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Abstract

Background: There has been an increasing interest in understanding the usefulness of wrist-based accelerometer
data for physical activity (PA) assessment due to the ease of use and higher user compliance than other body
placements. PA assessment studies have relied on machine learning methods which take accelerometer data in forms
of variables, or feature vectors.

Methods: In this work, we introduce automated shape feature derivation methods to transform epochs of
accelerometer data into feature vectors. As the first step, recurring patterns in the collected data are identified and
placed in a codebook. Similarities between epochs of accelerometer data and codebook’s patterns are the basis of
feature calculations. In this paper, we demonstrate supervised and unsupervised approaches to learn codebooks. We
evaluated these methods and compared them with the standard statistical measures for PA assessment. The
experiments were performed on 146 participants who wore an ActiGraph GT3X+ accelerometer on the right wrist and
performed 33 activities of daily living.

Results: Our evaluations show that the shape feature derivation methods were able to perform comparably with the
standard wrist model (F1-score: 0.89) for identifying sedentary PAs (F1-scores of 0.86 and 0.85 for supervised and
unsupervised methods, respectively). This was also observed for identifying locomotion activities (F1-scores: 0.87, 0.83,
and 0.81 for the standard wrist, supervised, unsupervised models, respectively). All the wrist models were able to
estimate energy expenditure required for PAs with low error (rMSE: 0.90, 0.93, and 0.90 for the standard wrist,
supervised, and unsupervised models, respectively).

Conclusion: The automated shape feature derivation methods offer insights into the performed activities by
providing a summary of repeating patterns in the accelerometer data. Furthermore, they could be used as efficient
alternatives (or additions) for manually engineered features, especially important for cases where the latter fail to
provide sufficient information to machine learning methods for PA assessment.
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Background
Physical activity (PA) assessment has been widely pursued
in a variety of research studies including determining rela-
tionship with health status [1], detecting future hazardous
events (e.g., major mobility disability) [2], and evaluat-
ing the performance of interventional studies aimed to
increase PA [3]. For PA assessment, wearable accelerome-
ters have been the main devices for data collection, which
are minimally intrusive and provide objectively accurate
measurements. Most of the studies have been conducted
with the accelerometer attached to the hip, since the infor-
mation obtained from this body placement was highly
correlated with ambulation [4]. There has been a recent
interest in understanding the usefulness of wrist-based
accelerometer data collection due to ease of use and
higher compliance. In particular, smartwatches play an
important role in this change, since they are popular and
have necessary resources, e.g., sensor monitors and con-
nectivity means, to make real-time mobility monitoring pos-
sible. There have been several remote health monitoring
frameworks proposed by researchers that are dependent
on wrist-accelerometer PA assessment models [5].

PA assessment approaches include two main parts: 1)
PA identification, which is a classification task and 2)
energy expenditure estimation for performing the PA,
which is a regression problem. In both areas, it has been
shown that machine learning methods perform better
than statistical regression-based approaches [6]. There are
two most widely used approaches to define a physical
activity in the PA assessment studies. While some works
focused on recognizing homogeneous activities, such as
sitting, standing, and walking [7], there have been other
works that attempted to detect activities of daily living,
e.g., grocery shopping and yard work, which are com-
posites of homogeneous activities [8]. Each approach has
unique advantages; however, the latter definition of phys-
ical activity has been more closely investigated to assess
lifestyles of individuals [6].

Most machine learning methods require data in the
form feature vectors, and therefore, their performance
depends on the feature derivations. Statistical summaries
of accelerometer data have been the most popular choice
for feature derivation in PA assessment studies. This
type of feature derivation is a manual procedure, which
requires domain expertise and sufficient knowledge about
the relation between the data in hand and the target vari-
able. To assess activities of daily using wrist accelerometer
data, a set of seven summary statistics for short epochs
(12.8 or 15 s) has been introduced [9]. The feature vec-
tors obtained from this approach has been shown to
be effective measurements for detecting sedentary and
locomotion activities [6, 10].

When summarizing a dataset into a few summary
statistics, it is possible that two different activities exhibit

similar features. In this method, we lose certain details and
information that might be useful to identify other types
of activities. Therefore, for a new target variable (e.g., a
new activity of interest), another set of features might be
required. The present work, which builds on a previous
paper presented by Kheirkhahan et al. [11], proposes two
shape feature derivation methods for PA assessment that
are based on detecting representative accelerometer pat-
terns in a dataset containing activities of daily living. The
representative patterns are called atoms and gathered in a
codebook. The learned codebook is used to calculate fea-
ture vectors based on similarities of subsequences within
a PA accelerometer data and atoms.

