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Provenances are a research focus of neuroimaging resources sharing.
An amount of work has been done to construct high-quality neuroimaging provenances
in a standardized and convenient way. However, besides existing processed-based
provenance extraction methods, open research sharing in computational neuroscience
still needs one way to extract provenance information from rapidly growing published
resources. This paper proposes a literature mining-based approach for research
sharing-oriented neuroimaging provenance construction. A group of neuroimaging
event-containing attributes are defined to model the whole process of neuroimaging
researches, and a joint extraction model based on deep adversarial learning, called
AT-NeuroEAE, is proposed to realize the event extraction in a few-shot learning
scenario. Finally, a group of experiments were performed on the real data set from the
journal PLOS ONE. Experimental results show that the proposed method provides a
practical approach to quickly collect research information for neuroimaging provenance
construction oriented to open research sharing.

Keywords: neuroimaging provenance, neuroimaging text mining, event extraction, attribute extraction, deep
adversarial learning

INTRODUCTION

Open and FAIR (Findable, Accessible, Interoperable, and Reusable) sharing (Poldrack and
Gorgolewski, 2015; Abrams et al., 2021) of neuroimaging data has been widely recognized and
has been a concern in computational neuroscience. From fMRIDC (Van Horn et al., 2001) and
OpenfMRI (Poldrack and Gorgolewski, 2015) to OpenNeuro (Gorgolewski et al., 2017), a series
of public neuroimaging databases have been constructed and have played an important role in
brain and intelligence researches. Only taking the INDI database as an example, by March 22,
2017, Google Scholar search results showed that 913 publications clearly indicated the use of INDI
data, with a total of 20,697 citations (Milham et al., 2018). Besides sharing raw experimental data,
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research information sharing1 has also become an important way
of neuroimaging data sharing (Poline et al., 2012), which can
effectively avoid various challenges of sharing raw experimental
data, such as cost, privacy protection, and data ownership.
BrainMap2 collects the published information related to brain
activated areas from the neuroimaging article to support
coordinate based meta-analysis (Laird et al., 2005). Neurosynth3

provides a specialized tool to automatically extract coordinates
of activated brain area and research topic information from
published neuroimaging articles and shared them by a unified
platform (Yarkoni et al., 2011). NeuroVault4 collected non-
threshold statistical graphs and related information from
different computational neuroscience to support graph based
meta-analysis (Gorgolewski et al., 2016). These efforts on
sharing neuroimaging research information enrich the content
and method of neuroimaging data sharing and effectively
support the brain and intelligence studies in computational
neuroscience. For example, statistics show that the number
of papers based on the neurosynth platform has reached
14,371 by July 2018. Related studies are involved with the
brain mechanism of cognitive states (Alcalá-López et al.,
2017), functional analysis of brain areas (Genon et al., 2018),
large-scale brain structure-function mappings (Bolt et al.,
2020), and so on.

Provenances (Moreau et al., 2008) are a research issue
of neuroimaging data sharing Poldrack and Gorgolewski
(2014) pointed out that sharing task-based fMRI (functional
magnetic resonance imaging) data requires the appropriate
descriptions of how they were acquired, including not only
the MRI acquisition parameters but also the specific order
and timing of stimulus presentation during the task, and
how they have been transformed. These descriptions are
provenances. The special topic “Collaborative efforts for
understanding the human brain” of the journal Frontiers
in Neuroinformatics emphasized that the key to controlling
the re-executability of the publication of computational
neuroscience is the generation and reporting, at all stages of
the process, machine readable provenance documentation
(Kennedy et al., 2019). From the data model (Keator et al.,
2013; Maumet et al., 2016), the management tool (Keator
et al., 2019) to the acquisition platform (Gorgolewski et al.,
2016), an amount of work has been done to construct high-
quality neuroimaging provenances in a standardized and
convenient way. The neuroimaging provenances have been
not only metadata of task-based experimental data but also
structured descriptions of research cases in computational
neuroscience, which collect massive research information about
the whole research process of computational science to support

1It is difficult to distinguish information from knowledge clearly because they have
varying definitions in different applications. In this study, “research information”
refers to all descriptions about computational science in scientific literature. It is
involved with not only research findings, such as coordinates of activated brain
areas, but also the whole research process, from experimental design to data
analysis.
2http://www.brainmap.org/
3http://www.neurosynth.org/
4http://neurovault.org

multi-aspect resource integration, fast hypothesis generation,
large-scale metadata analysis, strict result evaluation, etc., for
realizing open and FAIR neuroscience (Abrams et al., 2021).
However, existing studies on neuroimaging construction mainly
adopt experts or process recording-based methods to obtain
neuroimaging provenances. All methods are centered on the
actual experimental data. Besides them, open research sharing
in computational neuroscience still needs one new way to
automatically and quickly extract provenance information from
rapidly growing published sources.

Neuroimaging text mining recognizes important information
from neuroimaging texts, especially neuroimaging articles, and
provides a practical way to automatically extract provenance
information from published sources. In recent years, related
studies mainly focused on recognizing neuroimaging entities
(Abacha et al., 2017; Shardlow et al., 2018; Riedel et al., 2019),
hierarchical terminology system (Huangfu et al., 2020), and span
of interests (Zhu et al., 2020). Because extracted information
is mainly some words or phrases, and lacks rich relations,
especially non-taxonomical relations, these studies can only
obtain some fragmented key points of the research process
and cannot provide a vivid process description. Hence, it
is necessary to develop a new technology of neuroimaging
text mining for research sharing-oriented neuroimaging
provenance construction.

Based on this observation, this paper proposes a literature
mining-based approach for neuroimaging provenance
construction. The rest of this paper is organized as follows.
Section “Related Work” summarizes previous work-related to
neuroimaging provenances, neuroimaging text mining, and
biomedical event extraction. Section “Contributions” introduces
our contributions. Section “Materials and Methods” describes
the proposed method. Experiments and results are presented in
section “Results” to validate the effectiveness of the proposed
method. Finally, section “Discussion” gives concluding remarks.

RELATED WORK

Neuroimaging Provenances
Provenances can be described in various terms depending on the
domains where they are applied (Simmhan et al., 2005). Buneman
et al. (2004) defined provenances as the description of the origins
of data and the process by which it arrived at the database. Lanter
(1991) characterized provenances as information describing
materials and transformations applied to derive the data.
Greenwood et al. (2003) viewed provenances as metadata
recording the process of experiment workflows, annotations,
and notes. Simmhan et al. (2005) defined provenances as
information that helped determine the derivation history of a
data product. Related studies have been widely concerned by
many domains. Science magazine pointed out that provenance
is an important element of service quality control (Foster,
2005). The NSF (National Science Foundation, Alexandria,
VA, United States) Advisory Committee believed that a robust
and stable cyberinfrastructure should support provenances
(Task Force on Grand Challenges, 2011). The World Wide
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Web Consortium standard of provenances, called PROV-
DM (Provenance Data Model),5 has been released in 2013.
A series of international conferences about provenances,
such as IPAW (International Provenance and Annotation
Workshop, since 2006) and TaPP (Workshop on Theory and
Practice of Provenance, since 2009), has attracted a large
number of researchers.

Computational neuroscience is an important application
domain of provenances. Neuroimaging provenances are the
research focus. As early as 2006, the first fMRI data provenance
challenge has been held (Moreau et al., 2008). A group of
minimum provenance information (MI) guidelines (Gibson
et al., 2008; Poldrack et al., 2008; Frishkoff et al., 2011) has been
proposed for different types of neuroimaging data. Guided by
these MI guidelines, the main neuroimaging data model, such
as DICOM (Digital Imaging and Communications in Medicine)6

and XCEDE (XML-based Clinical and Experimental Data
Exchange),7 provides the support for representing and storing
provenance information. However, the provenance information
storage embedded into experimental data models hampers the
representation of more complex relationships among data (Ruiz-
Olazar et al., 2016). Provenances independent from experimental
data have drawn attentions. The representative research work is
NIDM (Neuroimaging Data Model), which provides a complete
description of provenance for computational neuroscience, from
raw data to the final results including all the steps in between
(Maumet et al., 2016). NIDM builds upon PROV-DM and
extends it with terms found in XCEDE and DICOM headers.
It consists of NIDM-Experiment, NIDM-Workflow, and NIDM-
Results; NIDM-Experiment and NIDM-Workflow (Keator et al.,
2013) model acquisition and processing of experimental data,
respectively. NIDM-Results (Maumet et al., 2016) focuses on
neuroimaging statistical results along with key image data
summarizing the experiment.

