chen et al., 2015). To overcome
this problem, we have recently proposed Dynamic Time Warping
(DTW) distance (Meszlényi et al., 2016b, 2017) and warping path
length (Meszlényi et al., 2016a) as new metrics for functional
connectivity strength and phase stability. As DTW distance can
handle and correct for dynamically changing phase-relationships
between brain regions, we were able to demonstrate that DTW
distance based connectivity strength calculation indeed results
in stable connectivity between measurements (Meszlényi et al.,
2017), while the length of the warping path provides important
additional information about connection stability (Meszlényi
et al., 2016a). In our previous papers we also showed that both
DTW distance and warping path length can be successfully
used for connectivity based classification (Meszlényi et al.,
2016a,b, 2017). As DTW distance and warping path length
describe two complementary aspects of connectivity, in the
current study we examine the effect of combination of different
functional connectivity metrics on the classification accuracy
of the convolutional network by combining input from these
two measures, and we compare its classification performance to
results based on single connectivity features calculated with three
metrics: correlation, DTW distance, and warping path length.

In this paper, we demonstrate the feasibility of our
convolutional model, the CCNN on a simulated dataset and
test our proposed approach on a publicly available datasets
for amnestic mild cognitive impairment (aMCI) classification

and compared its performance to an architecturally matched
traditional neural network (with one hidden layer) and a deep
neural network, in addition to more conventional linear SVM
and LASSO models. We demonstrate that when the models
are trained on single connectivity descriptors, the connectome-
convolutional network architecture outperforms both the simple
neural network and the deep model in all cases and achieves
similar results to SVM and LASSO, while the overall best
performing model is the CCNN that use a combination of
different connectivity metrics.

MATERIALS AND METHODS

Amnestic Mild Cognitive Impairment
Dataset
We used publicly available data from Consortium for Reliability
and Reproducibility (CoRR) (Zuo et al., 2014): the LMU 2
and 3 dataset (Blautzik et al., 2013a,b). The datasets contain
forty-nine subjects who are older than 50 years [22 males, age
(mean ± SD): 68.6 ± 7.3 years, 25 diagnosed with aMCI], each
subject participated at least two 366-sec-long resting-state fMRI
measurements, the subjects have 146 resting-state measurements
in total.

The dataset was collected at the Institute of Clinical Radiology,
Ludwig Maximilian University of Munich, Munich, Germany, on
a three T Philips Achieva scanner (Best, The Netherlands). High-
resolution anatomical images were acquired for each subject
using a T1-weighted 3D TFE sequence (1 mm isotropic voxels;
TR = 2400 ms; FOV = 256 mm; acceleration factor = 2).
A total of 120 functional images over 366 s were collected with
a BOLD-sensitive T2∗ weighted GRE-EPI sequence (4 mm slice
thickness with 3 mm× 3 mm in-plane resolution; TR= 3000 ms;
TE = 30 ms; FOV = 192 mm). 28 axial slices were acquired in
ascending acquisition order covering the whole brain. Further
details are available on the website of the datasets1,2.

Preprocessing
Preprocessing of the imaging data was performed using the
SPM12 toolbox (Wellcome Trust Centre for Neuroimaging)
and custom-made scripts running on MATLAB 2015a (The
MathWorks, Inc., Natick, MA, United States). Each subject’s
functional images were motion-corrected, the T2∗ images from
all sessions were spatially realigned to the mean T2∗ image.
Then, EPI images were spatially smoothed using a 5 mm full-
width half maximum Gaussian filter. The anatomical T1 images
were coregistered to the mean functional T2∗ images used in the
realignment step. The coregistered T1 images were segmented
using the unified segmentation and normalization tool of SPM12.
The resulting gray matter (GM) mask was later used to restrict the
analysis of the T2∗ images to GM voxels; while the white matter
(WM) and cerebrospinal fluid (CSF) masks were used to extract
nuisance signals that are unlikely to reflect neural activity in
resting-state time-series. The realigned and coregistered images

1http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_2.html
2http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_3.html
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were normalized to the MNI-152 space using the transformation
matrices generated during the segmentation and normalization
of the anatomical images. After regressing out the head-motion
parameters, the mean WM and the mean CSF signals, residual
time courses from all GM voxels were band-pass filtered using
a combination of temporal high-pass (based on the regression
of ninth-order discrete cosine transform basis set) and low-pass
(bidirectional 12th-order Butterworth IIR) filters to retain signals
only within the range of 0.009 and 0.08 Hz (Meszlényi et al.,
2017).