The main contributions of the present work are:

• We introduce an unsupervised method to learn a
comprehensive codebook from the wrist
accelerometer data. We obtain a bag-of-words
representation of the data by replacing the
subsequences of data with their most similar atoms.
We apply a term frequency-inverse document
frequency function on bag-of-words representations
to obtain feature vectors suitable to be passed to PA
assessment models.

• Leveraging the idea of motif detection [12], we
propose a supervised shape feature derivation
method that identifies recurring patterns for an
activity of interest. We show that this method results
in a more specialized codebook with fewer atoms,
and therefore, the distance of subsequences of data to
atoms are directly used as new features.

• We evaluate the three different feature derivation
methods for PA assessment, which are 1) standard
wrist model relying on statistical summaries, 2)
bag-of-words approach, and 3) supervised shape
feature. The present work shows that the shape
features perform with high accuracy for identifying
sedentary and locomotion PAs. There accuracies are
comparable with the statistical features that were
defined for this problem. However, they provide
further information that contribute to models with
higher accuracy than the standard wrist model for
new activities of interest.

• The current study also investigates whether
performing additional steps of activity identification
improve the energy expenditure estimation for all
three models.

Methods
Data Collection
Participants
One hundred and forty six adults with ages ranging
between 20 and 89 years participated in a study of
metabolic costs of daily activity [13]. Table 1 shows the
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Table 1 Participant characteristics

Characteristic All (n = 146) Women (n = 97) Men (n = 49)

Age (years) 58.6 ± 17.4 59.2 ± 17.0 57.6 ± 18.2

Weight (kg) 74.8 ± 17.1 68.9 ± 14.6 86.3 ± 15.7

Height (m) 167.5 ± 9.2 163.0 ± 6.2 176.4 ± 7.7

BMI (kg/m2) 25.9 ± 6.5 25.3 ± 6.7 27.1 ± 5.7

BMI, body mass index

participant characteristics. The participants were com-
munity dwelling adults, who were required to understand
and speak English, had stable body weight for at least three
months, and willing to undergo all testing procedures.
They provided written informed consents approved by the
Institutional Review Board at the University of Florida.

They were asked to perform a list of 33 tasks mim-
icking daily chores in four visits, including exercise and
sedentary type physical activities, in a clinic laboratory
setting (see Table 2). An ActiGraph GT3X+ (ActiGraph,
Pensacola, FL) triaxial accelerometer was mounted on
their right wrist. Locomotion tasks were performed dur-
ing the first visit, while the fourth visit was dedicated
to sedentary tasks (e.g., TV watching and standing still).
During the other two visits, participants engaged in tasks
where ambulation was necessary for some parts. For com-
puter work, TV watching, and strength exercises, par-
ticipants were asked to remain seated throughout the
activity.

Instrumentation
The ActiGraph GT3X+ monitors were mounted on par-
ticipants’ right wrists. These lightweight accelerometers
record accelerations in units of gravity (1 g) in perpendic-
ular, anterior-posterior, and medio-lateral axes. They were
configured to collect data at 100 Hz sampling rate. Energy
expenditures was measured in parallel using a portable
indirect calorimetry system, Cosmed K4b2 [14]. Respira-
tory gas exchange data were collected breath-by-breath
through a fitted mask. Data were converted to MET values
defined as the oxygen uptake (VO2 = ml/min.kg) during
steady state rate expressed as a function of 3.5 ml/min.kg.

Wrist Accelerometer Models
A conventional accelerometer model for activity recog-
nition consists of modules for feature vector calculations
from the time-series data and machine learning meth-
ods for predicting activity labels. In this work, we present
three different approaches for feature representations; 1)
statistical summaries of accelerometer data, which has
been the standard feature vectors for physical activity
assessments, 2) a bag-of-words approach, which is an
unsupervised method for detecting recurring patterns of
accelerations in the unprocessed time-series data, and 3)

a supervised shape feature derivation, which identifies
epochs of acceleration data that are repeated within an
activity of interest. Details for each method are presented
in the following:

Standard Statistical Wrist Feature Representation
We develop the wrist model (i.e., set of variables) using
which have been widely used for activity recognition
and physical activity assessment using high-frequency
accelerometer data collected on the wrist [6, 9, 15]. Briefly,
the constructed variables are:

• Time-domain variables: the mean and standard
deviation vector magnitude (MVM and SDVM,
respectively), where the vector magnitude is
calculated using x, y, and z-axes of the accelerometer
as follows:

VM =
√

x2 + y2 + z2

• Frequency-domain variables: after obtaining the
frequency representation of the vector magnitude
using the Fast Fourier Transform [16], the following
variables are calculated: 1) the dominant frequency
(DF), 2) its fraction of power (FPDF), and 3) the
fraction of power within human movement
frequencies, i.e., 0.6 Hz to 2.5 Hz (P625).

