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Gastrointestinal cancers are a significant cause of cancer mortality worldwide and
have been strongly linked with chronic inflammation. Current therapies focus on
epithelial/cancer cells; however, the importance of the tumor microenvironment in the
development and treatment of the disease is also now well established. Cancer-
associated fibroblasts (CAFs) are a major component of the tumor microenvironment,
and are actively participating in tumor initiation, promotion and metastasis.
They structurally and functionally affect cancer cell proliferation, tumor immunity,
angiogenesis, extracellular matrix remodeling and metastasis through a variety of
signaling pathways. CAFs originate predominantly from resident mesenchymal cells,
which are activated and reprogrammed in response to cues from cancer cells. In recent
years, chronic inflammation of the gastrointestinal tract has also proven an important
driver of mesenchymal cell activation and subsequent CAF development, which in
turn are capable of regulating the transition from acute to chronic inflammation and
cancer. In this review, we will provide a concise overview of the mechanisms that
drive fibroblast reprogramming in cancer and the recent advances on the downstream
signaling pathways that regulate the functional properties of the activated mesenchyme.
This new mechanistic insight could pave the way for new therapeutic strategies and
better prognosis for cancer patients.

Keywords: cancer-associated fibroblasts, tumor microenvironment, synthetic activation, epigenetic
reprogramming, metabolic reprogramming

INTRODUCTION

CAFs are an essential component of the tumor microenvironment and accumulating evidence
supports their substantial contribution to cancer development and progression (Kalluri, 2016;
Kobayashi et al., 2019; Sahai et al., 2020). They originate predominantly from tissue-
resident fibroblasts that are activated in response to signals from cancer cells and the tumor
microenvironment. Additional cellular sources, such as bone marrow-derived mesenchymal
stromal cells (BM-MSCs), fibrocytes, as well as epithelial and endothelial cells have also been
reported. Fibroblast activation includes increased proliferation, changes in their physicochemical
properties, such as shape alteration and increased contractility, and the production of a variety
of effector molecules. These include cytokines and chemokines, extracellular matrix (ECM)
components and remodeling enzymes, growth factors, metabolites and signaling molecules that
mediate CAF functions to support cancer growth, metastasis and resistance to therapy (Kalluri,
2016; Kobayashi et al., 2019; Sahai et al., 2020). The increased insight into CAF functions and their
association with poor prognosis in cancer patients has brought into focus the potential of CAF
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targeting for cancer treatment. It is thus interesting to consider
the possibility of the reversal of CAF reprogramming as a
promising therapeutic strategy in cancer, although potential
anti-tumor CAF properties should also be taken into account
(Gieniec et al., 2019).

In this review, we summarize current knowledge on how
fibroblasts are converted to CAFs, particularly focusing on
gastrointestinal cancers, including colorectal cancer (CRC),
pancreatic ductal adenocarcinoma (PDAC), hepatocellular
carcinoma (HCC), and gastric cancer (GC). We specifically
analyze the three major types of CAF reprogramming,
namely synthetic, epigenetic and metabolic, and focus on
the signals and downstream molecular pathways that regulate
this transition (Figure 1).

FIBROBLAST REPROGRAMMING:
TYPES AND UNDERLYING MOLECULAR
MECHANISMS

Synthetic Activation
A variety of signals, such as growth factors, cytokines,
chemokines, Toll-like receptor (TLR) and Hedgehog ligands,
mechanical forces and ECM components activate fibroblasts to
produce effector molecules that are responsible for CAF functions
(Figure 1A; Kalluri, 2016; Kobayashi et al., 2019; Sahai et al.,
2020). TGFβ and IL-1 are probably the most ubiquitous and
well-characterized such stimuli.