In recent years, many studies are working to support the
construction of neuroimaging provenances based on NIDM for
realizing machine readable descriptions of the data collection,
the processing workflow and environment, and the statistical
procedures and results. The export and import of NIDM
documents have been realized in many widely used neuroimaging
tools and platforms, such as SPM, FSL, and NeuroVault.
Keator et al. (2019) developed a python-based API (PyNIDM)
which followed the simple organizational structure of NIDM-
Experiment with functions to create, query, export, import,
and transform NIDM-Experiment documents. Kennedy et al.
(2019) developed the function to generate NIDM based
provenances on ReproNim, which is a center for reproducible
neuroimaging computation. Maumet et al. (2019) built a JSON-
LD representation for NIDM-Results data and exposed it to the
neuroimaging data management tool Datalad. With the growth
of scale, the applications of neuroimaging provenances also
have broken through traditional data descriptions oriented to
data sharing (Van Horn et al., 2001) and process recordings

5http://www.w3.org/TR/prov-dm/
6http://medical.nema.org/dicom/
7https://github.com/incf-nidash/XCEDE

oriented to analysis (Dinov et al., 2009), and are moved toward
verification of scientific outputs (Arshad et al., 2019), research
artifact sharing (Maumet, 2020), etc. Provenance-based research
sharing (Yuan et al., 2018), which uses provenances as “research
objects” (Belhajjame et al., 2015; Miksa and Rauber, 2017; That
et al., 2017) (i.e., digital research artifacts for knowledge sharing
and reproducibility in computational experiments), is becoming
a trend for open and FAIR neuroscience.

However, provenance-based research sharing needs large-
scale and high-quality neuroimaging provenances. Existing
studies of neuroimaging provenances mainly adopt experts
or process recordings-based construction methods. Public
neuroimaging data or derived data sharing platforms, such as
BrainMap and NeuroVault, rely on experts’ manual annotations
to collect neuroimaging provenance information. The obtained
provenances vary dramatically in quality and grow slowly. Even
if Brainspell8 adopts the crowdsourcing-based annotation mode
(Badhwar et al., 2016), the situation has not been fundamentally
improved. Aiming at this problem, many neuroimaging tools,
such as SPM, FSL, and PyNIDM, have provided the supporting
for process-based provenance extraction. They can collect
provenance information at the time of data acquisition or
processing and do not require any extra effort. Process-based
provenance extraction has become the most important means
to construct neuroimaging provenances for large-scale data
sharing. However, this kind of provenance extraction method is
centered on actual experimental data. At present, neuroimaging
data sharing still faces some important obstacles, such as
privacy and data ownership. Public data account for only a
small part of the total data. Similarly, many researchers do
not actively generate and share neuroimaging provenances
during the data acquisition or processing. Therefore, besides
collecting provenance information during data acquisition or
processing, it is also necessary to develop one new way to extract
provenance information from published sources, especially
published scientific articles.

Neuroimaging Text Mining
Neuroimaging technologies can non-invasively detect
the connection between cognitive states and patterns of
brain activity, and have received widespread attentions in
computational neuroscience. Neuroimaging texts, especially
scientific articles, are growing fast. Taking only fMRI (Wegrzyn
et al., 2018) as an example, 307 relevant articles have been
published in the journal PLOS ONE in 2020. These neuroimaging
texts are valuable knowledge resources for studying human
intelligence, pathological mechanism of brain and mental
diseases, brain-computer interface, and so on. In the last decade,
various neuroimaging meta-analysis (Yarkoni et al., 2011;
Neumann et al., 2016) and collaborative analysis (Lei et al., 2020)
have made great achievements. The value of neuroimaging texts
as knowledge resources is already obvious. How to automatically
and continuously extract knowledge from neuroimaging texts
has become a key issue for open and FAIR neuroscience.

8http://brainspell.org
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Neuroimaging text mining is an important branch of
biomedical text mining and provides an effective approach to
extract knowledge from neuroimaging texts. Early studies mainly
focused on extracting neuroimaging knowledge for decoding a
wide range of cognitive states Naud and Usui (2008) constructed
the neuroscience terminology space by using the Vector Space
Model and performed k-means based cluster on the abstract
of neuroscience articles for extracting cognitive state-related
topics. Neurosynth (Yarkoni et al., 2011) recognized terms based
on word frequency and used the Naive Bayesian Classifier to
predict the occurrence of specific terms based on the whole-
brain activation patterns. Poldrack et al. (2013) adopted the
Latent Dirichlet Allocation (LDA) method to identify topics
of articles from the Neurosynth database and mapped these
topics to brain activation data for discovering mechanisms of
cognitive states. French et al. (2012) developed a co-occurrence-
based method to extract brain regions and their relations from
neuroscience articles. Alhazmi et al. (2018) extracted topic words
based on word frequency and constructed relations between
semantic spaces of topics and brain-activated regions by using
correspondence analysis and hierarchical clustering. In order to
decode cognitive states, these studies only extracted cognitive
states and activated brain regions and their relations from
neuroimaging articles. Main adopted text mining technologies
are the frequency-based or probabilistic model-based topic
learning methods and the clustering-based relation recognition
methods. The obtained knowledge was a group of topic words
and their relations. Because of adopting an open-domain
task to extract unknown types of topics and relations, many
general words were often included in topics, resulting in low-
quality results of knowledge extraction. For example, neurosynth
topic words include many general words, such as “using,”
“repeat,” “asked,” and domain general words, such as “magnetic
resonance,” “brain” (Abacha et al., 2017). Poldrack et al. (2013)
had to use concepts in the Cognitive Atlas (Poldrack et al.,
2011) to further filter neurosynth topic words. Such knowledge
extraction oriented to the decoding of cognitive states cannot
effectively characterize the whole research process for sharing
“research objects.”

In recent years, studies on neuroimaging text mining began
to expend the knowledge extraction perspective from decoding
cognitive states to characterize the whole research process. The
adopted methods also change from topic modeling to named
entity recognition. Ben Abacha et al. (2017) adopted the rule-
based method and various conditional random field (CRF)-
based methods to recognize fifteen functional neuroimaging
entity categories, including gross brain anatomy, functional
neuroanatomy, medical problem, stimuli, and responses, etc.
Shardlow et al. (2018) recognized various entities, including brain
regions, experimental values, neuron types, etc., by using active
and deep learning, for curating researches in computational
neuroscience. Riedel et al. (2019) completed a comprehensive
evaluation on recognizing various entities related to the cognitive
experiment, which are defined by the Cognitive Paradigm
Ontology (Turner and Laird, 2012) and involved with behavioral
domain, paradigm class, instruction, stimulus modality, etc.,
based on multiple corpus features and various classifiers,

including Bernoulli naïve Bayes, k-nearest neighbors, logistic
regression, and support vector classifier. Huangfu et al. (2020)
extracted the term list of the neuroscientific research process
from the PubMed Central database, for creating neuroscientific
knowledge organization system (i.e., hierarchical terminology
system). Zhu et al. (2020) proposed the hierarchical attentive
decoding to extract a span of interests (i.e., terms about
neuroscientific research process) from neuroscience articles, to
predict research species. Whether it is the entity, method term,
or research interest, the extracted knowledge in current studies
of neuroimaging text mining is no longer limited to cognitive
states and brain regions but extended to the whole research
process, from the experiment to analysis. Furthermore, most
of these studies transformed the open-domain topic modeling
task to the close-domain entity recognition task with predefined
entity/term/interest types from external domain knowledge, such
as Cognitive Paradigm Ontology. By this kind of transformation
of task definition, the shortcoming of general word noises in early
studies of neuroimaging text mining can be effectively solved.
Therefore, rapid growth neuroimaging articles, especially open
access articles, and the maturing technologies of neuroimaging
text mining provide a practical approach for continuous and
rapid collection of neuroimaging provenance information.

However, for provenance-based research sharing, existing
studies on neuroimaging text mining still have the following
shortcoming. Words or phrases are the main form of extracted
knowledge. Because of lacking the relation structure among
words, these words or phrases can only show some fragmentary
and key points of the research process and cannot provide a
vivid process description. Hence, it is necessary to develop a new
technology of neuroimaging text mining for research sharing-
oriented neuroimaging provenance construction.

