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ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) spans
steatosis through nonalcoholic steatohepatis,
cirrhosis, and hepatocellular carcinoma (HCC)
associated with striking systemic features and
excess cardiovascular and liver-related mortal-
ity. The pathogenesis of NAFLD is complex and
multifactorial. Endocrine derangements are
closely linked with dysmetabolic traits. For
example, in animal and human studies, female
sex is protected from dysmetabolism thanks to
young individuals’ ability to partition fatty
acids towards ketone body production rather
than very low density lipoprotein

(VLDL)-triacylglycerol, and to sex-specific
browning of white adipose tissue. Ovarian
senescence facilitates both the development of
massive hepatic steatosis and the fibrotic pro-
gression of liver disease in an experimental
overfed zebrafish model. Consistently, estrogen
deficiency, by potentiating hepatic inflamma-
tory changes, hastens the progression of disease
in a dietary model of nonalcoholic steatohep-
atitis (NASH) developing in ovariectomized
mice fed a high-fat diet. In humans, NAFLD
more often affects men; and premenopausal
women are equally protected from developing
NAFLD as they are from cardiovascular disease.
It would be expected that early menarche, def-
initely associated with estrogen activation,
would produce protection against the risk of
NAFLD. Nevertheless, it has been suggested that
early menarche may confer an increased risk of
NAFLD in adulthood, excess adiposity being the
primary culprit of this association. Fertile age
may be associated with more severe hepatocyte
injury and inflammation, but also with a
decreased risk of liver fibrosis compared to men
and postmenopausal status. Later in life, ovar-
ian senescence is strongly associated with severe
steatosis and fibrosing NASH, which may occur
in postmenopausal women. Estrogen deficiency
is deemed to be responsible for these findings
via the development of postmenopausal meta-
bolic syndrome. Estrogen supplementation may
at least theoretically protect from NAFLD
development and progression, as suggested by
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some studies exploring the effect of hormonal
replacement therapy on postmenopausal
women, but the variable impact of different sex
hormones in NAFLD (i.e., the pro-inflammatory
effect of progesterone) should be carefully
considered.

Keywords: Fibrosis; Hormones; Inflammation;
Man; Menarche; Menopausal status; NASH;
Physiopathology; Sex; Steatosis; Women

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD)
encompasses the whole spectrum of (predomi-
nantly) steatogenic liver disorders spanning
steatosis through nonalcoholic steatohepatitis
(NASH), cirrhosis, and hepatocellular carci-
noma (HCC) [1–3], associated with striking
systemic features [4, 5] and excess cardiovascu-
lar and liver-related mortality [6–9]. Histologi-
cally indistinguishable from alcoholic liver
disease, and nevertheless observed in the non-
alcoholic individual [10], NAFLD is closely
linked with insulin resistance (IR) [11] and,
bidirectionally, with the metabolic syndrome
(MetS) of which it may be both a cause and a
consequence [12, 13]. A leading cause of
chronic liver disease worldwide and affecting
one out of four individuals in the European and
north-American general populations [14],
NAFLD is highly prevalent in certain groups of
individuals carrying either the full-blown or
individual traits of the MetS [15]. Moreover,
NAFLD carries an excess of health-related
expenditures owing to its close connections
with progressive liver disease and car-
dio-metabolic morbi-mortality [9, 16–19].

The pathogenesis of NAFLD has variably
been conceptualized as two-hit [20], a one-hit
[11], or a multistep process [21], and the last is
presently the most widely accepted pathogenic
model. In its original definition, a first hit leads
to steatogenesis and a second one to fibrosis
[22]. However, metabolic factors, and particu-
larly IR, invariably account for most of the ele-
mentary NAFLD histologic lesions in humans,
indirectly supporting the outdated and yet

conceptually more parsimonious ‘‘one-hit’’
theory [11, 12].

Evidence both in animals and humans sup-
ports the notion that female sex is protected
from dysmetabolic traits thanks to young indi-
viduals’ ability to partition fatty acids towards
ketone body production rather than very low
density lipoprotein (VLDL)-triacylglycerol [23],
and to sex-specific browning of white adipose
tissue which contributes in protecting female
mice from experimental NAFLD associated with
methionine choline deficient diet [24].

In 1980, Ludwig reported that NASH was
common among elderly women with metabolic
comorbidity [25]. However, we now know that
NAFLD more often affects men [15, 26] and that
premenopausal women are equally protected
from NAFLD development as they are from
cardiovascular disease (CVD) [27, 28]. Recent
studies in the overnourished zebrafish model
have shown that ovarian senescence, via
hypoestrogenemia, facilitates both the devel-
opment of massive hepatic steatosis and the
fibrotic progression of liver disease [29]. Con-
sistently, estrogen deficiency, by potentiating
hepatic inflammatory changes, hastens the
progression of disease in a dietary model of
NASH developing in ovariectomized mice fed a
cholesterol-rich hyperlipidic diet [30]. Collec-
tively, these findings suggest that hormonal
changes, rather than those multiple physiologic
derangements associated with aging per se [31],
are a major determinant of progressive NAFLD
in human menopause.

Obesity and obesity-related diseases, such as
type 2 diabetes (T2D), MetS, and atherosclerosis,
are complex conditions driven by genetic and
environmental factors, in which a sexual
dimorphism has been clearly established. Here,
we have reviewed current evidence suggesting
that NAFLD is a sexually dimorphic condition,
too. We hypothesized that the higher incidence
of disease in men and the worse outcome in
postmenopausal women, i.e., the ‘‘sexual
dimorphism’’ of NAFLD, might offer clues use-
ful in expanding our understanding of the
pathogenesis and providing hints for preven-
tion and treatment of NAFLD. Given the
potential research and clinical implications of
sexual dimorphism in NAFLD, we carried out a
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systematic review of the literature by using the
following keywords: steatosis OR fatty liver
AND gender OR sex OR menopause. On these
grounds, this narrative review is aimed to
highlight how sex modulates the development
and progression of NAFLD and to pinpoint what
the role of menarche and menopause is. Special
emphasis is conferred to CVD risk. The rela-
tionship of polycystic ovary syndrome (PCOS)
to NAFLD has recently been covered elsewhere
[32] and is outside the scope of this review.