TGFβ is a dominant effector in all gastrointestinal cancers and
mediates the conversion of fibroblasts to CAFs. Its importance is
highlighted by the association of a CAF-specific TGFβ signature
with poor prognosis, immune cell exclusion and resistance to
immunotherapy in CRC (Calon et al., 2015; Tauriello et al.,
2018). The pleiotropic effects of TGFβ encompass changes in
fibroblast adhesion through the production of collagens and
fibronectin, changes in cell shape through αSMA overexpression,
increased proliferation and increased synthetic activity, including
the production of ECM enzymes, growth factors, chemokines,
and cytokines (Calon et al., 2012; Hawinkels et al., 2014; Ishimoto
et al., 2017; Biffi et al., 2019). TGFβ functions predominantly
by downstream activation of SMADs and JAK/ STAT signaling
pathways, as shown in CRC and liver fibrosis (Calon et al.,
2012; Tang et al., 2017). In contrast, it downregulates IL-
1R1 and blocks the JAK/STAT cascade in PDAC fibroblasts,
favoring thus the generation of CAFs with a myofibroblastic
phenotype (Biffi et al., 2019). Notably, it also promotes epithelial-
to-mesenchymal and endothelial-to-mesenchymal transition, as
well as the recruitment of bone marrow-derived mesenchymal
cells (BM-MSCs) and fibrocytes (Polyak and Weinberg, 2009;
Quante et al., 2011). Other growth factors can also regulate
CAF reprogramming either alone or in combination with TGFβ.
For example, PDGF has been shown to drive recruitment and
activation of fibroblasts in CRC and GC and its blockade leads
to reduced tumor growth and metastasis (Ostman, 2004; Kitadai
et al., 2006; Kodama et al., 2010; Sumida et al., 2011; Manzat
Saplacan et al., 2017). It also complements the function of TGFβ

on both pancreatic (PSC) and hepatic (HSC) stellate cells to
promote their proliferation and migration (Dong et al., 2004;
Cadamuro et al., 2013).

Inflammation is a significant predisposition factor for
the initiation and progression of gastrointestinal cancers.
The abundance of inflammatory signals mediates reciprocal
interactions between cancer cells, stroma and immune cells to
accelerate the development of an inflammatory TME and the
phenotypic switch of CAFs (Greten and Grivennikov, 2019).
Recently, Biffi and Tuveson (2020) highlighted the importance
of IL-1 signaling in shaping CAF functions in PDAC, by
showing that tumor-derived IL-1α antagonizes TGFβ signaling
and stimulates the production of a cytokine cascade, including
LIF, IL-6 and CXCL8 (Biffi et al., 2019). This acts in an
autocrine manner to activate the JAK/STAT3 pathway in CAFs,
resulting in a positive feedback loop that leads to high IL-1R1
expression and inflammatory CAF formation (Biffi et al., 2019).
IL-1β also drives tumor fibrosis and cancer cell proliferation,
survival and chemoresistance in PDAC through the IRAK4-
NFκB pathway (Zhang et al., 2018). The IL-1-NFκB axis
plays also an important role in the activation or survival of
HSCs, at least in liver fibrosis (Gieling et al., 2009; Pradere
et al., 2013). Both IL-1α and IL-1β increase CAF motility
in GC through the regulation of Rhomboid 5 homolog 2
(RHBDF2), which promotes TGFβR1 cleavage by ADAM17
(Ishimoto et al., 2017). In the intestine, they induce cytokine
and prostaglandin production by intestinal mesenchymal cells,
which promote inflammation and can support the establishment
of a cancer stem cell niche (Li et al., 2012; Scarpa et al.,
2015). Interestingly, IL-1β was recently shown to drive the
activation of subsets of PDGFRα+ fibroblasts, contributing thus
to EGF-dependent serrated polyp formation in the mouse cecum
(He et al., 2019). In contrast, in vivo deletion of IL-1R1 in
ColVICre+ mesenchymal cells had no effect in either Apc-driven
spontaneous or inflammation-induced intestinal carcinogenesis
(Koliaraki et al., 2019). These studies highlight both the diverse
and opposing roles of IL-1 agonists in cancer and their potential
distinct functions in different fibroblast or CAF subpopulations
(Voronov et al., 2013).