• Orientation-related variables: the mean and standard
deviation of the existing angle between the
perpendicular axis (x) and vector magnitude
(MANGLE and SDANGLE, respectively), where the
angle is calculated as follows:

angle = 180
π

× sin−1 x
VM

We calculate the above-mentioned variables from non-
overlapping 15-s epochs of acceleration data.

Bag-of-Words Feature Representation
Every observation (i.e., accelerometer data for a PA) is
considered a time series sequence. The bag-of-words time
series model is a three-pronged process, which is depicted
in Fig. 1. At the first step, we find k-second accelerome-
ter patterns that are representative of vector magnitudes
in the collected data. These representative patterns are
often called atoms [17] and in the physical activity lit-
erature, the duration for such patterns (k) is usually less
than 6 s [18]. Atoms are gathered into a d-atom codebook.
After finding the codebook, we convert every k-second
subsequence of accelerometer data to a word using the
label of the atom which resembles that subsequence the
most. Using the word representation of the accelerometer
data, we calculate normalized word frequency variables
to obtain numeric vectors suitable for the machine learn-
ing methods. Details of this method is presented in the
following paragraphs.
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Table 2 Summary statistics for the activities of daily living performed in the laboratory setting

Activity Locomotion Sedentary METs MVM SDVM MANGLE SDANGLE P625 DF FPDF

Stair Ascent Yes No 6.36 (1.93) 1.07 (0.03) 0.17 (0.05) -19.88 (22.72) 21.52 (5.54) 0.52 (0.07) 1.47 (0.51) 0.07 (0.02)

Walking at RPE 5 Yes No 4.85 (1.19) 1.25 (0.18) 0.25 (0.08) -41.26 (41.90) 12.92 (3.85) 0.56 (0.09) 1.59 (0.53) 0.14 (0.03)

Rapid Walk Yes No 4.64 (1.42) 1.24 (0.15) 0.26 (0.09) -41.48 (42.75) 12.99 (4.45) 0.52 (0.13) 1.73 (0.70) 0.12 (0.03)

Heavy Lifting No No 4.43 (0.92) 1.06 (0.02) 0.15 (0.03) -26.30 (22.71) 24.26 (3.95) 0.52 (0.03) 1.45 (0.26) 0.07 (0.01)

Yard Work No No 4.33 (1.15) 1.08 (0.03) 0.21 (0.05) -23.37 (24.60) 22.25 (4.26) 0.52 (0.05) 1.20 (0.54) 0.06 (0.01)

Digging No No 4.22 (1.24) 1.07 (0.04) 0.24 (0.11) -27.29 (29.77) 25.30 (7.85) 0.50 (0.05) 1.43 (0.63) 0.05 (0.01)

Trash Removal No No 3.90 (0.74) 1.07 (0.02) 0.19 (0.04) -25.75 (22.56) 23.24 (3.07) 0.54 (0.04) 1.40 (0.27) 0.07 (0.01)

Vacuuming No No 3.73 (0.68) 1.06 (0.04) 0.12 (0.03) -32.06 (28.55) 16.06 (3.32) 0.51 (0.03) 1.25 (0.28) 0.06 (0.01)

Mopping No No 3.55 (0.81) 1.07 (0.04) 0.19 (0.05) -20.41 (23.29) 18.90 (5.17) 0.57 (0.06) 1.17 (0.43) 0.08 (0.02)

Replacing Sheets
On a Bed

No No 3.50 (0.72) 1.11 (0.04) 0.28 (0.06) -20.60 (17.18) 24.22 (3.22) 0.52 (0.03) 1.24 (0.19) 0.06 (0.00)

Straightening Up
and Dusting

No No 3.42 (0.86) 1.09 (0.04) 0.17 (0.05) -18.12 (19.84) 19.44 (3.26) 0.52 (0.05) 1.22 (0.31) 0.07 (0.01)

Stair Descent Yes No 3.32 (0.59) 1.07 (0.03) 0.21 (0.07) -34.99 (31.96) 15.42 (4.96) 0.53 (0.06) 1.68 (0.49) 0.07 (0.02)

Light Home
Maintenance

No No 3.32 (0.65) 1.06 (0.02) 0.17 (0.04) -11.47 (13.44) 25.37 (3.30) 0.51 (0.03) 1.33 (0.20) 0.06 (0.00)

Light Gardening No No 3.31 (1.09) 1.07 (0.03) 0.19 (0.06) -24.78 (26.52) 20.54 (3.35) 0.50 (0.06) 1.50 (0.56) 0.06 (0.01)

Sweeping No No 3.29 (0.65) 1.05 (0.03) 0.17 (0.04) -18.30 (23.13) 20.17 (3.94) 0.56 (0.05) 1.24 (0.35) 0.06 (0.01)