Compliance with Ethics Guidelines

This article is based on previously conducted
studies and does not involve any new studies of
human or animal subjects performed by any of
the authors.

EPIDEMIOLOGY OF NAFLD

Gender and reproductive status modulate the
risk of developing NAFLD and NASH with/
without advanced fibrosis [15].

Risk of NAFLD

Incidence
Evidence from longitudinal studies suggests
that the incidence of NAFLD is higher in the
male as compared to the female gender
(Table 1) [33–43]. One study investigating the
incidence of NAFLD in women as a function of
reproductive status found incidence to be
higher in menopausal (7.5%)/postmenopausal
(6.1%) women as compared to premenopausal
(3.5%) women. However, postmenopausal sta-
tus was associated with an increased risk of
incident NAFLD at univariate but not at multi-
variate analysis adjusted for age, metabolic
syndrome, and weight gain [37]. The incidence
of NAFLD in women taking hormonal replace-
ment therapy (HRT) (5.3%) was higher than in
premenopausal (3.5%) women but lower than
in menopausal women (7.5%). HRT was not
associated with increased risk of incident
NAFLD either at univariate or at multivariate
analysis [37]. Indeed other longitudinal studies

suggest that estrogens are a protective factor for
the development of NAFLD. An Italian multi-
centric study on 5408 healthy women who had
had hysterectomies, randomly assigned to
receive tamoxifen (an estrogen inhibitor) or
placebo for 5 years, showed that tamoxifen was
associated with higher risk of development of
NAFLD/NASH especially in overweight/obese
women [44]. Finally a small double-blind, ran-
domized placebo-controlled trial on 50 women
with T2D showed that HRT containing low-dose
estradiol and norethisterone significantly
reduced serum levels of liver function enzymes,
potentially owing to a reduced liver fat accu-
mulation [45].

Overall, data from epidemiological longitu-
dinal studies have shown a key role of weight
gain, presence of MetS and its single traits as
independent predictors of the development of
NAFLD [33–43]. Notably, some studies have
found that male sex was associated with inci-
dent NAFLD independently of age and meta-
bolic factors [33, 35, 41]. Moreover, two Asian
studies have reported a specific role of age
according to gender and reproductive status in
modulating the risk of incident NAFLD. One
study showed that age was an independent
predictor for developing NAFLD only in females
[34] and the other one reported that age
increased the risk for incident NAFLD in pre-
menopausal but not in postmenopausal women
[37].

Prevalence
Despite preliminary studies reporting a higher
risk of NAFLD in females, a large body of evi-
dence now definitely supports the notion that
the prevalence of NAFLD is higher in men than
in women and that gender-specific differences
exist in relation to age (Table 1)
[33, 37, 41, 46–77]. Conflicting with the above
notion, two large sample community Iranian
studies reported a higher prevalence of NAFLD
in women than in men [70, 74]. However, these
findings might, at least in part, be accounted for
by women having markedly higher rates of
prevalence of obesity compared to men in these
studies. Consistent with the view reported
above, a higher prevalence of fatty liver has
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been also observed in male obese children and
adolescents than in female ones [78].

Men commonly display an increasing
prevalence of NAFLD during adulthood from
young to middle-age, describing an ‘‘inverted
U-shaped curve’’ which starts declining after the
age of 50–60 years [47, 56]. In women of fertile
age, the prevalence of NAFLD is lower than in
men owing to the putative protective effect of
estrogens which, however, wanes after the
menopause. Accordingly, the prevalence of
NAFLD in women rises after the age of 50 years,
peaks at 60–69 years, and declines after 70 years
[47, 54, 56]. As a result of this, after the fifth
decade, postmenopausal women compared to
men of the same age have a similar
[46, 49, 60, 65] or even higher [47, 51] preva-
lence of NAFLD. In agreement with these find-
ings, a multicenter study from northern Italy
found that men with NAFLD were approxi-
mately 10 years younger than women with this
condition [79], a finding compatible with the
hypothesis that premenopausal women are
‘‘protected’’ from developing NAFLD. Con-
versely, NAFLD is more prevalent in post-
menopausal [37, 80–82] and PCOS-affected
women than premenopausal ones [80]. Consis-
tently, a large cross-sectional population-based
survey in northeast Germany on 808 women
aged 40–59 years showed that menopause status
was independently associated with hepatic
steatosis after adjustment for metabolic factors
[83]. Interestingly, women with NAFLD exhibit
a significantly lower concentration of serum
estradiol, which is the principal active estrogen,
than NAFLD-free (premenopausal, post-
menopausal, and PCOS) controls [80]. A lower
prevalence of NAFLD, as well as of MetS, has
been reported in postmenopausal women
receiving HRT compared to those not receiving
it, which suggests that HRT probably protects
from NAFLD. Moreover, in this study post-
menopausal women with NAFLD who received
HRT had lower frequency of insulin resistance
as well as MetS and showed reduced serum
levels of liver enzymes and ferritin [84].

Most studies using multivariate analysis have
shown that male sex is associated with an
increased prevalence of NAFLD independently
of age and metabolic conditionsT
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[41, 46, 48, 50, 51, 53, 58, 62, 63, 66, 67, 74].
Some studies have shown an independent,
positive association between NAFLD and
increasing age in both sexes [46, 50–53, 70, 74]
or in females only [65], while others reported an
inverse association [41, 48, 62, 63]. At variance,
other studies have shown that sex differences in
the prevalence of NAFLD were mostly accoun-
ted for by metabolic factors [36, 37, 55, 56, 60,
63, 64]. Finally, some studies failed to investi-
gate the role of gender given that a separate
multivariate analysis according to sex was not
performed [34, 49, 54, 56, 61, 65, 68, 70, 71].