TNF and members of the IL-6 family are also important
inflammatory inducers of fibroblast activation. TNF has
been shown to act synergistically with IL-1α to promote
proinflammatory gene expression in PSCs through NFκB
activation (Biffi et al., 2019). Accordingly, in vivo inhibition
of TNF was able to reduce desmoplasia in mice, which was
associated with decreased PSC viability (Zhao et al., 2016). In
addition, in vitro studies ascribe a pro-fibrogenic role for TNF
on HSCs, as it promotes myofibroblast survival and activation
through NFκB activation, while iRhom2-mediated inhibition
of TNFR signaling protects against liver fibrosis (Tarrats et al.,
2011; Pradere et al., 2013; Bonnardel et al., 2019; Sundaram et al.,
2019). IL-6 and IL-11 were recently also shown to play a role
in fibroblast activation in CRC through STAT3 activation and
subsequent expansion of activated fibroblasts and the induction
of a proangiogenic profile, which drove colorectal carcinogenesis
in vivo (Heichler et al., 2019). Similarly, IL-6 was sufficient to
induce the trans-differentiation of normal fibroblasts to CAFs
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FIGURE 1 | Fibroblast reprogramming in gastrointestinal cancer. Cancer cells and the tumor microenvironment (TME) induce the (A) synthetic activation of
fibroblasts to CAFs, as well as their (B) epigenetic and (C) metabolic reprogramming. Major inducing signals and downstream pathways that regulate these
processes are shown. The figure was created with BioRender.com.

via STAT3 phosphorylation and downstream activation of a
Twist1/CXCL12 axis (Lee et al., 2015).

Besides these major cytokine signals, other cytokines and
chemokines, such as IL-33 and CXCL12 also contribute to
fibroblast activation. In humans and mouse models of intestinal
cancer, cancer cell-derived IL-33 activates fibroblasts and
promotes the expression of ECM components and growth
factors associated with intestinal tumor progression (Maywald
et al., 2015). Accordingly, IL-33 drives hepatic fibrosis through
activation of HSCs via MAPK signaling (Tan et al., 2018).
CXCL12 can promote epithelial-to-mesenchymal transition
(EMT), recruit BM-MSCs in gastric cancer and drive the
expansion of αSMA+ myofibroblasts and Gremlin 1-expressing
mesenchymal stem cells (Quante et al., 2011; Shibata et al.,
2013). Other immune cell-derived inflammatory cytokines, such
as IL-17, IL-22, IL-31, IL-4 and IL-13, have also been shown to

activate quiescent tissue-resident fibroblasts during inflammation
or fibrosis, although their role in CAF reprogramming is not yet
clear (Andoh et al., 2007; Tsuchida and Friedman, 2017).

Beyond cytokines and chemokines, innate immune signals
have emerged as an additional stimulus for CAF reprogramming,
linking further the inflammatory TME with fibroblast activation
and cancer progression (Koliaraki et al., 2020). CAFs express
innate immune receptors and respond to produce effector
molecules that affect tumourigenesis in gastrointestinal tumors.
This is mediated through downstream activation of MAPK and
NFκB signaling pathways, which independently of the stimuli
have been shown to play an important role in the synthetic
reprogramming of CAFs in colorectal cancer (Koliaraki et al.,
2012, 2015, 2019; Henriques et al., 2018). We recently showed
that innate activation of intestinal mesenchymal cells through
TLR4/MyD88 pathway in the Apcmin/+ mouse model resulted
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in the production of pro-tumourigenic and immunomodulatory
effector molecules, while it also resembled the gene expression
profile of human CRC CAFs (Koliaraki et al., 2019). Similarly,
TLR9 activation has been shown to lead to PSC reprogramming
and the production of CCL11 to support PDAC tumor growth
(Zambirinis et al., 2015).