Walking at RPE 1 Yes No 3.29 (0.63) 1.07 (0.04) 0.15 (0.04) -42.44 (42.03) 9.04 (3.50) 0.56 (0.09) 1.58 (0.39) 0.13 (0.04)

Leisure Walk Yes No 3.26 (0.88) 1.08 (0.05) 0.16 (0.05) -43.84 (42.76) 8.96 (3.95) 0.54 (0.15) 1.84 (0.77) 0.13 (0.03)

Washing
Windows

No No 3.17 (0.62) 1.12 (0.07) 0.28 (0.10) -4.96 (11.70) 22.04 (3.26) 0.53 (0.04) 1.30 (0.24) 0.07 (0.01)

Laundry No No 2.85 (0.74) 1.06 (0.02) 0.20 (0.04) -15.43 (13.47) 23.94 (2.74) 0.53 (0.03) 1.36 (0.25) 0.06 (0.00)

Prepare and
Serve Meal

No No 2.68 (0.65) 1.05 (0.02) 0.13 (0.03) -14.65 (15.30) 16.65 (3.29) 0.47 (0.04) 1.79 (0.36) 0.06 (0.01)

Dressing No No 2.61 (0.54) 1.06 (0.02) 0.15 (0.03) -13.19 (15.19) 20.98 (3.10) 0.49 (0.03) 1.57 (0.25) 0.05 (0.00)

Unloading and
Storing Dishes

No No 2.55 (0.47) 1.05 (0.03) 0.16 (0.03) 2.39 (10.28) 20.23 (3.04) 0.49 (0.04) 1.55 (0.30) 0.05 (0.01)

Shopping No No 2.42 (0.46) 1.04 (0.02) 0.09 (0.02) -12.32 (13.13) 16.11 (3.18) 0.50 (0.03) 1.41 (0.26) 0.06 (0.01)

Personal Care No No 2.36 (0.47) 1.08 (0.04) 0.21 (0.06) -0.94 (10.50) 27.30 (3.70) 0.50 (0.05) 1.55 (0.33) 0.06 (0.01)

Yoga No No 2.31 (0.62) 1.02 (0.01) 0.06 (0.03) -32.42 (28.01) 11.29 (4.12) 0.49 (0.03) 1.37 (0.26) 0.06 (0.01)

Ironing No No 2.19 (0.41) 1.05 (0.02) 0.13 (0.03) -6.17 (9.09) 16.94 (2.85) 0.50 (0.02) 1.67 (0.22) 0.05 (0.00)

Washing Dishes No No 2.16 (0.39) 1.06 (0.03) 0.14 (0.04) -13.30 (14.36) 13.98 (2.45) 0.46 (0.04) 1.54 (0.34) 0.06 (0.01)

Strength Exercise

Leg Extension No No 2.01 (0.63) 1.03 (0.02) 0.03 (0.02) -12.60 (16.5) 6.04 (3.21) 0.42 (0.04) 2.00 (0.52) 0.06 (0.02)

Leg Curl No No 2.00 (0.73) 1.03 (0.02) 0.03 (0.02) 14.03 (17.81) 5.95 (3.46) 0.41 (0.03) 2.40 (0.50) 0.05 (0.01)

Chest Press No No 1.86 (0.55) 1.03 (0.02) 0.06 (0.03) 16.04 (19.26) 9.69 (4.06) 0.46 (0.05) 1.28 (0.36) 0.08 (0.01)

Computer Work No Yes 1.24 (0.24) 1.03 (0.02) 0.03 (0.02) 0.83 (8.25) 3.99 (2.68) 0.38 (0.04) 2.65 (0.56) 0.05 (0.01)

Standing Still No Yes 1.22 (0.29) 1.02 (0.01) 0.01 (0.01) -33.35 (35.30) 3.63 (3.26) 0.42 (0.04) 1.73 (0.57) 0.09 (0.05)

TV Watching No Yes 1.11 (0.41) 1.03 (0.02) 0.01 (0.01) -8.04 (18.5) 2.80 (1.67) 0.39 (0.03) 1.78 (0.62) 0.10 (0.04)

MET, metabolic
equivalent score

Codebook learning To find a comprehensive codebook
containing the representative acceleration patterns, we
divide each time series data into subsequences. Subse-
quences are k-second subintervals of the original time

series instance, where the two adjacent subsequences have
k − 1 s of overlapping parts. These subsequences are
obtained using a k-second sliding window, which slides
1 s after each subsequence subtraction. For a sampling
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Fig. 1 Bag-of-words variable representation. a First, the most common acceleration patterns (i.e., atoms) are discovered and gathered in a codebook.
b Second, the time-series accelerometer data for a PA are split into subsequences. c Each subsequence is replaced with the label of the most
resembling atom. After this step, the accelerometer data are converted to bag of words, which are used to calculate word frequencies for each PA. A
normalization term-frequency function (i.e., inverse document frequency) is applied to adjust the values of the variable vectors (i.e., word
frequencies) and make them suitable for machine learning methods

rate of s Hz (s acceleration values for every second), each
subsequence has k′ = k × s data points. More specifi-
cally, from the ith time-series data with ti s duration, we
extract ti −k+1 subsequences, each having k′ data points.
Therefore, for a dataset containing n observations we will
obtain