In addition to and independent of the role of
MetS and its components, menopausal status
[49, 83, 85] and increasing age [49, 56, 82] have
all been consistently identified as strong risk
factors for NAFLD in women. Only in a few
studies was the association between menopau-
sal status and NAFLD no longer significant after
adjustment for age and metabolic factors
[37, 81], indicating that menopause predisposes
to developing NAFLD via incident dysmetabolic
traits which typically appear in the post-
menopausal age.

A recent cross-sectional study conducted in a
population of postmenopausal women con-
cluded that MetS, abdominal obesity, and IR are
risk factors for the development of NAFLD while
higher adiponectin levels protect from devel-
oping it [86]. These findings indicate that
NAFLD modifiers in this specific population of
women closely mirror those found in the gen-
eral population.

In lean subjects [body mass index (BMI) less
than 25 kg/m2)] NAFLD has been associated
with younger age [41, 57] and either male [41]
or female gender [57].

Risk of NASH and Fibrosis Progression

One large sample study based on an electronic
health file database reported that the risk of
‘‘recorded’’ NAFLD/NASH diagnosis increased
linearly with BMI, was higher in males than
females and in those with T2D [87]. However, the
proportion of true NASH cases among the ‘‘recor-
ded’’ diagnosis of NAFLD/NASH was unclear.

A longitudinal study in subjects with biop-
sy-proven NAFLD found that sex was not an
independent risk factor for the progression of
fibrosis [88]. In agreement, a systematic review
has shown that age and hepatic necroinflam-
mation are the only independent predictors of
the development of advanced fibrosis in NASH
patients, while other parameters such as MetS
features and sex are not [89].

However, conflicting with the above studies,
data from cross-sectional studies (Table 2)
[29, 57, 65, 90–97], which are based, in the
majority of cases, on a histological diagnosis of
NASH, tend to suggest that the risk of NASH and
advanced fibrosis is indeed higher in females
than males independent of metabolic factors
[65, 90, 93, 94], and only a few studies conflict
with the above findings [91, 92, 95].

As is easily foreseeable, obese and post-
menopausal women, compared to pre-
menopausal and non-obese women, suffer from
a remarkably higher prevalence of NAFLD and
NASH as a result of a worse metabolic profile
[82]. At variance, a recent study reported that,
compared to men and postmenopausal women,
the risk of lobular inflammation and hepatocyte
injury was significantly increased both in pre-
menopausal women and in those taking syn-
thetic hormones such as oral contraceptives and
HRT [97]. Given the supposed effects of estro-
gens on metabolic health and liver injury, the
findings of this study appear counterintuitive. It
is noteworthy that the study by Yang et al. has
several limitations, including some important
sources of potential bias, such as the restricted
enrollment at tertiary academic centers, meno-
pausal category and synthetic hormone use
were self-reported, and information on cumu-
lative estrogen and/or progesterone exposure
and serum hormonal levels were lacking. Of
note, the authors highlight that, despite
increased liver injury and inflammation, pre-
menopausal women were at decreased risk of
liver fibrosis compared with men and post-
menopausal women. Moreover, sensitivity
analyses separately assessing the impact of pro-
gesterone use and estrogen use clearly suggested
that only the former was associated with liver
damage. Collectively these findings provide
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novel hints regarding a potential multifaceted
impact of sex hormones in NAFLD.

Consistent with the hypothesis that estro-
gens do exert a beneficial effect on NAFLD,
menopause has been independently associated
with significant fibrosis both in women with
NAFLD and in an experimental zebrafish
steatosis model [29]. A recent study has shown
that men display a higher risk of advanced
fibrosis compared to premenopausal women,
while after menopause both sexes show a simi-
lar severity of liver fibrosis, suggesting that
estrogens protect from the development of
fibrosis [95]. A subsequent study limited to
non-obese women with biopsy-proven NAFLD
confirmed that, even in non-obese NAFLD
patients, postmenopausal women still had more
severe fibrosis, when compared to pre-
menopausal subjects [98]. Accordingly, a study
conducted in 488 postmenopausal women with
biopsy-proven NAFLD has shown that, inde-
pendently of age and metabolic factors, the
longer the estrogen deficiency in post-
menopausal status is (i.e., premature meno-
pause and time from menopause), the higher
the risk of fibrosis is [96].

The role of gender in influencing liver-re-
lated mortality in NAFLD is still uncertain,
although some studies have reported that men
are at an increased risk [99–101].

Risk of Hepatocellular Carcinoma

A universal feature of HCC is the striking male
prevalence, with a male/female ratio averaging
2:1 to 7:1; the latter proportion is more often
found in HBV-related HCC [102]. Nevertheless,
compared to viral etiologies of HCC,
NAFLD-related HCC was found to be associated
with the lowest male/female ratios in one study
[103]. NAFLD-related HCC may also occur in
non-cirrhotic livers, but this seems to be more
likely in men [104]. The sexual dimorphism in
HCC is also maintained regarding prognosis,
with women showing better survival rates
[102, 105]. However, menopause seems to
attenuate these advantages [102, 105].

In summary, the incidence of NAFLD is
higher in men than in women, and some

longitudinal studies indicate that male gender is
an independent predictor of NAFLD develop-
ment. The prevalence of NAFLD is globally
higher in men than women, but after meno-
pause women display a similar or even a higher
prevalence compared to men, a finding sup-
porting a protective effect of estrogens. In
cross-sectional studies, male gender and meno-
pausal status have often been associated with
the risk of NAFLD, independent of age and
metabolic factors. The prevalence of NASH and
advanced fibrosis has been found to be higher
in postmenopausal women than in men; how-
ever, longitudinal studies have failed to support
a role for gender in influencing the progression
of liver fibrosis. Finally, HCC is definitely more
common in men than in women in cases due to
viral etiology; NAFLD may probably lower the
male/female ratio in the risk of developing HCC
and it is possible that gender affects the prog-
nosis of HCC.