The Hedgehog (Hh)/Smoothened (Smo) signaling pathway
has also been shown to regulate CAF activation in gastrointestinal
cancers, although it seems to exert opposite functions depending
on the organ affected. Several studies have shown that genetic
deletion or pharmacological inhibition of Hh signaling leads to
depletion of the PDAC-associated stroma and enhanced drug
delivery, xenograft growth inhibition, as well as reduction of
HSC activation and concomitant liver fibrosis (Yauch et al., 2008;
Olive et al., 2009; Michelotti et al., 2013; Swiderska-Syn et al.,
2014). In contrast, Hh activity was found reduced in human CRC
and stroma-specific Hh activation markedly decreased tumor
load and progression in a mouse model of CRC partly via the
modulation of BMP signaling (Gerling et al., 2016). Notably,
clinical trials using Hh inhibitors in patients with CRC or
PDAC have so far failed, indicating that stromal heterogeneity,
compensatory mechanisms and therapy resistance could interfere
with CAF reprogramming approaches in solid tumors (Berlin
et al., 2013; Kim et al., 2014; Catenacci et al., 2015).

Besides driving CAF activation, other pathways have been
shown to suppress or reverse it and could be promising
candidates for therapeutic interventions. A prominent example
is the vitamin D receptor (VDR), which acts as a modulator
of CAF reprogramming in gastrointestinal cancers (Ferrer-
Mayorga et al., 2017). Mechanistically, it has been shown to
suppress PSC activation, resulting in stromal remodeling and
increased intratumoral gemcitabine effects in PDAC, while
interaction between VDR and p62/SQSTM1 suppressed HSC
activation and liver cancer (Sherman et al., 2014; Duran et al.,
2016). Another such example is the activation of p53 by
Nutlin-3a, which can reprogram activated PSCs to quiescence
(Saison-Ridinger et al., 2017).

Finally, beyond soluble mediators, the biophysical properties
of the TME have been also implicated in CAF activation and the
induction of a synthetic phenotype. Mechanical stress induces
collagen overexpression and crosslinking, fiber rearrangement,
ECM deposition and degradation by fibroblasts, which can
thus mediate the remodeling of the ECM and increase matrix
stiffness (Mohammadi and Sahai, 2018). Matrix stiffness and
the resulting mechanical stress further activates fibroblasts
in a continuous self-promoting loop resulting in cancer cell
proliferation and migration. Several studies in gastrointestinal
inflammation and cancer propose that these stimuli activate
fibroblasts through FAK, MRTF-SRF, and YAP-TEAD signaling
pathways, leading to increased αSMA expression and the
regulation of cytoskeletal dynamics (Johnson et al., 2013, 2014;
Foster et al., 2017). Many of these effects are also dependent
on TGFβ, Rho and ROCK signaling (Zhao et al., 2007;
Johnson et al., 2014). Accordingly, HSCs sense mechanical
stress through integrins, GPCRs and DDRs, activating Rho,
YAP, PAK1, and JAK2/PI3K/AKT-MYOCD, respectively (Martin
et al., 2016; Kang, 2020). Interestingly, another mechanosensor,

the G protein-coupled estrogen receptor (GPER) shows tumor-
restricting capacity, as it acts through Rho/myosin axis and YAP
deactivation to inhibit the ability of PSCs and HSCs to remodel
the ECM (Cortes et al., 2019a,b).

Epigenetic Reprogramming
Epigenetic abnormalities, including changes in DNA
methylation, abnormal patterns of histone modifications
and post-transcriptional regulation through micro and long
non-coding RNAs support genetic changes in cancer cells to
drive tumor initiation and progression. Similar genetic mutations
driving CAF differentiation are rare (Qiu et al., 2008; Bianchi-
Frias et al., 2016). However, CAFs maintain their properties
in vitro, indicating that they could also be epigenetically modified
to a stably activated cell state (Figure 1B; Kalluri, 2016).