∑n
i=1(ti−k+1) subsequences. Next, we apply clus-

tering algorithms to obtain d representative acceleration
patterns and learn the codebook. For a study with 150 par-
ticipants, each performing thirty 10-min long PAs and the
subsequence length (k =) 3 s, we obtain more than 2.5 bil-
lion subsequences. To be able to cluster this large number
of subsequences, we use Apache Spark Big Data frame-
work for partition-based clustering (Spark MLlib [19]).
The implicit parallelism of this framework provides effi-
cient calculations suitable for large datasets. We calculate
the silhouette values for clusters to find the best cluster fits
[20]. The silhouette variable for the ith cluster is defined as
follows:

sl(i) = b(i) − a(i)
max{a(i), b(i)}

where a(i) represents the average distance between the
samples within ith cluster and b(i) is the minimum aver-
age distance of ith cluster’s samples to other clusters. sl(i)
values close to 1 indicate clusters with homogenous and
uniformly distributed samples. For a d-atom codebook,
each cluster centroid is an atom with k′ sample points in
the codebook C ∈ R

k′×d. Figure 2 shows the process of
learning the codebook.

Feature calculation Once the codebook is learned, we
convert every time-series observation to a bag of words
using the procedure depicted in Fig. 3. First, each sub-
sequence of the time-series data is replaced by the most
resembling atom in the codebook. Next, we replace each
subsequence with its corresponding atom’s label to obtain

the bag-of-words representation of the data. Finally, we
calculate a normalized term frequency variable for the
present words.

There are three major challenges in finding the most
similar atom for each subsequence. First, acceleration pat-
terns’ differences might be due to high-frequency noises,
and not because of human movements. Second, the source
of dissimilarity might be due to a phase delay, such that
one acceleration pattern is identical to another one but
shifted in time. Third, due to the difference in partici-
pants’ movements speed, an acceleration pattern obtained
from one participant might be a scaled version of the
other one. To address the first challenge, we apply a
low-pass filter to exclude data irrelevant to human move-
ment (i.e., >5 Hz). We also use overlapping subsequences,
such that they have one second non-overlapping parts
to overcome the phase-delay issue. Lastly, we employ
dynamic time warping method [21] to calculate the sim-
ilarity of a subsequence to codebook’s atoms. This is
a dynamic programming approach which is robust to
small shifts (in our case, it is <1 second) and the scaling
problem.

Initially, every subsequence is represented by a word;
the label of the most similar atom. Next, we construct a
d-element vector h = (h1, h2, . . . , hd). Each element in
this vector represents the number of subsequences which
were found closest to the ith atom. In the example shown
in Fig. 3, we will have h = (1, 1, 2, 0) using a 4-atom code-
book. In our experiments, we obtain an h vector for every
PA and calculate the term frequency (tf ) for every word.
To prevent a bias towards longer PAs, we use an aug-
mented frequency function, which is the raw frequency of
a word divided by the maximum word frequency found in
the PA: tf (i, h) = 0.5 + 0.5 · h(i)

max
j

{h(j)

Also, to detect rare and common words across all the
PAs and to obtain a measure of how much information
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Fig. 2 BoW codebook learning

each word provides, we calculate a scaling factor, known
as inverse document frequency (idf ) as follows:

idf (i, H) = log
n∑

h∈H h(i)

where H is a R
n×d matrix containing h vectors for all n

tasks. This function is effective in assigning low weights
to the common words. For every PA performed by a par-
ticipant, we will have d variables, which are calculated by
multiplying the values obtained from term frequency and

inverse document frequency functions. For the ith word,
we obtain a normalized word frequency by multiplying
the abovementioned frequency terms, i.e., tfidf (i, h, H) =
tf (i, h) · idf (i, H).

Supervised Shape Feature Representation
Similar to the bag-of-words approach, this method is
also seeking to identify recurring patterns in the raw
accelerometer data to form a codebook. To achieve that,
this method relies on detecting motifs [12] that are
observed within an activity of interest. This method has

Fig. 3 BoW variable calculation
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two major steps. First, for each participant and activity,
an initial codebook is learned. Next, for every activity, the
initial codebooks are combined and unique acceleration
patterns are identified to form the final codebook.