Biomedical Event Extraction
In the definition of ACE (Automatic Content Extraction)
(Doddington et al., 2004), “event” is described as the occurrence
of an action or the change of state. It includes an event trigger
and multiple arguments with different roles. Event extraction
is to obtain structured representations of events, so as to help
answering the “5W1H” questions, including “who, when, where,
what, why” and “how,” of real-world events from numerous
sources of texts (Xiang and Wang, 2019). Biomedical event
extraction is to extract events from biomedical texts and has
become one of the most actively researched areas in biomedical
text mining (Chung et al., 2020). Since the first biomedical
natural language processing shared task (BioNLP-ST) challenge
in 2009, the fine-grained biomedical event extraction has received
extensive attentions from academia and industry.

Different from news (Abera, 2020), finance (Zheng et al.,
2019) and other fields, biomedical event extraction has two main
challenges. Firstly, biomedical texts have the higher complexity.
They often contain many abbreviations and long sentences with
complex structures. Secondly, high-quality annotated corpora
are lacking. Most of the existing biomedical event corpora are
small scale and have serious class imbalance problems. In recent
years, a large number of studies have tried to solve these two
problems. Various embedding technologies, such as dependency
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path embedding (Bjrne and Salakoski, 2018) and entity property
embedding from external ontologies (Li et al., 2016), were
developed to capture multi-aspect feature information for
modeling complex biomedical texts. The hierarchical attention
mechanism (Chen, 2019) was proposed to model the global
document context for identifying biomedical event triggers from
long biomedical sentences. Distance supervision (Araki and
Mitamura, 2018), transfer learning (Chen, 2019), and other
technologies have also been adopted to solve the problem of lack
and imbalance of training samples.

In recent years, the knowledge base-oriented extraction task
is becoming the research focus of biomedical event extraction.
It evaluates the extraction systems or methods by measuring
how much information content can be extracted from corpora
(Deléger et al., 2016). Traditional pipeline models divided the
event extraction task into multiple independent sub-tasks and
resulted in various challenges, such as error propagation and lack
of dependencies and interactions among subtasks. Therefore, the
joint model becomes the inevitable choice of event extraction
that oriented the knowledge base. Nguyen and Nguyen (2019)
proposed a novel model to jointly perform predictions for
entity mentions, event triggers, and arguments based on the
shared hidden representations. Yu et al. (2019) developed an
end-to-end model based on LSTM (Long Short-Term Memory)
to optimize biomedical event extraction. Trieu et al. (2020)
proposed an end-to-end neural nested event extraction model,
named DeepEventMine, which can extract multiple overlapping
directed acyclic graph structures from a raw sentence. Li et al.
(2020) proposed a parallel multi-pooling convolutional neural
network model to capture the compositional semantic features
of sentences for improving biomedical event extraction on the
MLEE (Multi-Level Event Extraction) dataset. Zhao et al. (2021)
proposed a novel framework of reinforcement learning for the
task of multiple biomedical event extraction, in which trigger
identification and argument detection were treated as the main
task and the subsidiary task.

Because of rich semantic information, the event is naturally
more suitable to represent neuroimaging provenances, which
characterize the research process of computational science, than
isolated words. However, there are still two challenges in applying
existing biomedical event extraction technologies, especially
various joint models of biomedical event extraction, on research
sharing-oriented neuroimaging provenance construction:

• Modeling the neuroimaging research process and result
based on events. Existing biomedical event extraction
tasks mainly focus on gene, protein, and disease-related
events. As a new field of biomedical event extraction,
neuroimaging event extraction lacks referential studies
for task definition. Therefore, it is necessary to model
the neuroimaging research process and results based on
the perspective of events firstly. This is a challenging
work because the definition of events needs to take into
account both the demands of research sharing and the
availability of knowledge in articles. The task type, content,
and granularity of event extraction needs to be designed
systematically by balancing various factors, including the

task complexity, the capability of existing technologies, the
importance and completeness of knowledge in research
sharing, and the availability of knowledge in articles.

• Constructing the joint model of neuroimaging events in
a few-shot learning scenario. Research sharing-oriented
neuroimaging provenance construction is a typical task
of knowledge base extraction and needs to adopt the
joint model of event extraction. However, the complex
network structure of joint model brings the higher
requirements on the scale of training data. As a new
field of event extraction, there are no existing annotated
corpora for neuroimaging event extraction. Furthermore,
neuroimaging event extraction in this study is involved
with multi-domain entities for characterizing the research
process of computational neuroscience. This also hinders
the use of distance supervision (Araki and Mitamura,
2018) and transfer learning (Chen, 2019). Therefore, this
is necessary to develop a new joint model of biomedical
event extraction based on a small-scale “gold” corpus set
annotated by domain experts.

CONTRIBUTIONS

The main contributions can be summarized as follows:

1. Firstly, this paper designs a provenance-guided approach
for modeling the neuroimaging research process and result
based on events. Considering the requirements of research
sharing in open and FAIR neuroscience and availability
of knowledge in neuroimaging articles, an improved brain
informatics (BI) provenance model is defined based on
NIDM. A mapping between the BI model and the definition
of events is also proposed to obtain six categories of
neuroimaging event-containing attributes for constructing
research sharing-oriented neuroimaging provenances.

2. Secondly, this paper proposes a joint extraction model
based on deep adversarial learning, called the adversarial
training based neuroimaging event and attribute
extraction model (AT-NeuroEAE), to extract the defined
neuroimaging events. To the best of our knowledge, it is
the first event extraction joint model containing attributes.
Furthermore, the FreeAT (Free Adversarial Training)-
based adversarial learning is introduced into the event
joint extraction for improving the accuracy of event
extraction in a few-shot learning scenario. This kind of
optimization makes the proposed model more practical
for computational neuroscience which lacks the “gold”
labeled corpora.

3. Thirdly, a group of experiments were performed based
on real data from the journal PLOS ONE. Experimental
results show that, compared with existing event extraction
models, the proposed model can more effectively and
completely extract neuroimaging provenance information
from neuroimaging articles based on a small-scale corpus
set annotated by domain experts. This is a practical
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FIGURE 1 | The whole process of provenance information extraction. (1) Brain informatics provenance modeling: construct an improved BI provenance model to
capture the provenance requirements of research sharing in open and FAIR neuroscience. (2) Neuroimaging event definition: define a group of neuroimaging events
to transform the BI provenance model into text mining tasks. (3) Corpus extraction and annotation: construct a group of labeled corpora for model training and test.
(4) Neuroimaging event extraction: develop the NeuroEAE model to extract defined neuroimaging events for meeting the provenance requirements in open and FAIR
neuroscience.

and effective approach for large-scale and low-cost
neuroimaging provenance construction.

MATERIALS AND METHODS

Overall Structure
This paper proposes a joint extraction model of events with
attributes, called AT-NeuroEAE, for research sharing-oriented
neuroimaging provenance construction. By using NeuroEAE,
provenance information can be automatically and quickly
extracted from published neuroimaging articles, especially open-
access scientific articles. As shown in Figure 1, the whole
process includes four steps. Details will be described in the
subsequent subsections.

Brain Informatics Provenance Modeling
Computational neuroscience is a new application field of
biomedical event extraction. In order to construct neuroimaging
provenance by using biomedical event extraction, the first task
needs to model the neuroimaging research process and result.

At present, NIDM is the most widely used neuroimaging
provenance model and the representative work for open and
FAIR Neuroscience (Abrams et al., 2021). However, as stated
above, its element granularity is still incomplete for neuroimaging
research sharing. It also contains a lot of model elements which
aren’t available in articles. In our previous studies (Chen et al.,
2012; Chen and Ning, 2013), a BI provenance model has been
proposed to describe the origin and subsequent processing of
various human brain data in systematic BI studies. This study
reconstructs the BI provenance model by considering both the

FIGURE 2 | Diverse attributes of subjects in different articles. In example 1
(Daniel et al., 2014), the attributes of subjects include medication history, age,
medical history, and gender. In example 2 (Lanting et al., 2014), the attributes
of subjects include health condition and medical history.

importance of knowledge in research sharing and the availability
of knowledge in articles.

Firstly, the newest version of BI provenance model (Sheng
et al., 2019) is updated based on the widely used NIDM. All
entities, activities and agents are replaced by NIDM classes, such
as “nidm:AcquisitionObject,” “nidm:Task,” “nidm:Acquisition,”
and “nidm:DataAcquisitionDevice.” This update ensures that the
new BI provenance model follows the FAIR facets I1: “(meta)
data use a formal, accessible, shared, and broadly applicable
language for knowledge representation” and I2: “(meta) data use
vocabularies that follow FAIR principles.”