Functional Connectivity Calculation
To calculate ROI-based whole-brain functional connectivity we
used the Willard functional atlas of FIND Lab, consisting of
499 functional regions of interest (Richiardi et al., 2015) to
obtain 499 functionally meaningful averaged BOLD signals in
each measurement. From this 499 time series we can calculate
full connectivity matrices leading to 499 × 498/2 = 124251
independent pairwise connectivity features.

Functional connectivity can be characterized with various
metrics including traditional correlation coefficient, Dynamic
Time Warping distance (Meszlényi et al., 2016b, 2017), and
warping path length (Meszlényi et al., 2016a). For a brief
description of the DTW based methods see Supplementary
Material.

Simulated Dataset
To demonstrate the strengths of our proposed convolutional
filters, we created an artificial dataset of connectome matrices.
As a base connectome we choose a random correlation based
functional connectome of a healthy subject and we created
four modified versions of this healthy connectome based on
a connectome matrix of a patient with aMCI. We generated
modifications by replacing the rows and columns corresponding
to randomly chosen ROIs of the healthy connectome with the
rows and columns of the aMCI connectome, specifically we
created connectomes with 1, 5, and 10 ROIs replaced.

From the unchanged healthy connectome and a modified
connectome we created 75–75 replicas and added random
Gaussian noise to the connectomes to generate 150 unique
instances, taking into account that the matrices have to stay
symmetrical (i.e., we randomly generated noise matrices and
symmetrized them by adding its transpose to it). We added noise
with different weights, i.e., we normalized the noise values to have
a maximal absolute value of one (standard deviation equals to
0.17) and we added noise with weights ranging from 1 to 10. With
the three modification levels and 10 weight-levels of added noise
we created altogether thirty simulated datasets.

Classification
We aimed to classify simulated datasets and aMCI based
on functional connectivity data. To estimate classification
performance, we applied cross-validation. In the aMCI dataset,
there are 146 instances, but measurements of the same subjects
are not independent, therefore we took this into account during
cross-validation. In this dataset, we have measurements from 49
subjects, so we applied a seven fold cross-validation: we randomly

divided the 49 subjects to seven folds, and each fold contains all
the measurements of the subjects assigned to the fold. We used
this same partitioning to evaluate all classifiers. In the simulated
datasets we have 150 unique instances therefore we applied a
simple 10-fold cross-validation.

We asses classification performance primarily with accuracy
(i.e., proportion of correctly classified instances) as the classes are
balanced in both of our classification tasks, but to present more
detailed information, we calculated the area under the receiver
operator characteristics curve (AUC) as well.

Connectome-Convolutional Neural Network
To achieve better classification performance we designed a novel
convolutional network architecture, the CCNN for functional
connectivity pattern classification. Traditional convolutional
networks (Krizhevsky et al., 2012; LeCun et al., 2015) usually
apply square weight patches (3 × 3 or 5 × 5 filters) for
convolution, as for image classification, important information
is contained in square neighborhoods of pixels. For functional
connectivity classification, we arranged the connectivity features
into 499× 499 matrices (as we consider 499 ROIs), and we apply
convolution in two layers, first line-by-line (1× 499 convolution
filters), than by column (499× 1 filters). The second convolution
layer provides input for a fully connected hidden layer with 96
neurons that feeds two output neurons corresponding to the two
classes (see Figure 1C).

In the first convolutional layer we train 64 filters, while in
the second convolutional layer has 128 filters. This means that
the first convolutional layer extracts 64 features per ROI, i.e., we
calculate 64 differently weighted sums of each ROI’s connectivity
fingerprint. The second layer reduces the dimensionality further:
it outputs 128 feature for each instance, and this 128 dimensional
feature vector serves as input for the fully connected layer. As
we have around 150 instances in both datasets, this means that
the number of extracted features is approximately matched to
the number of instances. In the convolutional neural network,
we applied rectified linear unit (ReLU) (Nair and Hinton, 2010)
non-linearity and on the output layer we apply the softmax
function (Bridle, 1990) to calculate the probability of each
instance belonging to a class. In binary classification, we could
use only one output neuron to determine the probability of an
instance belonging to the positive class, however our adopted
approach with one neuron per class and a softmax function can
be straightforwardly implemented for multiclass classification
tasks as well. To train a robust classifier, we applied drop-out
regularization (Wager et al., 2013; Srivastava et al., 2014) with
keeping probability of 0.6 and an Adam optimizer (Kingma and
Ba, 2014).