The first step in this approach is to learn an initial code-
book for each participant and activity and is outlined in
Algorithm 1. The function takes four input arguments;
1) accelerometer time-series data (denoted as T) that is
the vector magnitude calculated from the triaxial data
of all participants, 2) the activity of interest, 3) desired
length of acceleration patterns to be mined, and 4) the
selection rate, which indicates what portion of data (for a
participant and activity) should be considered. The algo-
rithm calculates a vector of distance score (denoted as D)
for every k-second subsequence of accelerometer data.
To calculate the distance score, we use a sliding window
approach where the distance between the selected subse-
quence and successor subsequences are calculated and the
choose the minimum distance. Next, we include the sub-
sequence with the minimum distance score, as an atom,
in the initial codebook (denoted as IC). Figure 4 shows
selecting a subsequence of data with the lowest distance

Algorithm 1 Learn initial codebook.
function learnInitialCodebook(T, a, k, β)

T : accelerometer time-series data.
a: activity.
k: window length.
β : selection rate.

IC ← {} � Initial codebook.
for all participant p do

Tp ← selectParticipantData(T , p)

Tpa ← selectActivityData(Tp, a)

ICp ← {} � Initial codebook for one participant.
D ← distanceScore(Tpa, k)

n ← |Tpa|
k

× β � Number of atoms to include.
a ← 0
while a < n and D �= ∅ do

windowi, si ← selectMinDistance(Tpa, S)

if not hasOverlap(ICp, windowi) then
ICp ← ICp ∪ windowi
a ← a + 1

end if
Tpa ← Tpa − windowi
S ← S − si

end while
IC ← IC ∪ ICp

end for
return IC

end function

score. The selected atom is checked to have no overlap-
ping acceleration patterns with the previously selected
atoms and after every atom selection, the corresponding
subsequences are removed from the selection pool. The
process of selecting atoms is repeated until we obtain the
desired number of atoms for one participant. If β is set
to 1, the initial codebook becomes similar to the pool of
data chunks in the bag-of-words approach since we would
include all subsequences.

When generating the initial codebook, data for each
participant are considered individually since every partici-
pant performs activities with unique dominant accelerom-
eter patterns; i.e., participants perform activities with
different pace and strength. Furthermore, this allows cal-
culating the distance scores, which has a runtime order of
O

(
n2), to be expedited by parallel execution.

To learn the final codebook, we apply a hierarchical
clustering method, which uses dynamic time warping as
the distance function, to find groups of similar atoms.
From each group, we select the medoid as the repre-
sentative and include that in the final codebook, which
is similar to the codebook learning step in the bag-of-
words approach. To calculate a feature vector for an
epoch, we use a sliding window (with 50% overlap) to
calculate distances between epoch’s subsequences and
atoms. The distances are calculated using the Dynamic
Time Warping method. The average value of distances
to each atom is used as features calculated for the
epoch.

Physical Activity Assessment
Using the derived features explained earlier, we seek to
identify activities of daily living for different categories.
First, we define two classification problems: 1) detecting
sedentary PAs and 2) identifying locomotion activities.
Sedentary PAs are defined as the activities that require
< 1.6 METs [22]. In our dataset, this category contains
computer work, TV watching, and standing still activ-
ities. Locomotion PAs include walks, stair ascent, and
stair descent. For both classification problems, we employ
random forest classifier which has been the preferred
method for PA assessment using accelerometer data in the
previous works [8, 11].

As another step in PA assessment, we also pursue energy
expenditure (MET value) estimation to evaluate the per-
formance of the models. We use random forest regression
method to estimate the energy expenditure required to
perform a PA.

Results
Table 2 shows a summary of standard wrist variables for
the performed activities of daily living, their mean (SD)
METs, and the labels as sedentary or locomotion PAs. In
our experiments, we divided our data into training and
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Fig. 4 Selecting subsequence of accelerometer data (vector magnitude) with minimum distance score

test sets. We used the collected from 126 participants for
our training set and kept the other 20 for the test set.
We tuned our machine learning methods using the train-
ing set and applied the trained models on the test set and
reported their outcomes.

For activity identification, we used feature vectors for
15-second epochs to train the classifier. The classifier

predicted labels for epochs of the same size for the
test set data. For each activity in the test set, the label
assigned to the majority of its epochs was selected as
the predicted label. To estimate the energy expenditures
for each activity, we used an average feature vector over
all 15-second epochs for both training the model and
estimation.

