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Abstract

Systematic, high-throughput dissection of causal post-translational regulatory dependencies, on a genome wide basis, is
still one of the great challenges of biology. Due to its complexity, however, only a handful of computational algorithms have
been developed for this task. Here we present CINDy (Conditional Inference of Network Dynamics), a novel algorithm for the
genome-wide, context specific inference of regulatory dependencies between signaling protein and transcription factor
activity, from gene expression data. The algorithm uses a novel adaptive partitioning methodology to accurately estimate
the full Condition Mutual Information (CMI) between a transcription factor and its targets, given the expression of a
signaling protein. We show that CMI analysis is optimally suited to dissecting post-translational dependencies. Indeed, when
tested against a gold standard dataset of experimentally validated protein-protein interactions in signal transduction
networks, CINDy significantly outperforms previous methods, both in terms of sensitivity and precision.
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Introduction

Reverse engineering of gene regulatory networks using gene

expression profiles has proven valuable in dissecting the logic of

cellular regulation in multiple species [1–4] and in elucidating

mechanisms governing pathophysiological processes [5–7]. How-

ever the vast majority of these methods has been developed for the

dissection of pairwise relationships between gene-products, for

instance by using co-expression [8], information theoretic [3], and

Bayesian Network [9] methods. These are well-suited to identify

relatively static interactions between transcription factors (TFs)

and targets or protein-protein interactions (PPIs) in complexes [10]

but fail to capture the more complex dynamic rewiring of

regulatory interactions implemented by signal transduction, post-

transcriptional regulation, and multi-TF combinatorial regulation.

However, most regulatory dependencies, such as regulation of

target expression by a TF, are not static but rather depend on

additional events, such as the availability of co-factors and

microRNAs or on protein modification events such as acetylation,

phosphorylation and ubiquitylation, which dynamically rewire the

logic of the cell in response to specific exogenous and endogenous

signals [11].

These observations provided the original rationale for the

development of the Modulator Inference by Network Dynamics

(MINDy) algorithm [12]. MINDy was instrumental in the

elucidation of novel modulators of oncogene TF activity, such as

the STK38 kinase and the HUWE1 ubiquitin ligase as regulators

of MYC and MYCN ubiquitin dependent proteasomal degrada-

tion, respectively, which were experimentally validated [6,13].

MINDy relied on information theoretic principles to identify

candidate modulators of TF activity, specifically by assessing the

difference in mutual information, DMI , between a TF and its

target genes, when conditioning on the highest and lowest

expression of any candidate modulator gene [14]. The algorithm

was very effective in predicting novel candidate modulators that

could be experimentally validated and associated with regulation

of specific post-translational modifications [6,12,13,15]. However,

it was never systematically tested across a comprehensive set of

established post-translational dependencies and suffers from a

relatively high false negative rate. Indeed, use of the DMI was

originally chosen as a heuristic approximation of the theoretically

correct analytical formulation. This analytical formulation ana-

lyzes the differences in multi mutual information of two different

distributions describing two different topologies, one depicting the

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109569

http://creativecommons.org/licenses/by/4.0/
http://magnet.c2b2.columbia.edu/
http://ocg.cancer.gov/programs/ctd2
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109569&domain=pdf


independent regulation of a target gene (Tg) by a modulator (M)

and a TF (Figure 1A) and the second one depicting a three-way

interaction between the TF, the target gene and the modulator

(Figure 1B). As proposed in [12], this difference requires

estimation of:

I TF ; TgDM½ �{I TF ; Tg½ �zI M; TF½ �w0 ðEq:1Þ

for the inference of a three-way interaction, where M is any

modulator protein affecting the ability of a transcription factor

(TF) to regulate its targets (Tg). Indeed, at the time the algorithm

was developed, using the theoretically derived formulation would

have been a prohibitive undertaking, both computationally and in

terms of data requirements. One of the critical limitations of the

DMI heuristic was that we had to assume I ½M; TF �~0, thus

limiting the analysis strictly to modulators whose expression was

statistically independent of the TF’s, a condition that precluded

the analysis of many relevant modulator proteins. This constraint

limits the inference of three-way interactions to the conditional

interactions, i.e. those between TF and Tg that are conditionally

dependent on the expression of M. Inference of true conditional

transcriptional interactions requires.