Secondly, according to the FAIR facet F2, “data are described
with rich metadata” and the deficiency of NIDM in experiment
description; the abstract classes of experimental design in
NIDM is extended as the activity “BI:PerformExperiment” and
three related elements, including the entity “nidm:Task”
and the entity “BI:StimuliResponseMode.” The entity
“nidm:Task” and “nidm:StudyParticipant” are inherited from
NIDM and used to indicate the task design type. The entity
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FIGURE 3 | The BI provenance model. It uses six activities (rectangle), including “BI:PerformExperiment,” “nidm:Acquisition,” “BI:PerformAnalysis,” “BI:Activate,”
“BI:Deactivate,” and “BI:Effect” to characterize experimental design, analytical process, and results. Six entities (circle), three agents (hexagon), and three attributes
(diamond) are connected to these activities for describing various key factors in the research process.

“BI:StimuliResponseMode” are used to describe the experiment
in more detail. The former describes the sensory stimuli or
response of experiment and the latter describes the participant
of experiment. They are two important factors for cognitive
experiments and need to be considered in multiple key steps of
computational neuroscience, including experimental design, data
analysis, result interpretation, etc. Neuroimaging articles also
often introduce them in the “Experiment” section. Furthermore,
both the stimuli mode and the subject are involved with multi-
aspect attribute information, such as the perception channel,
the stimuli task category, age, gender, and occupation, but it
is not sure which and how much attribute information will be
described in an article. As shown in Figure 2, different articles
may describe subjects by using different attributes, including
medication history, age, gender, medical history, and other
complex characteristics. Therefore, this study adds the general
attribute entity to represent all attributes of the entity. For
example, the entity “BI:StudyParticipant_A” is added into the
model to represent all possible attribute information of subjects.
Similarly, according to the FAIR facet F2 “data are described with
rich metadata” and the deficiency of NIDM in result description;
this study adds three categories of activities “BI:Activate,”
“BI:Deactivate,” “BI:Effect” and two related elements, including
the entities “BI:BrainArea” and “BI:CognitiveFunction,” to
describe the brain mechanism of cognitive states, which are core
research findings in computational neuroscience.

Thirdly, considering both the importance and the availability
of information, this study simplifies the description of NIDM
about analytical tools or methods. NIDM contains many classes
about parameters of analytical tools or methods. However, many
parameters are generally not mentioned in the article. Therefore,
this study uses an entity “BI:AnalyticalToolsorMethods,”

which is connected to the activity “BI:PerformAnalysis,”
to represent analytical tools or methods. Two entities
“nidm:AcquisitionObject” and “BI:AnalyticalResults” are
also connected to the activity “BI:PerformAnalysis” for
representing the analytical process more clearly. Compared
with the traditional class or concept tree, this kind of event-based
description contains various roles within the event and can better
describe the research process than the single subclass relation.

Figure 3 gives the reconstructed BI provenance model.
It characterizes experimental design, analytical process,
and results by four categories of elements: entity, activity,
agent, and attribute.

Model-Guided Neuroimaging Event
Definition
This study designs a model-guided approach to transform
BI provenance model into text mining tasks. A group of
neuroimaging events are defined by using the following mapping
rules:

• Firstly, each activity and its directly connected
elements (entities or agents) are divided into an
independent activity unit.

• secondly, each activity unit is mapped to a meta event. The
activity is mapped to the trigger words. The entities and
agents are mapped to arguments. The relations between
activity and elements are mapped to argument roles.

Based on the above rules, six categories of neuroimaging
events can be obtained from the BI provenance model.
Tables 1, 2 give the category definitions of events and
corresponding arguments.
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TABLE 1 | Neuroimaging event category.

Category Definition Description

Activate [{Activate. . . },<{cognitive function},
cause >,<{brain area}, affect > +]

An “Activate” event is used to describe the appearance of active states in some specific brain
areas, which is produced by the execution of a cognitive function.

Deactivate [{deactivate. . . }, < {Cognitive Function},
cause >,<{Brain Area}, affect > +]

A “Deactivate” event is used to describe the appearance of inactive states in some specific
brain areas, which is produced by the execution of a cognitive function.

Effect [{effect | influence. . . }, < {Cognitive Function},
cause > , < {Brain Area}, affect > +]

An “Effect” event is used to describe the change of states in some specific brain areas, which is
produced by the execution of a cognitive function, but whether it is activated or inactivated is
unknown.

Perform
experiment

[{perform | complete. . . }, < {Study Participant
(Study Participant_A)*}, participates
in > *, < {Task}, uses > +, < {Stimuli Response
Mode (Stimuli Response Mode_A)*}*, by >]

A “Perform Experiment” event is used to describe a neuroimaging research action by a group of
study participants, i.e., subjects do one or several experimental tasks by some kind of stimuli
response mode. Study participants often have some attributes, such as age, gender, and
medical history. The stimuli response mode is also involved with some features, such as the
perception channel, the stimuli task category.

Acquisition [{assess | acquire | obtain...}, < {Acquisition
Object}, produces > *, < {Data Acquisition
Device (Data Acquisition Device_A)*},
uses > +, < {Study Participant (Study
Participant_A)*}, from > *]

The “Acquisition” event is used to describe a research action that a data acquisition device with
relevant parameters produces physiological and psychological data from study participants.

Perform
analysis

[{perform | complete. . . }, < {Analytical Results},
produces > +, < {Acquisition Object},
on > *, < {Analytical Tools or Methods},
uses > +]

The “Perform Analysis” event is used to describe a research action that the analytical tool or
method is used on physiological and psychological data to produce a group of analytical
results, i.e., brain responses, such as Default Mode Network (dmn).

“*” indicates that the element may occur zero or more times and “+” indicates that the element may occur one or more times.

TABLE 2 | Argument categories.

Argument category Description

Cognitive function (COG) The cognitive function is an ability of the human brain to process information and used to denote the brain function implied by brain
responses in computational neuroscience research.

Brain area (BRI) The brain area is an anatomical region of the cerebral cortex and used to mark the occurrence location of brain response in
computational neuroscience research.

Data acquisition device (ACQ) The data acquisition device is a kind of brain testing equipment used in computational neuroscience research.

Stimuli response mode (SEN) The stimuli response mode is used to denote the sensory channel of stimulus presentation in computational neuroscience research.

Study participant (STP) The study participant is a participant in computational neuroscience research and recorded for behavioral or brain physiological data.

Task (TSK) The experimental task is a task (e.g., questions, games, etc.) which is performed by the study participant in computational neuroscience
research.

Acquisition object (AOB) The acquisition object is a kind of physiological and psychological data which are collected by the data acquisition device in
computational neuroscience research.

Analytical tools or methods
(TOL)

The analytical tool or methods is a mining algorithm or tool which is used to analyze experimental data in computational neuroscience
research.

Analytical results (RLT) The analytical results are a series of brain responses which are mined from experimental data in computational neuroscience research.

In this study, the definition of events is represented as
trigger + parameter structure (Sun et al., 2017). For example, an
“Acquisition” event can be represented as follows:

Event Acquisition

= [trigger, < argument1(attribute)#,
role1 > #, < argument2(attribute)#, role2 > #...]

= [{assess | acquire | obtain...}, < {Acquisition Object},
produces > *, < {Data Acquisition Device (Data
Acquisition Device_A)*}, uses > +, < {Study Participant
(Study Participant _A )*}*, from > ]

The above expression shows that an “Acquisition” event
consists of a trigger word and three categories of arguments. “∗”
indicates that the element may occur zero or more times and

FIGURE 4 | An example of an “Acquisition” event from the article (Mutschler
et al., 2016). This event consists of a trigger word “using,” two “Data
Acquisition Device” category of arguments “fMRI” and “SCR,” and one “Study
Participant” category of argument “infant.”

“+” indicates that the element may occur one or more times.
The trigger word may be one of “assess,” “acquire,” “obtain,” etc.
Argument 1 belongs to the “Acquisition Object” category and is
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TABLE 3 | The number of terms in dictionaries.

Element
type

Element Term
number

Element Term
number

Trigger
word

Acquisition 65 Effect 145

Perform experiment 62 Deactivate 20

Perform analysis 227 Activate 12

Argument BRI 576 SEN 52

COG 812 STP 97

AOB 48 TOL 171

ACQ 57 TSK 814

RLT 28

Argument Data acquisition
device_A

33 Study
participant_A

7

Stimuli response
mode_A

24

used to describe the results produced by the “Acquisition” event.
Argument 2 belongs to the “Data Acquisition Device” category
and is used to describe the device used in the “Acquisition”
event. Argument 3 belongs to the “Study Participant” category
and is used to describe the object of the “Acquisition” event.
Both Argument 2 and Argument 3 have zero or several attributes.
Figure 4 gives an example of an “Acquisition” event in a
neuroimaging article.