Fig. 5 The 32-atom codebook learned for subsequence size of (k =) 3 s. Each of the atoms was the centroid and representative of a group of
3-second vector magnitude acceleration data in units of gravity – g (m/s2)
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Fig. 6 A two dimensional visualization of the codebook learned for locomotion activity with 3-second atoms. The distance between atoms are
obtained from Dynamic Time Warping method. To preserve the distances for visualization, t-distributed stochastic neighbor embedding (t-SNE) was
employed. The plotted atoms (dark background) were the medoids and representative of their clusters and selected for the final codebook

For the bag-of-words variable representations, we tried
a variety of combinations for subsequence length (k ∈
{3 and6} s) and codebook size (d ∈ {8,16, 32, and64}
words). The best performance was obtained using k = 3 s
for subsequent length and d = 32 words for the codebook,
and thus, we report the results using this parameter set-
ting. Figure 5 shows the learned codebook with thirty-two
3-second words.

For sedentary PAs, D3 and D7 words (acceleration pat-
terns) had the highest values. These words were represen-
tatives of accelerometer patterns with negligible intensi-
ties. The other words had values close to 0, which shows
they were rarely observed during sedentary PAs and they
had no association with PAs belonging to the seden-
tary category. D8 and D19 had the highest values for the
locomotion category, and thus, the top indicators of con-
sistent movements, such as walking. Interestingly, for stair

Table 3 Sedentary PA identification

Accuracy Sensitivity Precision F1-score

Standard Wrist 0.93 0.93 0.86 0.89

Bag-of-Words 0.97 0.92 0.80 0.85

SSFa 0.96 0.88 0.85 0.86

aSupervised shape feature

ascending PAs the dominant acceleration patterns were
D9 and D10. The combination of these two words yield
an acceleration pattern resembling D8 but at a lower pace.
This is due to the fact that ambulation in climbing stairs is
slower than walks.

We used different atom lengths (k ∈ {3, 6} s) and selec-
tion rates (β ∈[ 0.01, 0.1]) to learn the codebook using
the supervised shape feature approach. Figure 6 shows the
selected atoms for locomotion activities for atom length
of 3 s and selection rate of 0.01.

We categorized activities of daily living into two classi-
fication problems: 1) sedentary versus nonsedentary and
2) locomotion versus stationary activities. Table 3 shows
the performance of explained methods for sedentary-
nonsedentary PA identification on the test set. Since the
number of sedentary PAs were only a small fraction of
the total number activities (9%), for a better assessment,

Table 4 Locomotion PA identification

Accuracy Sensitivity Precision F1-score

Standard Wrist 0.92 0.82 0.92 0.87

Bag-of-Words 0.94 0.69 0.99 0.81

SSFa 0.94 0.76 0.92 0.83

aSupervised shape feature
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Fig. 7 Confusion matrices for sedentary PAs obtained from standard wrist model, bag-of-words method, and supervised shape features. Each row
represents actual PAs and columns show predicted labels

we report accuracy, sensitivity, precision, and F1-score
measures, which are calculated as follows:

sensitivity = # True Positives
# Positives

,

precision = # True Positives
# Predicted Positives

.

F1-score is the harmonic mean of sensitivity and preci-
sion. For sedentary-nonsedentary classification problem,
sedentary PAs are considered as positive samples.

Similar to the previous case, for locomotion-stationary
classification problem, the number of samples belong-
ing to each class was not evenly distributed (19% of the
PAs belonged to locomotion class). Therefore, we use

the above-mentioned evaluation metrics to compare the
methods. The results are presented in Table 4.

Three PAs in our data were categorized as seden-
tary tasks; computer work, TV watching (i.e., sitting),
and standing still. Figure 7 shows the confusion matrices
obtained from each method. The supervised shape fea-
ture method provided the best performance for specific
activity type identification (accuracy = 96.6%) compared
with the standard wrist model (accuracy = 78.9%) and bag-
of-words method (accuracy = 81.9%). We also obtained
confusion matrices for PAs belonging to locomotion cat-
egory. We considered Leisure Walk and Walk at RPE 1 as
slow walks, and Rapid Walk and Walk at RPE 5 as fast
walks. Figure 8 shows performance of each method.

We also pursued energy expenditure estimation as
another part of our evaluations. We report the root mean

Fig. 8 Confusion matrices for locomotion PAs obtained from standard wrist model, bag-of-words method, and supervised shape features. Each row
represents actual PAs and columns show predicted labels. SW: Slow Walk; FW: Fast Walk; SA: Stair Ascent; SD: Stair Descent
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Table 5 Energy expenditure (MET value) estimations