Both global and gene-specific changes in DNA methylation
patterns have been detected in stromal cells and shown to
affect tumor growth and progression. GC CAFs display global
hypomethylation of DNA along with hypermethylation at a
subset of genes, such as HOXB6 (Jiang et al., 2008). Global
alterations in 5-methylcytosine and 5-hydroxylmethylcytosine
play an important role in HSC activation and concomitant
liver fibrosis (Page et al., 2016). PDAC CAF differentiation is
accompanied by decreased cytosine methylation and increased
hydroxymethylation in response to cancer cell-derived lactate
and subsequent CAF metabolic alterations that drive activation
of the demethylase TET (Bhagat et al., 2019). An example
of gene-specific methylation change includes the cancer cell-
induced methylation and concomitant downregulation of the
SOCS1 gene in PDAC CAFs, which enhanced cancer cell growth
through the STAT3/IGF1 axis (Xiao et al., 2016). Increased PGE2
production in response to H. pylori infection was shown to drive
hypermethylation of miR-149, increased IL-6 secretion and CAF
activation in GC (Li et al., 2015). Interestingly, CRC stromal
cells showed hypermethylation of the SEPT9 gene, which was
temporally subsequent to epithelial cells, suggesting that DNA
methylation in CAFs could be attributed to field effects from
cancer cells (Wu et al., 2007). These examples highlight the role
of cancer cells in the epigenetic reprogramming of fibroblasts,
although more research is necessary to define the molecular
mechanisms involved in this process.

Evidence on the regulation of histone modifications in stromal
cells and their role in fibroblast activation during carcinogenesis
is still limited. Nevertheless, genome-wide H3K27me3 analyses
of primary GC CAFs revealed loss of H3K27me3 in genes
involved in the maintenance of the stem cell niche, including
WNT5A, the inhibition of which was shown to suppress cancer
cell growth and migration (Maeda et al., 2020). Similarly, the
histone acetyltransferase P300 was shown to mediate stiffness-
induced activation of HSCs by altering the acetylation status of
H3K27Ac, at least on the CXCL12 gene promoter (Dou et al.,
2018). Additional genome-wide screenings in combination with
functional in vivo studies on gastrointestinal cancer are necessary
to delineate the role of the “histone-code” on the activation
of stromal cells.

Changes at the levels of multiple miRNAs have also been
implicated in the reprogramming of fibroblasts in gastrointestinal
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cancers. For example, activated PSCs differentially express 84
miRNAs (Masamune et al., 2014), while culture-induced HSC
activation resulted in the deregulation of 259 miRNAs (Coll
et al., 2015). Among deregulated mi-RNAs, miR-21 is of
particular interest, as it is involved in the activation of fibroblasts
in colorectal and pancreatic cancer, as well as oesophageal
squamous cell carcinoma through mechanisms that include
activation of the TGFβ pathway and the promotion of the
metabolic reprogramming of CAFs (Bullock et al., 2013; Li et al.,
2013; Nouraee et al., 2013; Chen et al., 2018). These changes can
be either the result of complex deregulated transcriptional and
post-transcriptional networks in differentiating fibroblasts or the
consequence of miRNA transfer from cancer cells mainly through
exosomes. Concerning the latter, several studies have indeed
confirmed this mechanism also for gastrointestinal cancers.
For example, pancreatic cancer cells can reprogram normal
fibroblasts to CAFs through secreted microvesicles containing
miR-155, miR-1246, and miR-1290 (Pang et al., 2015; Masamune
et al., 2018). In addition, metastatic hepatocellular carcinoma
cells secrete exosomal miR-1247-3p that targets B4GALT3,
which in turn activates β1 integrin-mediated NFκB signaling in
fibroblasts (Fang et al., 2018). Finally, long noncoding RNAs have
been described as regulators of stromal activation in HSCs (Zhou
et al., 2016). These can act through a circuit comprising also
miRNAs, such as GAS5 that restrains hepatic fibrosis by targeting
miR-23a through the PTEN/PI3K/Akt signaling pathway (Dong
et al., 2019) and HOTTIP which promotes the activation of HSCs
via the downregulation of miR-148a (Li et al., 2018).