Corpus Extraction and Annotation
Corpora were crawled from the journal PLOS ONE. We searched
the articles based on the keywords “fMRI” or “functional
magnetic resonance imaging” or “functional MRI” in their
abstracts, and set the published time from July 18, 2014, to July
18, 2019. A total of 677 articles were obtained. Based on these
articles, event mentions were extracted by using rule matching.
The process can be described as follows.

The first step is dictionary construction. Seven categories
of argument dictionaries, including “Brain Area,” “Cognitive
Function,” “Study Participant,” “Stimuli Response Mode,” “Task,”
“Analytical Tools or Method,” and “Analytical Results” came
from our previous study (Sheng et al., 2020). We collected
candidate trigger words and arguments based on the co-
occurrence with these seven categories of arguments, and then
manually filtered them to construct the trigger word dictionaries
and other categories of argument dictionaries. Similarly, three
categories of argument attribute dictionaries were constructed
based on the co-occurrence and manual filtering. Table 3 gives
the number of terms in each dictionary.

The second step is mention extraction. Based on the
dictionaries and event definitions, event mentions were extracted
by using the following rule:

Rule1: If an event trigger word and two arguments appear in
the same sentence, this sentence can be marked as a complete
event.

However, Rule 1 cannot extract enough the “Deactivate” event.
We defined another more relaxed rule:

FIGURE 5 | The distribution of event mentions in the experimental data set. It
consists of 3331 event mentions extracted from 677 neuroimaging articles.
The “Activate” category includes 788 mentions and accounts for 24% of the
total. The “Deactivate” category includes 128 mentions and accounts for 4%
of the total. The “Effect” category includes 1169 mentions and accounts for
35% of the total. The “Perform experiment” category includes 665 mentions
and accounts for 20% of the total. The “Acquisition” category includes 266
mentions and accounts for 8% of the total. The “Perform Analysis” category
includes 315 mentions and accounts for 9% of the total.

Rule2: If a “Deactivate” event trigger word and a “BRI”
argument appear in the same sentence, this sentence can be
marked as a “Deactivate” event.

Based on Rules 1 and 2, a neuroimaging event mention set
can be obtained as the experimental data set. It includes 788
“Activate” event mentions, 128 “Deactivate” event mentions,
1169 “Effect” event mentions, 665 “Perform Experiment” event
mentions, 266 “Acquisition” event mentions, and 315 “Perform
Analysis” event mentions. The distribution of event mentions in
the experimental data set is shown in Figure 5.

In the training dataset, the annotation of triggers and
arguments adopts the “B/I/O-category abbreviation” mode. The
“B/I/O” is the BIO annotation mode (Soomro et al., 2017).
“B” indicates the beginning of entity. “I” stands for the middle
or end, and “O” stands for other, which is used to mark
irrelevant characters. Category abbreviations are involved with
argument categories and trigger categories. The entity annotation
of attributes adopts the “B/I/O-category abbreviation_A” model.
Table 4 gives an annotation example. The labels “BRI” and
“AOB” indicate the argument categories “Brain Area” and
“Acquisition Object,” respectively. The label “Acq” indicates the
trigger category “Acquisition.” The label “O” on the word “high”
indicates “high” does not belong to any entity. The label “B-AOB”
on the word “fMRI” indicates “fMRI” is the beginning of the
“Acquisition Object” argument.

The annotation of event roles and attributes is based on trigger
words. As shown in Table 5, the first column is the position and
the second column is the corresponding word. If the word is a
trigger word, its third column is marked “Trigger” and its fourth
column is marked with the form of “[ArgPos1, ArgPos2,. . .,
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TABLE 4 | Event element annotation.

Annotation example

High b-value fMRI Was Obtained Through The Central Sulcus

O O B-AOB O B-Acq O O B-BRI I-BRI

TABLE 5 | Event role and attribute annotation.

Position Word Event role Role/attribute position

1 High

2 b-value Produces

3 fMRI Produces [2]

4 Was

5 Obtained Trigger [3,8]

6 Through

7 The

8 Central From

9 Sulcus From

ArgPosn,. . .]” in which “ArgPosn” is the starting position of the
corresponding argument in rolen. If the word is an argument, its
third column is marked by the corresponding role category label.
And if this argument has attributes, its fourth column is marked
with the form of “[AttPos1, AttPos2,. . ., AttPosn,. . .]” in which
“AttPosn” is the starting position of its attributen.

Neuroimaging Event Extraction Based on
AT-NeuroEAE
In order to realize the event extraction containing attributes,
this study proposes a joint event extraction model based on
deep adversarial learning, called AT-NeuroEAE. The multi-layer
joint extraction model of neuroimaging events with attributes
is constructed to synchronously realize the prediction of event
elements, including trigger, arguments, and attributes and the
extraction of element relations, including argument roles and
argument attributes, by the end-to-end mode. The adversarial
learning based on FreeAT is combined with this joint model
to realize the event extraction in a few-shot learning scenario.
Figure 6 gives the whole structure of the model, which consists
of the text vectorization layer, the event element prediction
layer, the role-attribute recognition layer, and the adversarial
learning mechanism.

In this experiment, we set the dimension of the word vector
to 25, the number of iterations to 200, the dimension of the
LSTM hidden layer to 64, the number of LSTM layers to 3, the
dropout to 0.9, the learning rate to 1e-3, the activation function
to tanh, and the adversarial disturbance parameter alpha to 0.01.
Parameter optimization used the Adam algorithms.

Text Vectorization Layer
The text vectorization layer encodes sentences as textual vectors
for the input of model. Suppose that there is a sentence
s = [w1, w2, ...wn]. For each word wi, three categories of feature
vectors are constructed based on lexical units, case features, and
domain terminology dictionaries, respectively.

• Word vector. The word vector is learned to contain as
much semantic and grammatical information as possible
(Pennington et al., 2014). This study adopts the Glove word
vector model which was trained on 6 billion words of
Wikipedia and web texts (Pennington et al., 2014).

• Case feature vector. Neuroimaging event mentions
are involved with a large number of domain terms
with capitalized abbreviated names, such as fMRI.
In order to capture this kind of corpus features,
this study constructs a one-hot case feature vector
including six dimensions “numeric,” “allLower,” “allUpper,”
“initialUpper,” “mainly_numeric,” “contains_digit,” and
“other.”

• Terminology dictionary vector. Neuroimaging event
elements involve nine types of important domain
entities shown in Table 2. This study constructs the
one-dimensional terminology dictionary vector (Xu et al.,
2019) to capture this kind of domain corpus features. Nine
term dictionaries are collected for these nine categories of
domain entities firstly, and then a label list is constructed
base on the “B/I/O-entity category abbreviation.” When wi
matches any term in the dictionaries, a label index is set
as the dimensional value of terminology dictionary vector
of wi.

Concatenating these three categories of feature vectors (Zhang
et al., 2019), the combined word vector of wi can be obtained as
follows:

vi = [vw, vc, vt] (1)

where vw, vc, and vt are the corresponding word vector, case
feature vector, and terminology dictionary vector of wi.

Event Element Prediction Layer
The event element prediction layer predicts the potential event
elements (i.e., argument, attribute, or trigger word) by using
the BiLSTM-CRF model. BiLSTM is used to model context
information of sentences based on input text vectors. The process
can be defined as follows:

hi =
[
−−−→
LSTM (vi) ,

←−−−
LSTM (vi)

]
, i ∈ [1,n] (2)

where, vi is the combination vector of wi,
−−−→
LSTM is the forward

hidden layer output of LSTM,
←−−−
LSTM is the backward hidden

layer output of LSTM, and hi is a word representation of
each word token.

CRF is used to predict the element category and boundary.
Event element prediction is a named entity recognition task
which can be formulated as a sequence labeling problem. Based
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FIGURE 6 | The AT-NeuroEAE model. The text vectorization layer encodes sentences as textual vectors based on lexical units, case features, and domain
terminology dictionaries. The event element prediction layer predicts the potential event elements by using the BiLSTM-CRF model. The role-attribute recognition
layer identifies the role and attribute of argument by using the sigmoid function. The adversarial learning mechanism adds small and persistent disturbances to the
input of joint model for improving the robustness and generalization of the model. BiLSTM: bi-directional long short-term memory; CRF: conditional random fields;
adv: adversarial learning.

on the BIO annotation mode, each event element often consists of
multiple sequential tokens. We calculate the score of each token
wi for each event element tag:

S(e) (hi
)
= V(e)f

(
U(e)hi

)
, i ∈ [1,n] (3)

where the superscript (e) means event element prediction; f (·)
is the activation function; V(e) ∈ Rp = l, U(e) ∈ R2d = l, and l are
the width of LSTM layer; and d is the hidden size of LSTM layer.
The linear-chain CRF score of the s is defined as:

S
(

y1
(e), y2

(e), ..., yn
(e)
)
=

∑n

i = 0
s(e)
i,yi(e)+

∑n−1

i = 1
Tyi(e),yi+1(e) ,

i ∈ [1, n] (4)

where yi ∈Y is the tag of wi, si,yi is the predicted score of wi given
a tag yi, and T is the transition matrix.