In case of combined CCNN classifiers the input consists
of two 499 × 499 matrices of connectivity features, each
of which can be considered as a “channel,” and we apply
the convolution to both “channels,” i.e., to the two matrices
simultaneously, similarly to how convolutional layers work on
the RGB channels of colored images. With this approach we
can explicitly inform the network which connectivity features
belong to the same ROI pair, so the algorithm can take advantage
of this additional information as well. It is worth to note
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FIGURE 1 | (A) Architecture of the simple neural network classifier. (B) Architecture of the deep neural network classifier. (C) Architecture of the proposed
connectome-convolutional neural network (CCNN) model.

that the size of the CCNN increases less than 1% with the
addition of a new channel. The original (one-channeled) network
has altogether 499∗64+499∗64∗128+128∗96+96∗2 = 4,132,224
trainable weights plus 290 biases, while with two channels, the
CCNN has 2∗499∗64+499∗64∗128+128∗96+96∗2 = 4,164,160
trainable weights plus the same 290 biases.

The proposed connectome-convolutional neural network
(CCNN) was implemented in Python using TensorFlow, and the
source code of the model is available on GitHub3.

Baseline Classification
As a simple baseline of random classification, we applied a
binomial method described in Pereira et al. (2009). In two class
classification, the random classifier has p = 50% chance of
predicting the true label, therefore the probability of obtaining
not more than k correct labels out of n trials can be calculated
from the cumulative binomial distribution function (Eq. 1):

Eq. 1.:

FBinom (n, k, p) =

k∑
i=0

(n
i ) pi

· (1− p)n−i

For threshold of significance, we choose the 95 percentile,
i.e., we searched for the k value, where FBinom(n, k, 0.5) ≈ 0.95,
from that the baseline accuracy can be calculated as k/n. In
case of the simulated dataset the calculated baseline accuracy
is 56.67% with FBinom(150, 85, 0.5) = 0.959, while for the

3https://github.com/MRegina/connectome_conv_net

aMCI dataset the threshold of significance is 56.85% with
FBinom(146, 83, 0.5) = 0.959.

In the classification of the aMCI dataset we also tested
how traditional machine learning methods perform compared
to the CCNN method. We conducted experiments with two
algorithms that can handle the curse of dimensionality with
feature selection, namely a linear SVM classifier combined with
ANOVA F-test based feature selection described in Abraham
et al. (2014) and a LASSO model also frequently used in fMRI
based classification (Li et al., 2009; Ryali et al., 2010; Rosa et al.,
2015).

As the CCNN architecture is trained to extract 128 features
from the connectivity data, in case of linear SVM classification,
we selected the best 128 connectivity features based on the
ANOVA F-tests. We performed linear SVM classification on the
selected features with complexity parameter C = 0.05. In case
of the LASSO model based classification, we ran experiments
with regularization hyper-parameter λ = 0.0008 to enforce the
selection of approximately 128 connectivity features. Our hyper-
parameter selection method is described in more detail in the
Supplementary Material.

Simple Neural Network Classifier
For a baseline classification result that can be architecturally
matched to the CCNN method, we created a traditional neural
network (Widrow and Lehr, 1990), containing an input layer of
124251 input neurons (the number of independent functional
connectivity features), one hidden layer with 128 neurons (equal
to the number of features extracted by the CCNN) and two output

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2017 | Volume 11 | Article 61

https://github.com/MRegina/connectome_conv_net
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-11-00061 October 14, 2017 Time: 14:2 # 6

Meszlényi et al. RsfMRI Connectivity-Based Classification with CCNN

neurons for the two classes (see Figure 1A). The hidden layer
has a sigmoid non-linearity and on the output layer we apply
a softmax function to calculate the probability of each instance
belonging to a class. The network is trained with stochastic
gradient descent and cross-entropy as loss function (Goodfellow
et al., 2016). From now on we will refer to this network as the
simple neural network.

The number of trainable weights in this network equals to
124251∗128+128∗2 = 15,904,384 plus 130 biases, almost four
times more than in the CCNN model. In case of combined
classifiers, where we aim to learn from two connectivity
descriptors, thus the number of input neurons equals to
2∗124251 = 248502, therefore the number of trainable weights
nearly doubles: 248502∗128+128∗2 = 31,808,512 plus the 130
biases.