Metabolic Reprogramming
Alterations in cancer cell energetics are now considered a
hallmark of cancer (Hanahan and Weinberg, 2011; Faubert et al.,
2020). The most prominent such change is a shift of glucose
metabolism towards aerobic glycolysis versus mitochondrial
oxidative phosphorylation (OXPHOS), a phenomenon that is
known as the “Warburg effect”. This allows cancer cells to
take advantage of glycolytic intermediates and activate the
biosynthesis of macromolecules and organelles that support
rapid growth and proliferation (Vander Heiden et al., 2009;
Faubert et al., 2020). Fibroblasts in the surrounding tumor
microenvironment also exhibit a similarly altered metabolism
towards aerobic glycolysis, which leads to the release of energy-
rich fuels, mainly lactate, but also pyruvate, glutamine and ketone
bodies (Wu et al., 2017). These are transferred from CAFs to
cancer cells through MCT4 and MCT1 transporters, respectively,
where they are used to replenish the TCA cycle, to support
OXPHOS and biosynthesis pathways maximizing proliferation
and reducing cell death. This phenomenon is termed the “Reverse
Warburg effect” (Wilde et al., 2017). In line with this, MCT1 and
MCT4 levels were found upregulated in CRC and were associated
with low survival in patients with CRC and gastrointestinal
stromal tumors (GISTs) (Lehuede et al., 2016; Martins et al.,
2016). Similarly, PDAC CAFs displayed diverse expression of
the hypoxic marker carbonic anhydrase X and MCT4 and
altered metabolic properties, which supported the invasiveness
of cancer cells and were correlated with shorter patient survival
(Knudsen et al., 2016).

Besides glucose metabolism, CAFs also display a lipid
metabolic shift. For example, activated PSCs showed a
remodeled and increased lipid secretome and produced
lysophospatidylcholines, which support membrane lipid
synthesis, while they were further converted to LPA via autotaxin
enzymatic activity to facilitate tumor growth (Auciello et al.,
2019). Similarly, CAFs in CRC accumulated fatty acids and
phospholipids via an increase in fatty acid synthase (FASN), and
were then transferred to cancer cells to induce their migration
(Gong et al., 2020).

CAFs are also characterized by increased autophagy, which
generates recycled nutrients from broken down organelles that
in turn are used by cancer cells to cover their needs. For
example, in PDAC, cancer cell-induced autophagy in CAFs leads
to the secretion of non-essential amino acids, and specifically
alanine, which in turn fuels the TCA cycle and lipid biosynthesis
in the cancer cells (Sousa et al., 2016). In CRC, co-culture
of fibroblasts and cancer cells resulted in an upregulation of
oxidative stress-related enzymes and autophagy genes and the
downregulation of CAV1 in fibroblasts that in turn promoted
cancer cell proliferation (Zhou et al., 2017).

Mechanistically, CAF metabolic reprogramming and
autophagy are induced mainly by reactive oxygen species
(ROS) and hypoxia, which through downstream activation of
HIF1 and NFκB promote the metabolism of glucose to lactate
and glutamate and mediate the loss of caveolin-1 (CAV1)
(Figure 1C) (Martinez-Outschoorn et al., 2010). Inflammatory
mediators can also induce autophagy in fibroblasts through
NFκB signaling, providing evidence for immune regulation of
metabolic reprogramming, similarly to their synthetic activation
(Martinez-Outschoorn et al., 2011). TGFβ also mediates CAFs’
metabolic reprogramming either through the downregulation
of CAV1 or the upregulation of autophagy/mitophagy inducers.
It acts by downregulating isocitrate dehydrogenase 1 (IDH1),
leading thus to an increase of glutamine metabolism and
α-ketoglutarate (α-KG) concentration, which in turn suppresses
CAV1 expression (Hou et al., 2017). CAV1 is a crucial regulator
of CAFs’ metabolic switch and its inhibition is sufficient to
activate fibroblasts, impair mitochondrial function and induce
a glycolytic switch in fibroblasts through the upregulation of
glycolytic enzymes (Sotgia et al., 2012). Finally, the Hh pathway
has been shown to play a significant role in the reprogramming
of quiescent HSC to myofibroblasts during liver fibrosis, and
potentially CAF differentiation, through the activation of
aerobic glycolysis and lactate accumulation (Chen et al., 2012).
Additionally, Hh signaling together with YAP were found to
induce glutaminolysis, concomitant activation of HSC and
fibrosis progression (Du et al., 2018).