Then the probability of a given tag sequence on all possible tag
sequences of the input sentence sen is defined as:

Pr =
(

y1
(e), y2

(e), ..., yn
(e)
∣∣∣ sen

) eS
(
y1

(e),y2
(e),...,yn

(e))∑
ỹ1

(e),...,ỹn
(e) es(ỹ1

(e),...,ỹn
(e))

(5)

In the process of training, this study minimizes the cross-entry
loss LNER:

LNER =
∑n

i = 0
−logPr(yi|wi; θ) (6)

Role-Attribute Recognition
The role-attribute recognition layer identifies the role and
attribute of argument by using the sigmoid function. Recognizing
the attribute of argument is the one-to-one relation extraction
between the argument and its attribute, but recognizing the
role of argument is the one-to-n relations because the trigger
word is usually corresponding to multiple arguments in an
event. Hence, this paper models the role recognition task as
a multi-label head selection problem (Zheng et al., 2017), i.e.,
the relation extraction between one trigger word and two
or more arguments.

As shown in Figure 4, the role-attribute recognition layer
receives the hidden state of LSTM from the event element
prediction layer. The predication score between tokens wi and wj
given a role-attribute tag rk can be calculated as follows:

s(r) (hi, hj, rk
)
= V(r)f

(
U(r)hi +W(r)hj

)
(7)

where the superscript (r) means role-attribute recognition, f (·)
is the activation function, hi is the output of the hidden state
of LSTM corresponding to wi, V(r) ∈ Rl l is the width of the
LSTM layer, U(r) ∈ Rl∗2d, W(r) ∈ Rl∗2d, and d is the hidden size
of LSTM layer. The probability of token wj to be selected as the
head of token wi with the role-attribute tag rk between them can
be calculated as follows:

Pr
(
head = wj, tag = rk

∣∣ wi, θ
)
= σ(s(mj, mi, rk)) (8)
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where θ is a set of parameters and σ(·) is the sigmoid function.
In the process of training, this paper minimizes the cross-entry

loss LRAR:

LRAR =
∑n

i = 0

∑m

j = 0
−Pr

(
head = yi,j, relation = rk|wi

)
(9)

where yi is the ground truth vector and rk is the role-attribute
tag, and yi ⊆ sen and rk ⊆ R and m (m < n) are the number of
associated heads (i.e., roles or attributes) of wi. During decoding,
the most probable heads and roles/attributes are selected using
threshold-based prediction.

Finally, for the joint event extraction task, the final objective
is calculated as LNER+LRAR. This study minimizes this objective
function in the process of training of joint model.

Adversarial Learning Mechanism
The adversarial learning mechanism adds small and persistent
disturbances to the input of the joint model. After the
adversarial training with disturbances, the output distribution is
consistent with the original distribution, but the robustness and
generalization of the model can be improved (Wang et al., 2018).

This study adopts the perturbation strategy of FreeAT
proposed by Shafahi et al. (2019). As shown in Figure 5, repeat
K times for each sample continuously to find the optimal
perturbation. The gradient of the previous step is multiplexed
when calculating the perturbation. Finally, the overall iteration
is divided by K to greatly reduce the speed problem caused by the
inner iteration. The approximation of the perturbation is defined
as:

radv t+1 = radv t+ ∈
∇wL(w; θ̂)∣∣∣∣∇wL(w; θ̂)

∣∣∣∣ (10)

where, radν is the perturbation, θ̂ is a copy of the current model
parameter, t ⊆ K, ∈ = α

√
D is a hyperparameter, α is the factor

and D is the dimension of the embeddings vi, and t is the number
of inner iterations.

Finally combining the original examples and the
confrontation examples for model adversarial training, the
final loss of joint model is as follows:

L
(
w, θ̂

)
= Ljoint(w; θ̂)+ Ljoint(w+ radv; θ̂) (11)

where θ̂ is the current value of the model parameter.

Evaluation
The precision rate P, the recall rate R, and the F1 value (Curiskis
et al., 2019) are adopted to evaluate experimental results. They
can be calculated as follows:

P =
|TP|

|TP| + |FP|
(12)

R =
|TP|

|TP| + |FN|
(13)

F1 =
2 × Precision × Recall

Precision+Recall
(14)

In this study, P, R, and F1 values are used to evaluate the results of
subtasks, but only F1 values are used to evaluate the overall results
of event extraction.

RESULTS

Baseline Methods
The CNN-BiLSTM-PCNN (Convolutional Neural Network-
Bi-directional Long Short-Term Memory-Pulse Coupled
Neural Network) pipeline model (Zheng et al., 2017) and the
GCN (Graph convolution Network) joint model9 are used in
the two control experiments. The CNN-BiLSTM-CNN pipeline
model uses the CNN-BiLSTM model for the subtask of event
element prediction, and the PCNN model for the subtask of role
attribute recognition.

In many competitions, these models have been proved to
be stable and relatively optimal for various biomedical named
entity recognition tasks and relation extraction tasks. The GCN
joint model was used on multiple shared tasks of biomedical
event extraction, including BB3 (Bacteria Biotope) event data set
(Lever and Jones, 2016), and SeeDev (Plant Seed Development)
event data set (Agirre et al., 2019), and has obtained good
experimental results.

In this study, these two models used their original parameters
firstly, and then we adjusted parameters referring to some classic
articles (Kip and Welling, 2016; Ma and Hovy, 2016; Zhang et al.,
2019). Based on the results, a group of optimal parameters were
chosen as follows:

• The CNN-BILSTM-PCNN pipeline model: For the event
element prediction subtask, the dimension size of the word
vector was set at 100. The epoch number was set at 50,
the convolution width at 3, the CNN output size at 30,
the dimensional number of LSTM hidden layer at 200, the
mini-batch size at 9, and the dropout at 0.5. The Adam
algorithm was used to optimize parameters. For the role-
attribute recognition subtask, the dimension size of the
word vector was set at 50, the convolution width at 3,
the dimensions of the two hidden layers at 200 and 100,
respectively, and the learning rate at 0.01.

• The GCN joint model: The dimension size of the word
vector was set at 300, the dimension size of the Hidden layer
at 200, the epoch number at 50, dropout of GCN at 0.5,
dropout of word at 0.5, and the batch size at 16.

Results Analysis
This study adapted fivefold cross validation to improve the
objectivity of results. Each category of event mentions was
randomly divided into five equal parts. In order to simulate the
few-shot learning scenario, each experiment used one part as
the training data set and the remaining four parts as the test
data set. After five experiments, the average results were taken
as the final results.

9https://github.com/wangmm88/BioNLP-ST-2016_BB3-event
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TABLE 6 | F1 values of event extraction.

Event category CNN-BiLSTM-
PCNN

GCN NeuroEAE AT-
NeuroEAE

Acquisition 0.588 0.542 0.689 0.734

Perform analysis 0.448 0.596 0.547 0.671

Perform experiment 0.368 0.429 0.612 0.853

Effect 0.569 0.576 0.690 0.692

Activate 0.614 0.682 0.809 0.756

Deactivate 0.922 0.952 0.974 0.608

Table 6 gives F1 values of all models. It can be seen that the
CNN-BiLSTM-PCNN pipeline event model lags behind the other
three models in five categories of events except “Acquisition.”
This shows the necessity of joint model in the complex text
mining task, such as event extraction. The proposed NeuroEAE
model is superior to the GCN joint model in all event categories
except the “Analytical results” event. This proves the validity
of proposed model structure for extracting neuroimaging event
containing attributes.