I TF ; TgDM½ �{I TF ; Tg½ �w0 ðEq:2Þ

Moreover, the explicit test of independence (i.e. I ½M; TF �~0)

increases the false negative rate by not considering the possibility

where despite the existence of dependency between M and TF’s

expression, Eq. 2 is satisfied. To address these problems we now

introduce a computationally efficient solution to estimate the full

conditional mutual information (CMI), based on adaptive

partitioning [16], thus avoiding any heuristics, removing the

limitations of the previous formulation, and embracing the correct

theoretical model for the dissection of conditional interactions.

Adaptive partitioning is a very efficient method for calculating the

Shannon entropy of joint gene distributions [16], using a

histogram based approach (Figure 2). The new approach has

been implemented in a novel algorithm for the Conditional

Inference of Network Dynamics (CINDy). Elucidating candidate

modulators of TF activity is an extremely important problem in

biology, as it helps dissect the logic by which signal transduction

pathways regulate transcriptional programs. We applied CINDy

to two independent datasets and evaluated its precision and

sensitivity in predicting experimentally validated post-translational

modulators of TF activity. We also compared the performance of

CINDy with the original MINDy algorithm. There are virtually

no other available algorithms to dissect post-translational depen-

dencies from gene expression profile data. As a result, comparison

to MINDy is the most appropriate for the new algorithm.

Results

First, we tested the performance of the two algorithms (using

default parameters) in inferring established modulatory interac-

tions, using two distinct gene expression profile datasets: (a) a B-

cell lymphoma dataset containing 226 samples [17] and (b) a lung

adenocarcinoma TCGA dataset containing 412 samples [18].

These datasets were specifically selected to evaluate the algo-

rithms’ performance and applicability within different contexts

and using gene expression profiles from different platforms

(Affymetrix U133P2 microarrays and RNASeq, respectively).

The results of these analyses are summarized in Table 1.

Briefly, for the MINDy algorithm, for each candidate modu-

lator gene, M, we tested only TFs with expression statistically

independent of M, as assessed by the statistical significance of the

Mutual Information of their gene expression profiles. We also

discarded candidate target genes whose gene expression was highly

correlated with that of the associated TF, thus restricting the

number of candidate target genes in the analysis. Both of these are

a requirement for using the DMI heuristics in place of the full

CMI formulation. MINDy proceeds by selecting two non-

overlapping sample subsets (SH and SL) representing 35% highest

and 35% lowest expression of M (a heuristically selected

threshold). Then, for each TF considered in the analysis, the

mutual information I ½TF ; Tg� between the TF and each candidate

target gene is computed independently from the SH and from the

SL samples and the statistical significance of their difference (i.e.,

DMI~I(SH ){I(SL)) is evaluated using a null model based on

sample permutations. For each candidate M ? TF interaction,

the number of target genes, NTg, producing a statistically

significant DMI is computed. For CINDy, instead, the full

conditional mutual information analysis is performed (see Eq. 2

and Materials and Methods).

I ½TF ; TgDM� is calculated using an estimation of 3-dimensional

probability distribution, whereas I ½TF ; Tg� is calculated using an

estimation of 2-dimansional probability distribution, therefore

numerically I ½TF ; TgDM� cannot be compared to I ½TF ; Tg�, thus

making the calculation of Eq.2 a non-trivial problem. To solve

this, we used a null model that is centered around I ½TF ; Tg� (see

Materials and Methods). This null model not only eliminates

the need to compare I ½TF ; TgDM� and I ½TF ; Tg� but also assesses

the statistical significance of Eq. 2. This eliminates both the DMI
heuristics, as well as the arbitrary parameter controlling the tail

sizes used in the MINDy implementation. Again, the number of

candidate targets NTg needed to produce a statistically significant

CMI for a candidate M ? TF interaction is computed. Finally, for

Figure 1. Alternative three-way network topologies including a Transcription Factor (TF), a Target gene (Tg) and a Modulator gene
(M). (A) depicts the independent regulation of the target gene by a modulator and a TF; (B) describes a three-way interaction between the TF, the
target gene and the modulator.
doi:10.1371/journal.pone.0109569.g001
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both algorithms, significant M ? TF interactions are inferred

based on the number of statistically significant conditional target

interactions, using a statistical model. In brief, for a particular

FDR threshold (default FDR = 0.05), the number of affected

targets in the null hypothesis is assessed by running both

algorithms repeatedly over the same dataset, following random

modulator expression assignment. The final result is a list of M ?
TF pairs and associated p-values.

To objectively assess the performance of the two algorithms, we

compared the modulatory interactions they inferred to a set of

validated Protein-Protein Interactions (PPIs) between TFs and

candidate modulator proteins (‘‘gold standard dataset,’’ PPIGold).