NAFLD AND CVD

NAFLD is increasingly recognized as a multi-
system disease [5]. A growing body of evidence
suggests that NAFLD (assessed by liver enzymes,
imaging, or biopsy) is associated with increased
incidence and prevalence of subclinical and
clinical CVD, mainly coronary heart disease
(CHD), independently of age, gender, and
metabolic factors, as recently reviewed in detail
elsewhere [106, 107]. In the general population,
male sex is more prone to incident CHD under
the age of 50 years compared to women but,
after menopause, the incidence in women dra-
matically increases to approach that of men
[108].

Gender-Specific Risk of CVD in Studies
on NAFLD and CVD

Several longitudinal studies investigating the
association between CVD and NAFLD have
reported multivariate analysis models, which
have been adjusted for multiple confounders,
including sex; as a result of this, the influence of
gender in the risk of CVD cannot be evaluated
in such studies (reviewed in [106, 107]). A large
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population-based American study (NHANES III)
found that NAFLD assessed with ultrasound,
together with male sex, age, race, and metabolic
factors independently predicted incident CVD
[109]. Another study addressing CHD as a pre-
specified outcome found that patients with
NAFLD had a higher 10-year risk for CHD, as
calculated by the Framingham risk score, than
the matched control population. This estimated
risk was higher in men than in women and
more CVD events were reported among men
than women at the end of 10 year follow-up,
although this finding was not statistically sig-
nificant [110].

Many cross-sectional studies in which the
diagnosis of NAFLD was based on liver imaging
studies (either ultrasound or CT scanning)
showed an independent association of male sex
with coronary artery calcifications [111] as well
as significant CHD [112–115].

Gender Differences in the Association
Between NAFLD and CVD

Studies in which the diagnosis of NAFLD was
based on surrogate indices, such as otherwise
unexplained raised liver enzymes, found that
sex modulates the association of NAFLD with
incident CVD/mortality. For example, most
population-based cohort and meta-analytic
studies reported an independent association
between raised GGT and incident CVD in both
sexes [116]; conversely, a population-based
cohort study from Germany found that
increased GGT was associated with higher risk
of all-cause and CVD mortality only in men but
not in women, and this association was stronger
in men who also had ultrasound scanning
findings compatible with steatosis [101].
Increased ALT has been variably associated with
incident CVD either in both sexes [117, 118] or
in men only [119]. A recent study found that
ALT levels independently predicted insulin
sensitivity only in women, suggesting that this
gender-specific association might explain
the sex difference in the predictive role of
increased ALT for CVD [120]. Finally, a recent
large Korean cross-sectional study reported that
men had more prevalent ultrasonographic fatty

liver disease, carotid plaques, and increased
carotid intima-media thickness (IMT) values
than women, but ultrasonographic fatty liver
disease independently predicted subclinical
carotid atherosclerosis (IMT and plaques) in
women only [121].

No gender difference has been reported in
the association between NAFLD assessed with
liver ultrasound and incident CVD/mortality. A
study based on a national Danish registry
showed that patients with a hospital discharge
diagnosis of NAFLD had a higher all-cause
mortality, including liver and CVD related,
which was similar among sexes [122]. A study
conducted in a community-based Japanese
cohort of 1637 apparently healthy subjects
found that the diagnosis of NAFLD based on
ultrasound findings was a predictor of CVD in
both men and women [123].

The only study carried out in post-
menopausal women found a significant corre-
lation between NAFLD (based on CT scanning
findings) and prevalence of coronary artery
calcification (CAC); however, NAFLD was not
independently associated with CAC in these
postmenopausal women [124].

In summary, male patients carry an
increased risk of CVD; moreover, NAFLD seems
to be associated with CVD independently of
metabolic factors in both sexes. Few data are
available in postmenopausal women and stud-
ies should specifically be conducted to ascertain
whether NAFLD is a specific/independent car-
diovascular risk factor in this population of
patients.

ROLE OF GENDER, REPRODUCTIVE
STATUS, AND AGE
IN THE HETEROGENEITY OF NAFLD
PATHOBIOLOGY

Although NAFLD may be found in either gender
from infancy to old adulthood, gender and
reproductive status modulate the susceptibility
to development and progression of disease
[125]. Indeed age, sex, and fertility exert a
variable impact on those general pathogenic
mechanisms which are involved in NAFLD.
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Here we will specifically examine how body fat
distribution, obesity and local hypercorticolism,
steatogenesis and lipidomics, oxidative stress
and antioxidant mechanisms, endotoxins,
immune response, and fibrogenesis are affected
by gender and sex hormones as a result of
reproductive status and age.

Factors Associated with NAFLD are
Different in Men and in Women

A pioneering study supporting the notion that
gender-dimorphic risk factors are associated
with NAFLD was published in 2000. This study,
by evaluating 199 individuals, found that ele-
vated BMI was an independent predictor of fatty
liver in either sex. Glucose area under the curve
and a central-type body fat distribution pre-
dicted fatty liver only in women [126]. Simi-
larly, insulin sensitivity has also been reported
to be strongly associated with gender-dimor-
phic risk factors, i.e., fasting insulin and leptin
levels (but none of the liver enzymes) in men
versus BMI and ALT in women [120]. Of note,
Suzuki et al. demonstrated that the associations
between anthropometric measures (regional
adiposity) and degree of fibrosis clearly differ
between premenopausal women and post-
menopausal women/men [127].

NAFLD Epidemiology
and Physiopathology are Modulated
by Age at Menarche and Postmenopausal
Status

In women, a complex interaction including
genetic polymophisms, dietary habits, endoge-
nous sex hormones, age at menarche, meno-
pausal status, dysmetabolic traits, and HRT
modulates the risk of developing NAFLD, NASH,
and fibrosis [84, 128–130].