The proposed AT-NeuroEAE model introduces adversarial
learning into NeuroEAE. It achieved the better results on
most of event categories than other models. This shows the
validity of adversarial learning in the few-shot learning scenario.
However, AT-NeuroEAE loses to NeuroEAE on the “Activate”
and “Deactivate” events. This may be due to the fact that
its structure and elements are relatively single compared with
other event categories. As the conclusion of computational
neuroscience research, the “Activate” and “Deactivate” events
are often described by using the simple and clear languages in
articles. For example, “We previously showed that a common
network of brain regions was activated for past and future
thinking in healthy older adults” (Rodolphe et al., 2014)
and “This cortical area was found to be activated in studies
where participants had to perform a task of face vs. non-
face recognition” (Prehn-Kristensen et al., 2009). Under the
same degree of adversarial disturbance of the model, such
a simple event structure is easy to produce the collapse
problem, which makes the model unable to further learn.
This shows that the increasing disturbance can lead to the
reduction of model accuracy under the simple event extraction.
For other event categories, whether it is the “Analytical
Results” event with the complex structure or the “Effect”
event with more trigger word instances, the model has
advantages by using adversarial learning. Hence, the proposed
AT-NeuroEAE is an effective model to extract neuroimaging
events from complex event mentions, which are common in
neuroimaging articles. If the event is simpler, the NeuroEAE
model is the better choice. Extracting neuroimaging event-
containing attributes can be realized by flexibly using these two
kinds of models.

Table 7 gives the F1 values of each experiment in fivefold
cross validation. As shown in this table, the results are stable
in each experiment. Our experiments were performed on the
personal computer with CPU Intel Core 9th Generation i7 and
Graphics Card NVIDIA GeForce GTX 1650. The epoch number

was set at 100. Table 8 gives the running time of each experiment.
The average running time of model training is almost 4.8 h and
the average running time of model test is almost 6.7 s. This
shows that, although the model training takes a long time, the
speed of event extraction is still relatively fast and can meet the
requirements of rapid extraction of provenances.

DISCUSSION

Results Analysis on Subtasks
Neuroimaging event extraction consists of two subtasks: event
element prediction and role-attribute recognition. This section
will analyze results of each subtask separately to understand and
evaluate the proposed AT-NeuroEAE model in depth.

Table 9 gives the results of event element prediction, which
are involved with three kinds of elements, i.e., trigger words,
arguments, and attributes. The full names of arguments are
mentioned in Table 2. The “abbreviation_A,” such as DAT_A,
denotes the attribute of the corresponding argument. In this
study, the prediction task of attribute is most ambiguous
because the general attribute indicates all of possible actual
attributes, as stated above. The prediction task of arguments is
clearly defined but each argument category is often involved
with a large number of entity instances. The prediction
task of trigger words is clearest and simplest. Each category
of trigger words only involved limited words. Comparing
prediction results on these three kinds of elements, we
can see that the clearer and simpler the task, the better
the result. Generally, all elements are recognized well. F1
values of the AT-NeuroEAE model are almost above 0.9.
Even the worst model CNN-BiLSTM-PCNN, its F1 values
on all categories of elements are more than 0.7. This shows
that the existing deep learning models have been able to
effectively solve the task of named entity recognition, as
stated in Armelle et al. (2014).

Comparing AT-NeuroEAE and NeuroEAE, most F1 values are
improved and proved the effectiveness of adversarial learning.
The negative effects of adversarial learning mainly appear
in attribute prediction. This shows that the ambiguous task
definition may not be suitable for adversarial learning.

Table 10 gives the results of role-attribute recognition, which
are involved with two aspects of relations, i.e., element roles
and element-attribute relations. Obviously, adversarial learning
improves the F1 values of role-attribute recognition for the
majority of roles and attributes. The F1 value of “Analysis-
Agent” role is significantly improved after adding adversarial
learning. The main reason is that the corresponding “Perform
Analysis” event has the complex structure. This confirms the
above judgment that the adversarial learning is more suitable
for complex tasks.

In addition, we can see that the F1 values of the “Activate-
affect” role and “Activate-cause” role in the “Activate” event
decrease after adding adversarial learning. As stated above, the
“Activate” event often has the simple and clear language structure
because it is the research conclusion. Table 9 shows that the
F1 values of the element “Brain Area” (BRI) in this event
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TABLE 7 | F1 values in fivefold cross validation.

Event category F1-values

1 2 3 4 5 Average

Acquisition 0.700 0.720 0.768 0.763 0.722 0.734

Perform analysis 0.676 0.674 0.699 0.610 0.696 0.671

Perform experiment 0.889 0.837 0.863 0.871 0.808 0.853

Effect 0.724 0.686 0.696 0.734 0.618 0.692

Activate 0.772 0.756 0.740 0.781 0.728 0.756

Deactivate 0.639 0.613 0.608 0.600 0.583 0.608

TABLE 8 | Running times in fivefold cross validation.

Experiment 1 2 3 4 5 Average

Model training (s) 17194.8 17601.7 17331.0 17425.7 17191.0 17348.8

Model test (s) 7.46 5.95 6.79 6.98 6.18 6.7

TABLE 9 | Event element prediction.

Element CNN-BiLSTM-PCNN NeuroEAE AT- NeuroEAE

P R F1 P R F1 P R F1

Trigger word Acquisition 0.864 0.888 0.876 0.951 0.925 0.938 0.972 0.972 0.972

Perform experiment 0.841 0.803 0.821 0.851 0.802 0.826 0.915 0.915 0.915

Analytical results 0.879 0.79 0.832 0.981 0.879 0.927 0.843 0.931 0.885

Effect 0.958 0.846 0.898 0.956 0.945 0.951 0.951 0.951 0.951

Deactivate 0.821 1 0.902 1 0.958 0.978 1 1 1

Activate 1 0.985 0.993 0.889 1 0.941 0.971 0.985 0.978

Argument BRI 0.863 0.871 0.867 0.929 0.908 0.919 0.921 0.908 0.915

COG 0.744 0.703 0.723 0.769 0.704 0.735 0.861 0.789 0.824

AOB 0.941 0.899 0.92 0.975 0.91 0.941 0.988 0.943 0.965

ACQ 0.962 0.962 0.962 0.897 1 0.897 1 1 1

RLT 0.963 0.897 0.929 1 0.896 0.945 0.964 0.931 0.947

SEN 0.972 0.648 0.778 0.895 0.781 0.834 0.959 0.854 0.903

STP 0.744 0.727 0.736 0.851 0.909 0.879 0.811 0.977 0.886

TOL 0.776 0.844 0.809 0.864 0.711 0.78 0.907 0.867 0.886

TSK 0.982 0.873 0.924 0.936 0.936 0.937 0.953 0.968 0.961

Argument attribute ACQ_A 0.667 0.905 0.776 0.944 0.809 0.871 0.9 0.857 0.878

SEN_A 0.744 0.806 0.773 0.794 0.75 0.771 0.965 0.778 0.862

STP_A 0.962 0.833 0.893 0.964 0.9 0.931 1 0.966 0.983

also decrease after adding adversarial learning. This confirms
the above judgment again that the adversarial learning is not
suitable for simple tasks. The F1 values of another event element
“Cognitive Function” (COG) don’t decrease mainly because
“Cognitive Function” is most complex element category and
has thousands of entity instances (Poldrack et al., 2011) in
different forms. The F1 values of two categories of attribute
relations “ACQ-Attribute” and “SEN-Attribute” also decrease
after adding adversarial learning. This confirms the above
judgment again that adversarial learning is not suitable for
ambiguous tasks.

Comparing Tables 9, 10, we can see that in the first subtask,
the results of CNN-BiLSTM-PCNN pipeline model are similar
to our two joint models, but there is a big gap in the second
subtask. The reason is the existence of cascading errors. As shown

in Table 11, when cascading errors are removed manually, CNN-
BiLSTM-PCNN can also achieve good results. This proves the
validity of joint models.

Result Comparison With Existing Studies
on Neuroimaging Text Mining
As stated in section “Neuroimaging Text Mining,” existing studies
on neuroimaging text mining can be divided into neuroimaging
topic modeling and neuroimaging named entity recognition. This
section will compare the proposed AT-NeuroEAE with these two
kinds of neuroimaging text mining, respectively.

LDA is the most commonly used method for neuroimaging
topic modeling and has been applied to many previous studies
(French et al., 2012; Alhazmi et al., 2018). Different from
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TABLE 10 | Role-attribute recognition.