Figure 2. Schematic representations of the CINDy algorithm. A collection of gene expression profiles is required to calculate Conditional
Mutual Information between lists of modulators, transcription factors and putative target genes, with the final output of inferred modulation events.
doi:10.1371/journal.pone.0109569.g002
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The latter was generated by taking the union of interactions

obtained from four independent databases: for generic PPIs, we

combined the interactions in HPRD [19], Y2H db [20] and

STRING [21], while for candidate kinase/target pairs, we used

the PhosphoSite database [22] (see Materials and Methods
and Figure S1). Algorithm performance was evaluated by

computing recall rate, defined as the fraction of inferred

interactions in the PPIGold, and precision rate, defined as 1 minus

the fraction of inferred interactions not present in the PPIGold. An

important point to note is that the PPIGold dataset contains only a

very small fraction of all true biological PPIs. Therefore, any

precision estimates represent highly underestimated values.

Indeed, precision should be used only as a comparative metric

here such that recall may be computed either at roughly the same

or better precision and is not representative of true precision,

which can only be assessed from experimental validation.

In B-Cell lymphoma (Figure 3A), CINDy outperformed

MINDy by achieving significantly higher recall and precision. In

fact, CINDy achieves roughly twice the recall of MINDY (68.13%

vs. 34.37%) while also increasing precision (3.19% vs. 2.76%).

Similarly, in lung adenocarcinoma (Figure 3B) CINDy achieves

a 60.50% recall rate with 1.81% precision, whereas MINDy

achieves a dramatically smaller recall of 9.26% at an even lower

precision of 1.64%.

We also evaluated the performance of both algorithms by

changing the stringency of the analysis, i.e., the minimum number

of statistically significant (TF, Tg) interactions (i.e., NTg§NMin)

required to call a M ? TF modulatory interaction. To simplify the

analysis, since the number of significant target interactions is

discrete and hence a precise relationship with a meaningful FDR

rate is not always possible, we considered NMin values between 1

and 300, a significant FDR range between 1 and 10216. As

expected, with the increase of the stringency threshold we

observed a decrease in recall rate by both methods in both

datasets (Figure 3C–D). However, at any equivalent recall rate,

CINDy significantly outperformed MINDy. As expected, precision

was positively correlated with the stringency threshold. Taken

together, these findings show that use of the correct conditional

mutual information model significantly outperforms the DMI
heuristics proposed in [2].

Due to the resulting differences in the analysis, the computa-

tional requirements of the algorithms are different (Figure S2).

When using identical computational environments, CINDy

requires almost double the time of MINDy, mostly due to using

the entire dataset rather than just the top and bottom 25%.

However, its memory requirements are half of those of MINDy

(Figure S2).

Much of the computational requirements for the algorithms are

due to the fact that every gene is considered as a candidate TF

target by the analysis. To reduce both computation time and

memory requirements (Figure S3), one can consider TF targets

that are either experimentally assessed from CHIP-Seq and or TF

silencing assays [23,24], inferred by reverse engineering algo-

rithms, such as ARACNe [3], CLR [25], Mider [26], and others

[27–29], or from sequence specific TF binding sites [30]. Although

this provides a significant computational advantage and without

decreasing precision, use of pre-determined target genes signifi-

cantly decreases the number of correctly predicted TF modulators

in the gold set, hence increasing the false negative rate (Figure S4
and Table S1).

Finally, we assessed the performance of CINDy by varying the

number of gene expression profiles, n. We varied n from 50 to 200

with an interval of 25 and assessed the performance by inferring

modulatory interactions for 100 transcription factors and modu-

lators with maximum connection in the gold standard dataset. For

a given n we repeated the assessment 100 times by resampling the

gene expression profiles. This analysis showed that whereas there

is no change in the precision with varying n there is a constant

increase in recall rate with increasing n (Figure S5).

CINDy identifies novel modulatory interactions
CINDy confirmed previous predictions of modulatory interac-