rMSE Adjusted R2

SWMa 0.9172 0.5178

SWM + Sedentary & Locomotion 0.9135 0.5197

SWM + Sedentary & Locomotion + Activity Type 0.9038 0.5275

BoWb 1.0018 0.4241

BoW + Sedentary & Locomotion 0.9736 0.4573

BoW + Sedentary & Locomotion + Activity Type 0.9302 0.4992

SFFc 0.9386 0.4911

SFF + Sedentary & Locomotion 0.9255 0.4992

SFF + Sedentary & Locomotion + Activity Type 0.8973 0.5380

aStandard wrist model
bBag-of-Words approach
cSupervised Shape Feature

squared error (rMSE) and the goodness of fit (R2) metrics
to compare the performance of methods in estimating the
energy expenditure required to perform activities of daily
living. First, we trained models using the derived features
to estimate the energy expenditures. Next, we included
the predicted labels obtained from the sedentary and loco-
motion classifiers as two additional independent variables
for regressors. Finally, we added the predicted labels for
the specific activity type as 8 additional binary variables (2
sedentary and 4 locomotion PAs) to the energy expendi-
ture estimation models. Table 5 shows rMSE and R2 values
for energy expenditure (MET value) estimations. Overall,
all methods performed similarly well and with low error.
The standard wrist model outperformed the two shape
feature representations when the original feature vec-
tors were only considered; however, including the addi-
tional PA identification steps resulted in less noticeable
improvement.

Figure 9 shows the average energy expenditure (MET)
estimation for standard wrist model, Bag-of-Words
approach, and supervised shape features. Stair ascent, as
the only labor-intensive PA, was the most challenging

activity for the methods to estimate the required energy
expenditure.

Discussion
In this study, introduced two shape feature deriva-
tion methods, which rely on supervised and unsuper-
vised methods to learn codebooks. We compared the
performance of the two new models with the stan-
dard wrist accelerometer model for PA recognition
and energy expenditure estimation. While the standard
wrist model outperforms the other feature represen-
tation for locomotion and sedentary PA identification
(Tables 3 and 4), the shape feature methods are not
far behind. For new target variables, e.g., identifying
the specific activity type within sedentary or locomo-
tion PAs, they are able to perform with modestly higher
accuracies.

The standard wrist model offers high interpretability
since the features are manually crafted. The shape feature
methods also provide some level of interpretability; since
these methods rely on the learned codebook, by checking
the characteristics of the atoms and their weights for each
PA insight could be obtained.

By definition, the energy expenditure (MET value)
required to perform sedentary PAs is < 1.6. Therefore,
there is little variation in energy expenditure within this
category. Table 2 shows that most of locomotion PAs (e.g.,
fast walks and stair ascent) require more energy than other
activities of daily living, while the rest rank somewhere
in the middle. Therefore, one might wonder whether it
is possible to improve energy expenditure estimation by
identifying the PA type first and training activity-specific
energy expenditure models. For smaller datasets (< 25
participants), previous works showed that this approach
enhances energy expenditure models significantly [11, 23].
The standard wrist model is not able to identify the spe-
cific activity types within the locomotion class; for most
of the cases, the model misclassifies slow walks as stair

Fig. 9 Mean performance of standard wrist, Bag-of-Words, and CovNet models to estimate average energy expenditure per PA
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descents (or vice versa) and rapid walks as stair ascent (or
vice versa). Since the MET ranges for the mentioned loco-
motion PAs are almost similar, the higher error rate for
this model does not prevent it from benefiting from the
additional steps. Although including further PA identifi-
cation steps improves the energy expenditure estimation
models, the improvements are not statistically significant.
This is due to the fact that we obtain a model with lower
bias if sufficient training data is provided. Thus, extra
steps to reduce model’s error, which was a result of lack of
data, are no longer necessary.

Besides the strengths, there are also limitations to
this study. Although it compared three PA assessment
models using wrist accelerometer data, it did not cover
activity-count-based methods [24]. Another limitation is
that the PAs were performed in laboratory settings. It
has been shown that machine learning methods trained
on such data perform poorly in free-living condition
[25]. Therefore, future studies should consider including
accelerometer data for activities of daily living in real-life
conditions. This study employed participant-independent
models for PA assessment. However, it has been shown
that personalized models perform activity recognition
with higher accuracy [26] and are subject to future
works.

Conclusion
The current study compared three different approaches
for PA type identification and energy expenditure
estimation using high-resolution accelerometer data col-
lected on the wrist. The two shape feature derivation
methods result in comparable performance for PA assess-
ment. The standard wrist model provides interpretable
features and is well suited for the sedentary and locomo-
tion PA identification. However, it might not be adequate
for other PA type identifications; e.g., detecting tasks
which require upper/lower body movements. Therefore,
depending on the PA type classification careful feature
engineering ought to be pursued. Shape feature derivation
methods provide feature vectors with less efforts. This
is more apparent for the bag-of-words approach, which
learns a codebook from the accelerometer data, regard-
less of the activities of interest. Thus, upon any alteration
in the target variable (i.e., physical activity), the weights
can be adjusted by re-applying the tf − idf method. Thus,
when there is a variation in the PA assessment data analysis
pipeline (e.g., new target variable) the introduced methods
could be practical choices for feature derivation step.
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