Deep Neural Network Classifier
To demonstrate how our convolutional architecture performs
compared to a state-of-the-art neural network architecture, we
created a multi-layered (deep) neural network. The input layer
is similar to the simple neural network, it consists of 124251
or 2∗124251 neurons depending on whether we use data from
a single connectivity descriptor, or we combine two metrics.
The first hidden layer has 128 neurons, i.e., this layer extracts
128 features per instance, similar to the convolutional layers in
our CCNN architecture. The second hidden layer contains 96
neurons similarly to the convolutional networks’ fully connected
layer, and lastly the multi-layered neural network has the same
two output neurons as both the simple and the convolutional
architecture (see Figure 1B). In this neural network classifier
we applied ReLU non-linearities in the hidden layers and
softmax at the output layer, and drop-out regularization with
0.6 keeping probability and the Adam optimizer similarly to
the convolutional neural network, i.e., the primary source of
the differences between these two models is the convolutional
architecture. As the neural network is multi-layered and we
applied all the aforementioned deep learning techniques in its
training, we will refer to it as the deep neural network classifier
throughout the paper.

The number of trainable weights in the deep neural network is
124251∗128+128∗96+96∗2= 15,916,608 plus 226 biases, slightly
more than in the simple neural network. In case of combined
input data the number of trainable weights almost doubles here
as well: 248502∗128+128∗96+96∗2 = 31,820,736 plus the 226
biases.

RESULTS

In the results section we describe classification results with
two performance metrics: accuracy and area under the receiver
operator characteristics curve (AUC). To determine if the
difference between two classifiers’ performance is significant,
we applied a binomial test (Salzberg, 1997), we consider the
difference significant if the calculated p-value is lower than 0.05.
We also visualized what the best performing classifiers learned
from the available data.

Classification of Simulated Data
On Figure 2 we summarized the classification accuracies
achieved by a simple neural network, the deep network and our
proposed connectome-convolutional architecture as a function
of the number of modified ROIs and the level of noise. As
expected, the results revealed that classification performance of
the simple neural network increases with the number of modified
ROIs, while it decreases as the weight of added noise increases.
The fully connected deep neural network can clearly outperform
the simple architecture in most cases, but interestingly it shows
below or near random performance when the noise level is
relatively low, likely due to overfitting. The results clearly show
that the CCNN architecture has the best overall performance,
significantly outperforming even the deep neural network in
several cases. As weight sharing considerably reduces the number
of trainable weights, the CCNN does not suffer from overfitting
at low noise levels: the CCNN achieves 100% accuracy in these
cases.

Besides demonstrating the CCNN’s remarkable performance
and robustness, we also showed that based on the first layer’s
weights we can indeed recover which ROIs played important
role in the classification. We investigated our hypothesis that
the learnt convolutional filters should distribute high absolute
value weights to the ROIs which behave differently between
classes, i.e., those ROIs that have the largest sum of absolute
values through the first convolutional layer’s 64 filters should
overlap with the ones that were actually modified in the simulated
datasets. Naturally we should keep in mind that as the CCNN
has more than one layers, the fact that some ROIs may not have
a large sum of weights in the first layer does not mean that
they do not play significant role in the classification, as filter
outputs are further weighted in the next layer. We evaluated
our hypothesis at the noise level of five, where still all CCNNs
are able to classify the data better than random, but the added
noise has a large weight. Our experiment showed that based
on the dataset, where only one ROI was modified between the
classes, the connectome-convolutional architecture distributed
by far the largest absolute values to this altered ROI. In case of
the dataset where five ROIs were modified, the CCNN model
identified four of these among the five ROIs with the largest
sum of absolute weight. In the dataset with 10 ROIs altered, also
four ROIs could be recovered. The learnt weights of the first
layer of the connectome-convolutional networks are visualized in
Supplementary Figure 2.

Amnestic Mild Cognitive Impairment
Classification
Table 1 shows the performance of the examined machine
learning methods for aMCI classification – the linear
SVMs, LASSO models, simple neural networks, deep neural
networks and CCNNs – using various feature sets: pairwise
correlation coefficients, DTW distances and warping path length
features, and the combination (i.e., union) of the latter two
feature sets.