tions, such as MYC activity modulation by the STK38, MAPK1

and CSNK2A1 proteins in B-cell lymphoma [12], but it also

inferred a large number of established post-translational regulatory

interactions that could not be detected by MINDy (Table S2), as

well as several novel predictions. Among the newly inferred MYC

activity modulators, we find many signaling proteins and TFs that

are associated with B-lymphoma malignancies, including ATM

[31], CDK2 [32], MYC [33,34], HIF1A [35] [36] and NFKB

[37]. In addition, many of the protein pairs inferred only by

CINDy are well-known and have been experimentally validated,

e.g. GSK3B/MYC [38], IKBKB/NFKB1 [39], MAPK1/MYC

[40]. However, when considering post-translational modulators of

proteins known to play a causal role in B-lymphoma, such as MYC

and BCL6, their CINDy inferred modulators are generally

unknown and likely to be experimentally validated, since

experimental validation of MINDy prediction has been consis-

tently in the 70% - 80% range. These predictions identify several

interesting and potentially biologically relevant links. For instance,

the interaction between CDK2 and HMGA1, predicted only by

CINDy, may constitute a previously uncharacterized signaling

bridge during cell cycle progression. The CDK2 kinase belongs to

the family of cyclin-dependent kinases (CDKs) regulating cell cycle

[41] and its activity depends on the interactions with other

regulatory proteins, A or E-type cyclins, complexes of which are

involved in the regulation of G1 and S phase transitions [42,43].

The functional role of CDK2 in maintaining neoplastic growth

was previously reported [44–46]. HMGA1 belongs to the family of

Table 1. Default parameters used for running MINDy.

Parameters

Percentage of
samples in each tail

MI p-value for independence
between modulator and
transcription factor

Corrected pvalue threshold
for each modulator,
transcription factor and
target interaction

MI p-value for independence
between transcription factor
and target

FDR p-value for
TF/modulator pair

MINDy 35% 1025 0.05 1026 0.05

CINDy NA NA 0.05 NA 0.05

NA: Not applicable.
doi:10.1371/journal.pone.0109569.t001
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non-histone chromatin-associated high-mobility group proteins

involved in various cellular processes including heterochromatin

organization, regulation of gene transcription, DNA replication

and it is overexpressed in malignant neoplasms but not in normal

adult cells [47]. Causal regulation of HMGA1 activity by CDK2

was never previously reported. However, there are many clues

suggesting that such an interaction may be realistic (Figure 4).

HMGA1 was shown to contribute to neoplastic transformation by

modulating transcriptional activity of p53 leading to inhibition of

apoptosis [48,49]. Transcriptional targets of p53, MDM2 and p21,

have been shown to inhibit CDK2 activity and contribute to p53-

dependent cell cycle arrest [50]. Both, HMGA1 and CDK2 were

shown to interact with BCL2 [51,52]. Hence it is not unlikely that

they may form a functional complex. Thus MINDy provides direct

Figure 3. Comparative performance of MINDy and CINDy. Precision and recall values are compared in the B-cell lymphoma dataset (panel A)
and Lung Adenocarcinoma dataset (panel B), calculated by matching the predictions with a gold standard dataset set obtained from four different
databases of experimentally validated PPIs between modulators and transcription factors. Precision and recall are further compared at different
robustness threshold for MINDy (blue line) and CINDy (red line) in the B-cell dataset (panel C) and in the Lung dataset (panel D, see Materials and
Methods).
doi:10.1371/journal.pone.0109569.g003
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clues leading to experimentally testable hypotheses that may

elucidate novel functional interactions in tumorigenesis as

previously reported [2,6,13].

In lung adenocarcinoma, CINDy specifically highlights modu-

latory interactions that affect epithelial proliferation, such as the

direct phosphorylation by the Epidermal Growth Factor Receptor

(EGFR) of the STAT1 [53] and STAT3 [54] TFs, a fundamental

and well established step in the proliferative signal transduction

cascade that was not detected by MINDy. Another modulatory

interactions found exclusively by CINDy is the phosphorylation of

GATA binding protein 1 (GATA1) by the kinase ERK2/MAPK1

[55]. Other non-phosphorylation dependent modulations, like the

transcriptional co-activation of the proliferative transcription

factor Forkhead box protein M1 (FOXM1) by the histone

acetyltransferase CREB binding protein (CREBBP), show how

the algorithm can dissect a variety of regulatory interactions,

mediated by diverse post-translational mechanisms and simply

undetectable by conventional gene expression analysis [56].