Early menarche has been associated with
higher alanine aminotransferase, C-reactive
protein, triglyceride levels, BMI, waist circum-
ference, adult diabetes, cardiovascular morbid-
ity and mortality, advanced liver disease, and
HCC [131]. A recent Chinese study conducted
in postmenopausal women has identified early
menarche as a potential risk factor for NAFLD

later in life; consistently, late menarche protects
from NAFLD [130]. These associations were
significantly attenuated after adjustment for
current BMI or HOMA-IR, suggesting that obe-
sity and insulin resistance may partly mediate
the association between age at menarche and
NAFLD [130]. The biological mechanism link-
ing early menarche with increased risk of
NAFLD is far from being clearly elucidated. It
has been suggested that early maturation may
determine a longer duration of positive energy
balance and a greater accumulation of body fat
[132]. Consistently, a large cross-sectional study
among middle-aged Korean women confirmed
that the inverse association between age at
menarche and NAFLD was partially mediated by
adiposity [133]. Again, a recent study from the
American CARDIA cohort showed that early
menarche was associated with NAFLD and vis-
ceral and subcutaneous abdominal ectopic fat
depots in middle adulthood; these associations
were attenuated after adjustment for weight
gain between young and middle adulthood
[131]. Finally, a Chinese study suggested that
the presence of central obesity and MetS, but
not NAFLD, after menopause was predicted by
longer duration of menstruation and early
menarche [134].

Compared to the fertile age, menopause
increases the risk of NAFLD and liver fibrosis
[135] via long-standing estrogen deficiency
associated with ovarian senescence and dys-
metabolic features such as T2D, hypertriglyc-
eridemia, and central obesity [29, 81].
Consistently, HRT protects from NAFLD devel-
opment [84], and oophorectomy in young
women with endometrial cancer independently
increases the risk of NAFLD together with the
development of T2D and hypercholesterolemia
[136]. These findings are in agreement with a
study suggesting that, in HCV infection,
increasing severity of fibrosis is associated with
a higher BMI, advanced steatosis, and the
menopause and that, conversely, menopausal
women receiving HRT exhibit a lower stage of
fibrosis [137]. Collectively, these data support
the notion that estrogens have antifibrogenic
properties in humans. This antifibrotic activity
may occur by triggering anti-inflammatory,
antioxidant, and antiapoptotic molecular
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pathways [138], which are mimicked by exercise
training [139].

Of concern, however, young women in
their reproductive age and those exposed to
female synthetic hormones (oral contraceptive
or HRT) are not completely spared the risk of
developing NAFLD and, indeed, they tend to
have more severe hepatocyte injury and
inflammation. Notably, despite the possibility
of enhanced hepatocellular damage, pre-
menopausal women have been consistently
reported at decreased risk of liver fibrosis
compared to men and postmenopausal
women. Moreover, sex hormones exert com-
plex and variable effects on human NAFLD;
indeed, the detrimental pro-inflammatory
impact may be conveyed by progesterone, but
not estrogen [97].

Table 3 summarizes the physiological role of
estrogen, progesterone, and androgens accord-
ing to gender, age, reproductive status, and
obesity [140–157].

Obesity and Local Hypercortisolism

Obesity, which is closely linked with NAFLD,
mimics hypercortisolism. It is of interest that
despite the prevalence of obesity being higher
among women than men, the former are
somewhat protected from the associated car-
diometabolic consequences; however, this
wanes after menopause, suggesting a role for
estrogens. Mouse models suggest that sexually
dimorphic expression and activity of glucocor-
ticoid metabolizing enzymes may have a role in
the differential metabolic responses to obesity
in males and females [158].

Biochemical, genetic, and therapeutic stud-
ies have provided robust evidence for 11b-hy-
droxysteroid dehydrogenase type 1 (11b-HSD1)
being key in the pathogenesis of NAFLD
[159–161]. It is of interest, therefore, that
11b-HSD1 gene expression is regulated in a tis-
sue-specific and sexually dimorphic manner. In
particular, intact rats exhibit hepatic 11b-HSD1
mRNA levels 18-fold lower in the female than
the male [162].

Body Fat Distribution

Regional adiposity displays a typical sexual
dimorphism in humans. Women have a larger
capacity to store fat in the subcutaneous com-
partment [163]. Men generally have twice as
much visceral fat compared to women for any
given fat mass value [164]. This is relevant given
that, compared to subcutaneous adipose tissue
depots, visceral adipose tissue depots in general
display greater secretory capacity and a more
pro-inflammatory profile [165]. Moreover, vis-
ceral adipose depots release free fatty acids
(FFAs) directly into the portal blood and thus
potentially overload the liver [166]. Not sur-
prisingly, those phenotypes which occur
whenever, due to hormonal effect, peripheral
adiposity is relatively restricted and visceral
adiposity is expanded (i.e., male obesity and
postmenopausal women) have all been associ-
ated with NASH, and fibrosing NASH
[127, 167–169].

Steatogenesis and Lipidomics are Affected
by Sex Hormones

Steatosis will invariably occur as a result of an
imbalance among enhanced steatogenesis and
decreased capacity of oxidation of fatty acids
[170]. Moreover, qualitative changes in the
hepatic lipidomics may concur with lipotoxic-
ity. Data suggest that all these mechanisms are
under the control of sex hormones. For example
ovariectomy in rats is associated with increased
intrahepatic steatogenesis which occurs
through a decreased synthesis of peroxisome
proliferator-activated receptor (PPAR), and an
increased transcription of genes encoding sterol
regulatory element-binding protein 1
[(SREBP-1), a nuclear transcription factor and
master regulator of the endogenous synthesis of
cholesterol, fatty acids, triglycerides, and phos-
pholipids] and stearoyl coenzyme A desaturase
1 [(SCD1), the rate-limiting enzyme for gener-
ating monounsaturated fatty acids (MUFA)
from saturated fatty acids protects from hepa-
tocyte lipotoxicity]; all these effects of
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ovariectomy are prevented by 177b-estradiol
replacement, indicating a role for estrogens in
the prevention of hepatic fat accumulation
[171]. Consistently, hypoestrogenemia is asso-
ciated with hepatic steatosis through changes in
gene expression of molecules related to fat oxi-
dation and lipogenesis; resistance and endur-
ance training prevent this both in rats and
human models [172–175]. Moreover, a normal
activity of stearoyl-CoA desaturase (SCD), the
rate-limiting enzyme for generating monoun-
saturated fatty acids from saturated fatty acids,
protects from hepatocyte lipotoxicity. Indeed,
in mouse models of NAFLD, either genetic
manipulation or dietary changes that inhibit
the activity of SCD promote fibrosing NASH via
hepatocyte lipotoxicity, despite inhibiting obe-
sity and improving insulin resistance [176, 177].
Interestingly, ovarian hormones are also
involved in MUFA biosynthesis, via SCD1 [178].