First we compared classification performances to the random
baseline, i.e., the threshold of significance in accuracy is 56.85%.
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FIGURE 2 | Accuracies of classification of simulated data with the simple (green), deep (blue), and connectome-convolutional (red) neural networks. The black
dashed line represents the random baseline, significant (p < 0.05) differences between the deep and the connectome-convolutional networks’ results are denoted
with red stars. (A) Classification accuracies on the dataset with one ROI modified. (B) Classification accuracies on the dataset with five ROIs modified.
(C) Classification accuracies with 10 ROIs modified.

TABLE 1 | Performance measures of the examined machine learning methods
based on correlation, DTW distance, DTW path length, and the combination (i.e.,
union) of the latter two feature sets.

Path DTW+Path

CORR DTW length length

SVM

Accuracy (%) 54.1 67.1 64.4 66.4

AUC 0.541 0.672 0.644 0.664

LASSO

Accuracy (%) 60.3 59.6 69.9 69.9

AUC 0.602 0.595 0.699 0.699

Simple net

Accuracy (%) 50 52.1 57.3 56.2

AUC 0.515 0.505 0.59 0.588

Deep net

Accuracy (%) 50.7 61.6 62.3 61.0

AUC 0.533 0.634 0.635 0.611

CCNN

Accuracy (%) 53.4 65.1 64.4 71.9

AUC 0.521 0.684 0.672 0.746

Based on correlation, only the LASSO model could achieve
significance, however, Dynamic Time Warping based measures
did outperform this threshold with almost every machine

learning method. Namely DTW distance based classification
was successful with SVM, LASSO and both deep and CCNNs,
while path length based classification achieved significant results
with all the tested classifiers. The conventional machine learning
methods, namely SVM and LASSO models achieved similar
results on the single metric (correlation, DTW distance, and
path length) datasets, and none of their results is significantly
different from the CCNN method’s performance (p > 0.12 in all
cases). It is also interesting to compare whether the differences
in the performance of the simple neural model and the CCNN
are significant. We found no difference in case of the correlation
based classifiers (p = 0.32), and also in case of the path length
based classifier (p = 0.15) although in this case the CCNN’s
accuracy is substantially (7%) higher than that of the simple
neuronal network. The difference in classification performance
was significant in case of the DTW distance based classifiers with
p = 0.012. When comparing results of the deep and the CCNN,
we found that even though the CCNN systematically outperforms
the deep model, these differences are not significant (p > 0.2 in all
three cases).

Next we tested whether training CCNNs using the
combination of the connectivity feature sets based on DTW
distance and warping path length leads to better classification
performance compared with the previous models. The combined
CCNN model achieved higher classification performance
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than the threshold of random classification. It significantly
outperformed the simple neural network trained on combined
features (p = 0.0034) and most importantly the difference
between the deep and the CCNNs’ results also showed high
significance (p = 7.7e-4). On the combined DTW distance and
warping path length dataset the SVM’s accuracy is 5.5% lower
than the CCNN result, while in case of the LASSO classifier, the
model has 2% lower accuracy than the CCNN, however, neither
of these differences are significant (p > 0.1). We also compared
the performance of the CCNN trained on combined data with the
performance of CCNNs trained on only one type of connectivity
features. Classification performance of the combined model
was significantly higher than that of the warping path length
based connectome-convolutional network (p = 0.031), but did
not differ significantly from the DTW distance based model’s
performance (p = 0.092). With the results of the combined
models, the overall best classification performance was achieved
by the CCNN trained on both DTW distance and warping path
length data.

As we demonstrated with the simulated dataset, from the
weights of the CCNN, we can identify which ROIs played
important role in the classification. As the combined DTW
distance and path length based CCNN model achieved the overall
best performance, we analyzed the weight distribution of this
model, i.e., the 2∗64∗499 weights of the first convolutional layer,
from which the first 64∗499 weights correspond to DTW distance
features (Figures 3A,C), while the second 64∗499 weights
correspond to warping path length values (Figures 3D,F). For
the sake of biological interpretation we aimed to incorporate all
meaningful information to the learned weights, i.e., we trained
our CCNN architecture on the combined feature set of the whole
dataset.