Discussion

The most pressing challenge for Systems Biology is the

development of model-based approaches for the veritable inter-

pretation of an avalanche of new biological data. Reverse

engineering algorithms provide a key approach to build regulatory

models representing the molecular mechanisms that control cell

behavior. These models in turn can provide critical novel

knowledge about mechanistic control of physiologic processes

[57] and their dysregulation in disease [5–7,58–62], thus allowing

the rapid, genome-wide generation of new testable biological

hypotheses. By leveraging broadly available gene expression data,

the MINDy algorithm allowed high-fidelity reconstruction of

complex post-translational causal dependencies, where a modula-

tor protein can affect the transcriptional activity of a TF on its

targets. Replacing the original empirical formulation of the

MINDy algorithm with the theoretically correct one, based on

the conditional mutual information, the CINDy algorithm

dramatically improves both recall and precision, thus virtually

doubling the number of candidate modulatory interactions while

also decreasing false positives. This allows inference of many

interactions that were experimentally established such as the

activation of the STAT TFs by EGFR aberrant signals or the

activation of MYC by GSK3B, which could not be previously

detected. The inclusion of prior knowledge to reduce the search

space of CINDy to a subset of the potential TF target genes shows

benefit both in terms of increased precision and substantial

decrease in computational time, albeit at the price of decreased

sensitivity. The dataset size also seems to be affecting the

performance of CINDy, since intuitively, more samples drive

higher recall rates at comparable precision. Fewer than 100

samples results in very small recall rate and only by using.150

samples does CINDy produce a reasonable recall rate (.20%).

Therefore, it is recommended to use CINDy with a minimum of

150 samples. It is foreseeable that in the future with the concurrent

increase of broader and more accurate databases for context-

specific experimentally validated regulatory networks, more

sophisticated CMI-based tools will be developed to integrate

weighted evidences coming from different sources, such as novel

MI-based reverse engineering methods [63], sequence motif

analysis [64], or ChIP-seq data [23]).

Due to its general formulation, CINDy can identify a variety of

post-translational interaction mechanisms that go beyond standard

post-translational modification (e.g., phosphorylation, or ubiqui-

tylation events), such as recruitment of CREBBP to FOXM1 and

consequent transcriptional activation. It is also able to generate

novel testable hypotheses for intriguing dependencies, such as

regulation of HMGA1 activity by CDK2 (Figure 4).

Importantly, by adopting a theoretically rigorous formulation,

CINDy does away with many of the heuristics and parameter

choices of the MINDy implementation. For instance, the need to

select arbitrary tails of the modulator expression, the somewhat

arbitrary thresholds used to evaluate a modulator TF interaction

or the statistical dependency between a TF and a candidate target

gene, as well as the statistical significance of DMI (Table 1).

CINDy effectively eliminates the requirement to choose nonstan-

dard values for these parameters or eliminates them altogether.

Indeed, CINDy requires only the selection of a statistical threshold

to evaluate the statistical significance of the CMI, thus making the

Figure 4. Example of novel prediction by CINDy. Proposed mechanism for modulation of HMGA1 by CDK2.
doi:10.1371/journal.pone.0109569.g004

Inferring Protein Modulation Using Conditional Mutual Information

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e109569



algorithm extremely robust. Altogether, our finding shows that

CINDy is a novel standard tool for inferring genome-wide

modulation events affecting transcription factor activity.

Materials and Methods

Expression datasets
We ran the CINDy and MINDy algorithms on two indepen-

dent datasets, called ‘‘Lung dataset’’ and ‘‘B-Cell dataset’’. The

Lung dataset originates from the TCGA gene expression study

[18], and it contains genome wide gene expression profiles of 412

RNASeq samples (Synapse v6 release: https://www.synapse.org/

#!Synapse:syn395683), RPKM-normalized. The B-Cell dataset

derives from human B-cell microarray gene expression experi-

ments [17], and it’s constituted by 226 samples profiled on the

Affymetrix U133P2 platform.

Transcription factors and modulator genes
Transcription factors and modulator gene lists used to run

MINDy in this study were defined as in [12] and then further

extended with the current Gene Ontology (GO) annotations [65].

In brief, a ‘‘transcription factor’’ gene was defined as such if

annotated in the GO molecular category ‘‘transcription factor

activity’’, while a ‘‘modulator’’ is defined as a gene belonging to

any of the following molecular functions: protein kinase activity,

phosphoprotein, phosphatase activity, acetyltransferase activity,

deacetylase activity or signal transduction. The lists were further

manually curated and are available in the Table S3, containing

3,203 candidate modulators and 1,673 transcription factors. 210 of

these genes fall in both categories (e.g. CREB1, NFKB1 and

TP53), i.e. they have both the transcriptional as well as

modulatory function, and were therefore processed in our analyses

both as candidate modulators and transcription factors.

Gold standard sets
We collected human PPI interactions from HPRD release 9

(3,637 unique modulator/TF interactions), Y2H (170), Strings

v9.0.5 (81,504) and human phosphorylation kinase/target pairs

from PhosphoSite (541), totaling 82,160 distinct modulator/TF

interactions (Figure S1). We excluded homodimerization inter-

actions and peptides that could not be unambiguously mapped to

any Entrez gene id.