Reprogramming and Heterogeneity of
CAFs
Differences in reported CAF functions, including tumor-
promoting and restraining roles have long led to the hypothesis
that distinct CAF subpopulations could exist within tumors
(Kalluri, 2016; Gieniec et al., 2019; Biffi and Tuveson, 2020).
Representative such examples include the tumor-promoting
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effects of CAF depletion or suppression in PDAC mouse
models (Rhim et al., 2014; Özdemir et al., 2014). However,
low cell abundancy and lack of analytical techniques have
until recently hindered the functional characterization of
these potentially different subtypes. Advances in single-cell
analysis technologies have increased our understanding of
tumor heterogeneity, including that of the microenvironment
and specifically CAFs. Concerning gastrointestinal cancers, a
recent single-cell transcriptomic analysis of mouse and human
PDAC identified three CAF subsets, namely inflammatory
(iCAFs), myofibroblastic (myCAFs) and antigen-presenting
CAFs (apCAFs) (Elyada et al., 2019). Mechanistic studies
using organoids and mouse models showed that iCAFs express
inflammatory markers and are located within the desmoplastic
stroma, while myCAFs are αSMA positive and adjacent to tumor
cells. Importantly, they are activated by different stimuli, IL-1α

and TGFβ, respectively, the spatial distribution of which can
regulate the swift from one CAF state to the other (Ohlund
et al., 2017; Biffi et al., 2019). apCAFs express MHC class II
and CD74 and can induce T-cell receptor (TCR) ligation in
CD4+ T cells in an antigen-dependent manner, while they
can be also converted to myofibroblasts (Elyada et al., 2019).
These studies offer compelling evidence to support the idea that
CAF reprogramming depends on the availability of stimuli in
the surrounding microenvironment and may thus define CAF
phenotypic and functional heterogeneity, although the CAFs’
diverse cellular sources could also contribute, as shown for other
types of cancer (Raz et al., 2018).

Single-cell RNA transcriptomic analyses have also been
performed for colorectal and head and neck cancer. These
revealed the presence of normal fibroblasts along with two CAF
subsets, a myofibroblastic αSMA+ and an ECM-expressing FAP+

population, although further functional characterisation of these
is still missing (Li et al., 2017; Puram et al., 2017). Nevertheless,
these studies indicate common diversity and potentially similar
subpopulations in gastrointestinal tumors.

DISCUSSION

In this review, we have provided a concise overview of the
molecular mechanisms underlying fibroblast reprogramming
in gastrointestinal cancers. This is especially important as
CAF phenotype reversal has been proposed as a potential
therapeutic strategy in cancer (Valkenburg et al., 2018; Chen
and Song, 2019). Both soluble factors and mechanical cues
drive the reprogramming of fibroblasts through the activation
of downstream signaling pathways in fibroblasts, indicating the
impact of fibroblast localization in the growing tumor. Multiple
inducers and mechanisms underlying the synthetic activation
of CAFs have already been identified, but similar research on
the epigenetic and metabolic reprogramming of CAFs is still
limited. Additional mechanistic insights into these processes
could help identify novel targets for therapeutic approaches, as
well as diagnosis and patient stratification. Notably, new targets
should be in the future assessed under the prism of the emerging
concepts of CAF heterogeneity that is defined by potential
different cell sources, location, and available stimuli.
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