In Figures 3B,E it is clearly visible that some ROIs have
high absolute value weights in most filters, i.e., connectivity with
these brain areas has an important effect on the output of the
first layer. We note that the most important ROIs of DTW and
warping path length have no significant overlap. Although DTW
distance and warping path length can correlate, they measure
substantially different aspects of co-activity: DTW distance
measures connectivity strength, whereas waring path length
quantifies the stability of the connection, i.e., how frequently
the phase difference changes between ROIs. From the DTW
distance based features the right amygdala and hippocampus,
bilateral caudate and left putamen, anterior and medial cingulate
cortex, dorsolateral prefrontal cortex, temporal and occipital
regions show alterations between the two classes (Figure 4A).
From path length features, the medial regions of bilateral
thalamus, left caudate, posterior cingulate cortex and precuneus,
dorsolateral prefrontal cortex, insula and other occipital and
frontal areas play important role in classification according to
aMCI (Figure 4B).

DISCUSSION

The results of the present study clearly show that using
convolutional neural architectures for connectome classification

has great potential, even in case of relatively small sample sizes.
We demonstrated that our proposed CCNN architecture can
significantly outperform not only a traditional neural network,
but a deep neural network model as well. With the simulation
study we were able to prove that the connectome-convolutional
network is much less prone to overfitting than the deep model
while it systematically outperforms both deep and simple neural
architectures at different noise and modification levels. We also
showed that by analyzing which brain regions got the largest
absolute weights in the convolutional filters of the first layer, we
can indeed recover ROIs that contained information relevant for
the classification (i.e., those ROIs that were truly modified in the
simulated dataset).

In aMCI classification the CCNN model also systematically
outperformed the deep and simple neural networks and most
importantly, the connectome-convolutional network was able to
utilize information from multiple different connectivity metrics.
In this case the difference between the CCNN model and the deep
neural network was highly significant, which is most likely the
result of the fact, that by doubling the number of input features,
the size of the deep neural network also doubles, while the size
of the CCNN architecture only slightly increases (less than 1%
in our particular case). Consequently convolutional networks are
less prone to overfitting and can exploit additional information
more efficiently (Goodfellow et al., 2016). This feature has great
potential in future research, as the CCNN model may not only
benefit from different functional connectivity metrics, but it can
for example straightforwardly combine structural and functional
connectivity information as well.

For a thorough comparison we also performed experiments
with traditionally well-performing machine learning models. Due
to the extremely high number of features in the combined
DTW distance and warping path length dataset, we applied two
methods that accomplish feature selection: linear SVM classifier
combined with ANOVA F-test based feature selection (Abraham
et al., 2014) and a LASSO model (Meszlényi et al., 2016a).
The results of these experiments showed that both SVM and
LASSO can perform better than the deep neural network given
the relatively low number of samples, however, neither methods
achieved better results than our proposed CCNN architecture.
Although the best performing approach (a LASSO classification)
achieved 2% less accuracy than the CCNN model, we argue that
our proposed method holds much greater promises than this
small performance gain. As the sample size in fMRI experiments
continues to increase (Smith et al., 2014) and multimodal
paradigms also gain popularity (Brown et al., 2012), the gap
between the performances of the CCNN model or similar deep
learning based techniques and traditional machine learning
methods bound to increase (LeCun et al., 2015).

Amnestic mild cognitive impairment classification
performance based on DTW distance that integrates dynamic
connectivity and DTW warping path length that describes
phase-stability was significantly higher than that based on
the correlation coefficients. This is in agreement with recent
findings showing strong alterations in dynamic connectivity
and connection stability in Alzheimer’s disease and mild
cognitive impairment (Córdova-Palomera et al., 2017). The best
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FIGURE 3 | Learned weights of the first convolutional layer of the combined CCNN model trained on the whole aMCI dataset. This layer has 2∗64∗499 weights, and
we present the first 64∗499 weights corresponding to DTW distance values (A–C) separately from the second 64∗499 weights that correspond to warping path
length features (D–F). (A) Colormap of the first 64 × 499 weights of the first convolutional layer of the combined CCNN model corresponding to DTW distance
features. (B) To determine which ROIs play important role in the classification, we summarized the absolute values of the weights through the 64 filters. High values
represent ROIs that have significant effect in most filters. (C) To determine which filters are the most effective, we summarized the absolute values of weights through
the 499 ROIs. High values represent filters that have substantial influence on the output. (D) Colormap of the second 64 × 499 weights of the first convolutional layer
of the combined CCNN model corresponding to relative warping path length features. (E) Summarized absolute values of the weights through the 64 filters. High
values represent ROIs that have significant effect in most filters. (F) Summarized absolute values of weights through the 499 ROIs. High values represent filters that
have substantial influence on the output.