Event role CNN-BiLSTM-PCNN NeuroEAE AT- NeuroEAE

P R F1 P R F1 P R F1

Acquisition-uses 0.597 0.74 0.661 0.708 0.667 0.687 0.766 0.706 0.735

Acquisition-produces 0.558 0.898 0.688 0.772 0.809 0.791 0.8 0.762 0.781

Perform analysis-on 0.571 0.667 0.615 0.681 0.687 0.684 0.729 0.794 0.761

Perform analysis-produces 0.5 0.692 0.581 0.686 0.528 0.597 0.687 0.632 0.658

Perform analysis-uses 0.7 0.333 0.451 0.667 0.5 0.571 0.642 0.843 0.729

Perform experiment-by 0.471 0.696 0.562 0.56 0.583 0.571 0.619 0.541 0.578

Perform experiment-participates in 0.3 0.462 0.364 0.416 0.357 0.384 0.462 0.428 0.444

Perform experiment-uses 0.511 0.649 0.571 0.56 0.736 0.636 0.591 0.684 0.634

Effect-affect 0.75 0.788 0.768 0.711 0.821 0.762 0.832 0.806 0.818

Effect-cause 0.649 0.649 0.649 0.677 0.677 0.677 0.731 0.686 0.708

Deactivate-affect 0.875 0.966 0.918 1 1 1 1 1 1

Deactivate-cause 0.905 0.95 0.918 0.952 0.952 0.952 1 1 1

Activate-affect 0.862 0.812 0.836 0.833 0.864 0.848 0.861 0.765 0.81

Activate-cause 0.566 0.625 0.594 0.676 0.588 0.625 0.667 0.549 0.602

ACQ-attribute 0.594 0.92 0.867 0.956 0.709 0.814 0.806 0.806 0.806

SEN-attribute 0.385 0.385 0.385 1 0.526 0.689 0.9 0.346 0.5

STP-attribute 1 0.815 0.898 0.692 0.62 0.654 0.772 0.586 0.667

TABLE 11 | Comparison of pipeline models with and without cascading errors.

Event role CNN-BiLSTM-PCNN (no cascading errors) CNN-BiLSTM-PCNN

P R F1 P R F1

Acquisition-uses 0.657 0.98 0.951 0.597 0.74 0.661

Acquisition-produces 0.612 1 0.759 0.558 0.898 0.688

Perform analysis-on 0.695 0.842 0.761 0.571 0.667 0.615

Perform analysis-produces 0.692 0.857 0.765 0.5 0.692 0.581

Perform analysis-uses 1 0.478 0.647 0.7 0.333 0.451

Perform experiment-by 0.469 0.958 0.63 0.471 0.696 0.562

Perform experiment-participates in 0.423 0.785 0.55 0.3 0.462 0.364

Perform experiment-uses 0.692 0.947 0.799 0.511 0.649 0.571

Effect-affect 0.886 0.921 0.903 0.75 0.788 0.768

Effect-cause 0.783 0.775 0.779 0.649 0.649 0.649

Deactivate-affect 0.906 1 0.951 0.875 0.966 0.918

Deactivate-cause 0.869 1 0.93 0.905 0.95 0.918

Activate-affect 0.975 0.962 0.968 0.862 0.812 0.836

Activate-cause 0.833 0.882 0.857 0.566 0.625 0.594

ACQ-attribute 0.878 0.935 0.906 0.594 0.92 0.867

SEN-attribute 0.96 0.923 0.941 0.385 0.385 0.385

STP-attribute 0.96 0.827 0.889 1 0.815 0.898

quantitative analysis based on P, R, and F1, this section compares
extracted contents between the proposed AT-NeuroEAE and
LDA-based neuroimaging topic modeling by using a specific
article. Figure 7 shows the results of AT-NeuroEAE and LDA
for the article titled “Induction of Empathy by the Smell
of Anxiety” (Prehn-Kristensen et al., 2009). Different colors
represent different categories of entities or topics. The random
state was set to 1, the number of topics to 15, and alpha to 0.5.

As shown in Figure 7, LDA can obtain multi-aspect topics,
which are involved with brain mechanism (e.g., anxiety, frontal
gyrus), the experiment (e.g., mind reading task), and analysis
(e.g., voxel). However, these topics are isolated and cannot
effectively characterize the whole of computational neuroscience
research. Some general words, such as “conclusion” and “figure,”
are also included in topics because a large amount of noise in full-
text corpora affects topic recognition based on word distribution.
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FIGURE 7 | Visualization results of event extraction. The top is five events extracted from the article (Prehn-Kristensen et al., 2009). The bottom is LDA topics
extracted from the same article. In order to compare with the results of AT-NeuroEAE, LDA topics are manually divided into three classes, brain mechanism,
experiment, and analysis.

Different from LDA, the proposed AT-NeuroEAE can extract
a group of events with rich semantics for outlining the whole
research process:

• Brain mechanisms: The article reveals that “anxiety”
activates the brain areas “cingulate gyrus” and “fusiform
gyrus.”

• Experiment process: The experiments adopted the “mind
reading task” with “chemosensory stimulus.” Researchers
used “T1 weighted” “fMRI” device to collect data from “the
donors.”

• Analytical process: The study got the “contrast map” by the
“SPM5.” “dmn” was also obtained as the analytical result.

Because the extraction is based on pre-defined event
categories, those general words can be effectively filtered.

Named entity recognition is the current research focus in
neuroimaging text mining. Because related studies (Shardlow
et al., 2018; Riedel et al., 2019; Sheng et al., 2019) have different
entity or label categories, this study only qualitatively compares
their entity/label categories with the proposed AT-NeuroEAE.
The result is shown in Figure 8.

The study on (Shardlow et al., 2018) mainly focused on brain
mechanism, especially multi-level brain structures. The cognitive
function and the research process were neglected. In contrast,
the study on (Riedel et al., 2019) only took account of the
experimental process and neglected brain mechanisms and the
analytical process. The study of Sheng et al. (2019) focused on
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FIGURE 8 | A comparison of neuroimaging entity/label categories/span of interest. The study on Shardlow et al. (2018) mainly focused on brain mechanism,
especially multi-level brain structures. The study on Riedel et al. (2019) only took account of the experimental process. The study on Sheng et al. (2019) focused on
brain mechanism and two experimental factors, including sensory stimuli or response and study participants’ medical problems. The study on Zhu et al. (2020) paid
attention on pathology and mechanism of brain diseases. Our study is involved with the whole research process and extracted information is organized by events
with rich semantics.

brain mechanism, but neglected the analysis process which is
very important to understand and evaluate the conclusion about
brain mechanism. About the experiment, only sensory stimuli
or response and study participants’ medical problems were
extracted. Some key experimental factors, including experimental
tasks, data acquisition equipment, etc., have not been paid
enough attention. The study of Zhu et al. (2020) paid attention
on pathology and mechanism of brain diseases, and its spans of
interests are limited to brain diseases, brain regions, cognitive
functions, and proteins.

In this study, neuroimaging events related to brain mechanism
and the whole research process were extracted. In the aspect of
brain mechanism, three event categories “Activate,” “Deactivate,”
and “Effect” represent not only location information but
also physiological characteristics information such as brain
network. In the aspect of experiment, the event category
“Perform Experiment” represents as much information as the
study on (Riedel et al., 2019) because the representations
about stimuli, response, and tasks in neuroimaging articles are
flexible and it is not necessary to distinguish the form and
type of stimulus, task paradigm, and context in detail. The
event category “Acquisition” represents the imaging devices
and scanning parameters. In the aspect of analysis, the

event category “Perform Analysis” represents three important
factors and their relationships during neuroimaging data
analysis, including methods/tools, results and brain areas.
All extracted information in this study is not an isolated
entity, but organized as a systematic information network
in the form of events, which can better describe the whole
research process.

CONCLUSION

This study proposed an approach based on event extraction to
realize research sharing-oriented neuroimaging provenance
construction. Guided by the provenance model, the
neuroimaging research process and result are modeled as
six categories of neuroimaging event-containing attributes.
A joint extraction model based on deep adversarial learning,
called AT-NeuroEAE, is proposed to extract the defined
neuroimaging events in a few-slot learning scenario. The
experimental results on the PLOS ONE data set show that the
model can realize the large-scale and low-cost neuroimaging
provenance construction for open and FAIR research sharing in
computational neuroscience.
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SOFTWARE DEPENDENCIES

As described above, the analyses presented in this work
rely on the following dependencies: numpy (van der Walt
et al., 2011), pandas (McKinney, 2011), statsmodels (Seabold
and Perktold, 2010), SciPy (Jones et al., 2001), scikit-
learn (Pedregosa et al., 2011), IPython (Pérez and Granger,
2007), nltk (Bird et al., 2009), pdfminer (Shinyama, 2007),
seaborn (Waskom et al., 2017), and many core libraries
provided with Python 2.7.11. Additionally, the ontological
expansion of Cognitive Atlas term weights was influenced by
Poldrack et al. (2011).
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