Adaptive Partitioning (AP)
AP is an algorithm for dynamic binning of the expression

distribution, which can be applied for calculation of mutual

information between two or more variables [16,26]. An initial

partitioning is applied, centered on the median of the distributions,

and then partitioning proceeds in the quadrants where the sample

distribution is significantly non-uniform (assessed by x2 test)

Conditional Mutual Information (CMI)
The CMI between a Transcription Factor (TF) and a Target

Gene (Tg), given a putative Modulator (M) is inferred by

estimating the conditional probability distribution using an

adaptive partitioning approach:

X

m[M

X

g[Tg

X

t[TF

pTF ,Tg,M (t,g,m) log
pM (m)pTF ,Tg,M (t,g,m)

pTF ,M (t,m)pTg,M (g,m)
ðEq:3Þ

where p indicates the outcome probability for a given gene

expression range.

CMI is therefore analogous to conditional partial correlation for

mutual information calculation [66]: the relationship between TF

and Tg is assessed while keeping M constant. If this relationship

changes significantly depending on the M distribution, MINDy

will report M as a putative modulator of the interaction between

TF and Tg (Figure 2).

Null Model to estimate significance of CMI
To assess the statistical significance of a particular CMI, we

generate a series for null models, each for different ranges of

mutual information between TF and Tg. To build this null model,

first we randomly select 104 distinct (TF,Tg) pairs and estimate

I ½Tg; TF � between them using the adaptive partitioning method.

Next for each of these pairs we calculate 1000 CMI scores using

the randomized expression of modulators. We bin the entire range

of I ½Tg; TF � into 100 equi-probable bins, resulting in 100 TF-Tg

pairs and 105 CMI values in each bin. Within each bin, we model

the distribution of CMI as an extended exponential,

p(CMI)~exp{aCMInzb (as described in [67]). To estimate the

pvalue of given CMI, we estimate the mutual information between

TF and Tg from this CMI to identify the bin and use the extended

exponential model from that bin to extrapolate the probability of

that CMI.

Supporting Information

Figure S1 Number of modulator/transcription factor
associations in four independent databases, and relative
intersections.

(TIF)

Figure S2 Comparative computational performance of
MINDy and CINDy. The test was performed on the human B-

cell dataset [17] with 100TFs 100 Modulators and 250 samples.

Reported are the mean and standard deviations of all the 100

MINDy runs. The performance was assessed on a 16 x Intel Xeon

CPU E5-2630 0 @ 2.3 GHz machine with 30,098,316K total

RAM.

(TIF)

Figure S3 CINDy performance on a single TF-Modula-
tor pair using increasing number of target genes. The

vertical black line to the left indicates the average number of

targets in the dataset (97.2). For this particular dataset, on average,

MINDY using all genes is almost 130 times slower than using

target genes, and requires almost 28 times more RAM.

(TIF)

Figure S4 Benchmark of MINDy runs using a subset of
target genes defined by ARACNe [27] (p-value 10e-8). A-B

Precision and recall of MINDy, CINDy, intersection and union

sets in the B-cell and Lung datasets, calculated over a golden set of

four databases of experimentally validated PPIs between modu-

lators and transcription factors. C-D Precision/Recall plots for

MINDy (blue points) and CINDy (red points) at different

robustness thresholds (see Materials and Methods).

(TIF)

Figure S5 Effects of sample size on precision and recall
in the B-cell dataset (226 samples). The precision/recall

curves were calculated using the 100 TFs and modulators with

most connections in the gold standard set (Figure S1). The error

bars indicate the standard deviation in the estimation of precision

and recall obtained by running CINDy over 100 datasets

generated by subsampling.

(TIF)

Inferring Protein Modulation Using Conditional Mutual Information

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109569

https://www.synapse.org/#!Synapse:syn395683
https://www.synapse.org/#!Synapse:syn395683


Table S1 Raw performance information for CINDy and
MINDy in the lung adenocarcinoma and B-cell lympho-
ma datasets, at different thresholds defined by the
number of target genes affected by the modulation
events.

(XLSX)

Table S2 Significant modulation events predicted by
CINDy and MINDy at standard parameters in the B-Cell
and Lung datasets. The number of significant conditional

target interactions for each M ? TF is also reported.

(XLSX)

Table S3 Gene symbols used in the current manuscript
as modulator genes or transcription factors.
(XLSX)
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