FIGURE 4 | Most influential ROIs based on the first convolutional layer’s weights for aMCI classification with CCNN. (A) Important ROIs based on DTW distance
features. (B) Important ROIs based on warping path length features.

performance was achieved by a CCNN that was trained on a
combination of these two metrics, namely DTW distance and
path length. The most influential regions of the classification
contain regions of the default mode network (e.g., posterior
cingulate cortex and precuneus) and executive control network
(e.g., dorsolateral prefrontal cortex) as well as several subcortical
regions, including the hippocampus, basal ganglia, and amygdala.
These results are in close agreement with previous research
providing converging evidence for the abnormalities in resting-
state functional connectivity of these regions in aMCI (Liang
et al., 2011, 2015; Yang et al., 2012; Lau et al., 2016).

Our previous findings have shown that classification based
on DTW distance and warping path length can outperform a
correlation based paradigm in different datasets and even with
different classifiers and classification targets (Meszlényi et al.,
2016a,b, 2017). Our results presented in this paper also confirm
that taking into account the dynamic properties of functional
connectivity can assist classification. DTW distance and path
length based classifiers did outperform the correlation based
models, while the best results were achieved by combining
connectivity features of these two metrics. To understand why
the combination of these connectivity descriptors leads to better
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results, it is important to notice how DTW distance and warping
path length are related. In case of very strong connections, i.e.,
when the two compared time-series are very similar almost no
warping (time-series elongation) is necessary thus the length of
the warping path will be short, while the calculated DTW distance
will be very close to zero. Additionally in case of independent
random time-series the DTW distance is large as the two series
cannot be meaningfully matched, also independent time-series
mean more editing steps, therefore the length of the warping
path increases as well (Tomasev et al., 2015). However, there
are connections, where the Dynamic Time Warping algorithm
can generate a good match between the two time-series, but the
phase relationship between them is unstable, i.e., the time-delay
structure is dynamically changing through the measurement.
This type of relationship can result in long warping path lengths
despite the relatively low DTW distance values, and these are
the connections where warping path length contains interesting
additional information (Meszlényi et al., 2016a).

Naturally deep learning techniques and particularly our
CCNN method have their drawbacks as well. Deeper networks
take longer time to train than traditional shallow neural networks
or other methods like SVMs, however with modern deep learning
frameworks and GPU computing our CCNN model can be
trained in seven fold cross-validation within an hour. Another
difficulty is the selection of hyper-parameters. Deep networks
have several architectural parameters like the number of different
convolutional and fully connected layers, the number of filters
and neurons in each layer or the activation function, as well
as training parameters like initialization, loss-function, learning-
rate, or optimization function. Due to the long training time
of these models, thorough hyper-parameter learning is usually
not feasible, typically only a small number of parameters can
be tuned, while most parameters have to be set based on
experience (LeCun et al., 2015; Goodfellow et al., 2016). We
also note that even though the convolutional architectural design
can significantly decrease the number of trainable parameters
compared to fully connected deep networks, the number of these
trainable weights can still be very high compared to the number
of samples in the dataset. Therefore careful regularization (e.g.,
with dropout) is essential to the success of these models, and
the effectiveness of their application to datasets with extremely
few training examples (e.g., less than a 100 measurements) is
debatable.

In this paper we presented a CCNN architecture that was
designed to be able to analyze brain connectivity matrices and
classify subject groups based on the connectivity fingerprints
of brain regions. With an experiment on simulated datasets we
showed that besides having high classification performance, the
CCNN architecture we implemented can identify ROIs that have
altered connectivity strength values. On a real-world dataset of
healthy elderly controls and patients with aMCI we were also able
to demonstrate that the CCNN can effectively utilize information
from multiple functional connectivity descriptors. Namely the
overall best classification accuracy was achieved by the CCNN
model trained on a combination of Dynamic Time Warping
distance and warping path length connectivity matrices. The
brain regions that had large influence on the classification results
are well-aligned with the current research findings on aMCI.
From these results we can conclude that the presented CCNN
architecture should be considered as an efficient tool for brain
connectivity-based classification tasks, especially in experiments
where multiple connectivity descriptors, i.e., different functional
connectivity measures or functional and structural connectivity
information is available.
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