Excess 16:0 fatty acids associated with de
novo lipogenesis from high carbohydrate diet
inhibits the synthesis of highly unsaturated
fatty acids; this may potentially account for the
improved metabolic profile which results from
supplementing a hypercaloric diet with pre-
formed eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) [179]. For exam-
ple, findings from a genetically engineered
NASH mouse model fed a Western diet have
shown that dietary DHA was superior to EPA in
attenuating Western diet-induced hyperlipi-
demia and hepatic injury and at reversing those
deleterious metabolic and histological effects
induced in the liver by a Western diet [180].
Interestingly, human (women using the con-
traceptive pill or HRT and transsexual subjects)
and experimental data in rats consistently
indicate that sex hormones act to modify
plasma and tissue n-3 PUFA content, possibly by
altering the expression of desaturase and elon-
gase enzymes in the liver [181]. Collectively,
these findings suggest that enzyme activities
which are key in the development of a poten-
tially hepatotoxic lipidomic signature are criti-
cally controlled by sex hormones. Finally, it is
of clinical importance that the therapeutic
activity of PPAR-a agonists in obesity and fatty
acid oxidation is modulated by sex and estro-
gens [182].

Oxidative Stress and Antioxidant
Mechanisms

Reactive oxygen species (ROS) result from the
oxidation of fatty acids within mitochondria
and peroxisomes. The antioxidant defenses
which physiologically constrain oxidative stress
are hindered by nutritional deficiencies or
changes in the intestinal microbiome that limit
availability of choline [183]; by aging and the
content of cysteine in diet, which, in turn, will
affect the intrahepatic synthesis of glutathione
[184]; and by sex and menopause which both
affect the normal metabolism of choline [185].

Endotoxin

Quali-quantitative changes in intestinal micro-
biota (dysbiosis), which are often associated
with dietary indiscretions, have consistently
been associated with increased gut permeability
which could lead to increased translocation of
bacterial products from the intestinal lumen
into the portal circulation, thereby triggering
chronic inflammation [170]. It this context, it is
relevant that in an experimental model of liver
failure due to endotoxemia after hepatectomy,
sexually mature female rats are more exposed
than males to endotoxin-induced liver injury
and that ovariectomy abrogates this sexual
dimorphism [186]. Whether this also applies to
human NAFLD, however, remains to be proven.

Interindividual Variation in Immune
Responses is Another Key Liver Disease
Modifier in NAFLD

Whether metabolic inflammation is a gen-
der-dimorphic phenomenon has not been
explored in a systematic and organized manner.
Obesity, however, will typically exhibit changes
in the innate and adaptive immune mecha-
nisms [187]. However, how mechanistically
such obesity-related dysregulation of immune
defenses will impact on the pathogenesis of
NASH is not fully elucidated. Experimental data
obtained in the ob/ob mouse model suggest a
role for natural killer T cells (NKT cells) which
may at least partly account for the
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interindividual variation in immune responses
being a key modifier in the development and
progression of NAFLD [125]. In this respect, it
should be highlighted that sex is a major
determinant in the immune response. Sup-
porting this notion, one study in young chil-
dren reported that immune responses to
vaccines were consistently higher or equivalent
in girls compared with boys [188].

Liver Fibrosis

Liver fibrosis is the end-stage result of various
liver injuries. In recent times, importance has
been given to the Hedgehog signaling pathway
on the grounds that activation of this pathway
will stimulate the proliferation and differentia-
tion of hepatic stellate cells (HSCs) as myofi-
broblasts (MF-HSCs), and, conversely,
inhibiting Hedgehog activity in myofibroblasts
derived from HSCs causes them to revert to a
more quiescent (namely less fibrogenic) phe-
notype [125]. Accordingly, Hedgehog ligands
and other factors that control fate decisions in
HSCs are critical determinants of the develop-
ment of cirrhosis due to various causes as well of
the course of NASH [125]. For example, hepatic
expression of Hedgehog ligands and Hedgehog
pathway activity progressively increase from
simple steatosis, to NASH, and reach highest
levels in NASH-cirrhosis [189]. Of major signif-
icance to the pathogenesis of NAFLD, the
Hedgehog pathway is strongly regulated by
lipids [190], and conversely, Hedgehog signal-
ing is a master regulator of body fat distribution
and glucose metabolism [191, 192]. These
findings suggest that interindividual variation
in Hedgehog signaling might contribute to
variability in both hepatic and extrahepatic
outcomes of the metabolic syndrome [125].

Experimental overexpression of Hedgehog
ligand in hepatocytes is able to induce a fibro-
genic liver response and to promote hepato-
carcinogenesis in a transgenic mouse model
[193]. At least in part by modulating interme-
diary metabolism [194, 195], Hedgehog also
interacts with pathways which regulate growth
and differentiation [194, 196–198], such as
Wnt/b-catenin signaling, which are of potential

significance for the development of hepatocel-
lular carcinoma [199].

Treatment with compounds, e.g., vitamin E,
that suppress Hedgehog ligand production and
reduce the hepatic accumulation of Hedge-
hog-responsive myofibroblasts has proven ben-
eficial in human NASH [200].

Further studies are necessary to establish
whether and to what extent sex hormones
affect Hedgehog signaling and how manipula-
tion of cellular energy homeostasis might be
exploited to prevent and manage fibrosing
NASH, cirrhosis, and HCC in individuals with
NAFLD.

CAN GENDER DIMORPHISM
OF NAFLD BE EXPLOITED
FOR THERAPEUTIC PURPOSES?

In principle, sex differences found in NAFLD
may be accounted for by the effects of sex
chromosomes; sex hormones; and by differ-
ences in dietary and lifestyle habits [201, 202]. A
better understanding of the physiopathological
peculiarities of NAFLD in women may con-
tribute to developing tailored therapeutic
interventions [203]. Accordingly, the roles of
estrogen and HRT, the metabolism of choline,
and the effect of weight reduction and exercis-
ing in women are discussed in detail hereafter.

Estrogens

As detailed in Table 3, estrogens exert several
beneficial metabolic effects. Experimental stud-
ies suggest that estrogens promote the accu-
mulation of peripheral gluteofemoral
subcutaneous adipose tissue and, within the
liver, promote FFA beta-oxidation and prevent
the accumulation of triglycerides; moreover,
they regulate energy homeostasis, enhance
insulin sensitivity, and exert a protective role
on the function of pancreatic beta-cells [201].
Finally, estrogens seem to have antisteatotic,
antioxidant, and antifibrogenic properties in
the liver [204, 205]. Estrogens may protect from
liver steatosis and fibrosis in female mice via
upregulation of miRNA-125b and miRNA-29,
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respectively [206, 207]. A recent experimental
study showed that the estrogen/estrogen
receptor alpha signaling plays essential roles in
ROS detoxification and in the reduction of
oxidative damage in the liver via partnering
with hepatic PPARG coactivator 1 alpha, thus
halting the transition from simple steatosis to
steatohepatitis [205]. Estrogens are also known
to inhibit stellate cell activation and fibrogene-
sis in experimental models [204]. Of note, a
study showed that the natural estrogen
17b-estradiol prevents deoxycholic acid-in-
duced hepatocellular damage in several cell
lines. This hepatoprotective effect of estrogen
was sustained by mechanisms which were
unlikely to be mediated by nuclear estrogen
receptor alpha [208]. Interestingly, it has
recently been demonstrated that a non-nuclear
estrogen receptor plays a key role in reducing
hepatic steatosis in female mice [209]. Similarly,
estrogen deficiency leads to fat redistribution
toward visceral fat accumulation and its inher-
ently unfavorable metabolic derangements, and
is thus able to induce the development and
progression of NAFLD/NASH both in mice and
humans. Of note, both aromatase knockout
mice, which are unable to synthesize endoge-
nous estrogen, and estrogen receptor alpha
knockout mice develop hepatic steatosis
[210–212]. Patients with breast cancer treated
with tamoxifen, a potent estrogen antagonist,
develop progressive liver steatosis and NASH
[213]. Surgical and physiological menopausal
status have been invariably associated with
excess risk of NAFLD progression and liver
fibrosis, and duration of estrogen deficiency has
been directly related to increased fibrosis risk in
postmenopausal women with NAFLD
[95, 96, 98, 136].

Hormonal Replacement Therapy

Despite the above premises, the role of HRT in
reverting the metabolic alterations associated
with low levels of estrogens is a matter of dis-
pute. In animal models, both estrogen and
raloxifene, a second-generation selective estro-
gen receptor modulator, have improved
inflammation and ballooning so halting the

progression of liver fibrosis in diet-induced
NASH in female ovariectomized mice [30, 214].
However, the theoretical benefits of HRT in liver
disease remain to be proven in humans. A
seminal randomized placebo-controlled study
suggested that HRT containing low-dose estra-
diol and norethisterone was able to reduce liver
enzyme concentrations in women with T2D,
potentially through the reduction of accumu-
lation of fat in the liver [45]. Accordingly, a
north American study using data of the
NHANES III survey showed that post-
menopausal women who received HRT had a
significantly lower risk of NAFLD than post-
menopausal women who did not (OR 0.69, 95%
CI 0.48–0.99) [215]. However, whether HRT
reduces the risk of NASH and/or fibrosis among
postmenopausal women remains uncertain.
Two studies showed no, or borderline, benefi-
cial effects of HRT on fibrosis among post-
menopausal women with NAFLD [95, 96].
Worryingly, a recent study reported that syn-
thetic hormone use was associated with more
severe hepatocellular injury and lobular
inflammation. Further analysis showed that
progesterone, but not estrogen use, was associ-
ated with worse liver histological lesions, sug-
gesting a multifaceted impact of sex hormones
on NASH features [97].

Choline

Several lines of evidence support a key role of
choline as an essential nutrient and cellular
component. Choline is the major source of
methyl groups in the diet and is a precursor of
phosphatidylcholine, which is an important
component of cell membranes and VLDL,
required for the export of lipids from the liver
into the bloodstream. Thus, depletion of choline
inhibits hepatic triglyceride export and induces
fatty liver in both experimental models and
humans [185, 203, 216, 217]. Of note, post-
menopausal women are more prone than pre-
menopausal women and men to develop NAFLD
as a consequence of choline deficiency
[128, 185, 217], and decreased dietary choline
intake has been significantly associated with
increased fibrosis in postmenopausal women
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with NAFLD [218]. Indeed, menopausal status
determines a differential susceptibility to choline
deficiency arising from the estrogen-inducible
expression and activity of phos-
phatidylethanolamine-N-methyltransferase
(PEMT), a key enzyme in de novo choline
biosynthetic pathway. Following menopause,
the endogenous supply of choline decreases as a
result of estrogen deficiency; consequently, the
dietary requirement of choline is increased
[185, 203, 216, 217]. Consistently, choline sup-
plementation has been reported to improve or
revert liver steatosis in patients receiving
long-term total parenteral nutrition [219]. How-
ever, no interventional studies have addressed
whether choline supplementation is able to pre-
vent NAFLD or reduce NAFLD progression; more-
over, future studies investigating the role of
preventive or therapeutic choline supplementa-
tion in postmenopausal women are eagerly
awaited.

Weight Reduction and Exercise

Lifestyle changes, i.e., physical activity and bal-
anced diet, are the milestone of intervention for
NAFLD treatment. In general, weight loss
induced by lifestyle changes improves IR and
features of the MetS, including NAFLD. Of note, a
modest weight loss of as little as 2–3 kg is associ-
ated with NAFLD reversal [39], and weight loss of
greater than 7–10% significantly improves his-
tological features of NASH, including fibrosis
[220]. However, significant weight reduction
achieved through dietary restrictions results in
negative effects on lean muscle and bone mass in
postmenopausal women. Therefore, while
weight reduction in postmenopausal women
with metabolic abnormalities and risk factors for
NAFLD should be strongly recommended, spe-
cial attention should be paid to how weight loss is
obtained in older women to prevent the wors-
ening of loss of lean mass [139, 203]. An inte-
grated approach consisting of dietary changes
along with regular exercise is mandatory to pre-
vent the untoward effect of losing lean mass.
Both resistance training and aerobic exercise are
effective in preventing muscle and bone loss
during weight loss [203], and equally reduce liver

fat content [221, 222]. Postmenopausal women
with higher levels of physical activity seem to
have lower total body and visceral fat and to be
less likely to gain fat mass during menopause
[139, 223]. However, only few studies have
specifically assessed the role of physical activity
in NAFLD prevention/reversal in post-
menopausal women. Data have shown that
exercise training effectively reduces liver
enzymes in overweight postmenopausal women,
probably as a reflection of liver fat content [224],
and aerobic physical activity reduces cardiovas-
cular risk factors in postmenopausal women with
NAFLD [225]. Further studies are needed to
define the ideal structure and duration of exer-
cise-based interventions in postmenopausal
women with NAFLD or at risk of developing it.

In summary, there are no codified therapeutic
interventions approved for tackling NAFLD in
women. Given the theoretical beneficial meta-
bolic and hepatic effects of estrogens, it is
intriguing to speculate that HRT might possibly
play a role in the prevention and treatment of
metabolic alterations associated with meno-
pause, including NAFLD. However, studies in
humans are lacking and the potential metabolic
benefits should be weighed, in clinical practice,
against the detrimental cardiovascular and neo-
plastic risk associated with long-term HRT
[226, 227]. Moreover, the multifaceted and vari-
able impact of different sex hormones in NAFLD
should be carefully considered. Dietary changes
associated with either aerobic or resistance
physical exercise should be considered as the
milestone of treatment of NAFLD. Future studies
will have to evaluate the effects on NAFLD pre-
vention/treatment of supplementing choline to
a balanced diet in postmenopausal women.
Finally, the physiopathological peculiarities of
NAFLD in women and the gender-based differ-
ences in the kinetics and dynamics of drugs and
xenobiotics should be taken into account when
developing new treatment strategies and
proposing interventional trials for NAFLD.

CONCLUSION

Consistent with the notion that NAFLD and
NASH are strongly linked with hormonal
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influences [228], this narrative review article was
driven by the hypothesis that what we called the
‘‘sexualdimorphism’’ ofNAFLD might be useful in
identifying clues of pathogenic significance and
providing hints for prevention and treatment of
NAFLD. On these grounds, a systematic research
of the literature was conducted. What we found
was that not only are men at an increased risk of
developing NAFLD (Fig. 1) but also significant
age-related changes in NAFLD epidemiology in
women may potentially bear physiopathological,
clinical, and therapeutic significance. NAFLD
epidemiology and physiopathology are modu-
lated by age at menarche and postmenopausal
status (Fig. 2). It would be expected that early
menarche, definitely associated with estrogen

activation, would produce protection against the
risk of NAFLD. Nevertheless, it has been suggested
that early menarche may confer an increased risk
of NAFLD in adulthood, excess adiposity being
the primary culprit of this association. Fertile age
may be associated with more severe hepatocyte
injury and inflammation, but also with a
decreased risk of liver fibrosis compared to men
andpostmenopausal status.Ovariansenescence is
strongly associated with severe steatosis and
fibrosing NASH which may occur in post-
menopausal women. Estrogen deficiency is
deemedtobe responsible for these findings via the
development of postmenopausal metabolic syn-
drome. Estrogen supplementation may at least
theoretically protect from NAFLD development

NAFLD RISK HIGHLOW

PUTATIVE MECHANISMS
NEMNEMOW

GLUTEOFEMORAL Distribu�on of adipose �ssue VISCERAL

KETONE BODY Fa�y acid par��oning VLDL-TAG

+ Browning of WAT -

Fig. 1 Physiopathological grounds accounting for male sex
as a strong predictor of NAFLD. Male gender and
menopausal status have been associated with the risk of
NAFLD independently of age and metabolic factors in
cross-sectional studies. On the basis of human studies and
extrapolation of notions from animal studies, it can be
speculated that female sex is protected from dysmetabolism
thanks to young individuals’ ability to partition fatty acids
towards ketone body production rather than VLDL-TAG

[23], and to sex-specific browning of white adipose tissue
which contributes in protecting female mice from exper-
imental NAFLD associated with methionine choline
deficient diet [24]. However, after menopause women
display a similar or even higher prevalence of NAFLD
compared to men, supporting a protective effect of
estrogens. Finally, risk factors associated with NAFLD
development are different in men compared to women.
TAG triacylglycerols, WAT white adipose tissue
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and progression, as suggested by some studies
exploring the effect of HRT on postmenopausal
women, but the variable impact of different sex
hormones in NAFLD (i.e., the pro-inflammatory
effect of progesterone) should be carefully taken
into account when proposing treatment with
synthetic hormones.

Taken collectively, these data may generate
innovative hypotheses to be tested in appro-
priate clinical and experimental studies on
NAFLD physiopathology and treatment.
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