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Abstract: Zoonotic pathogen transmission is considered a leading threat to the survival of non-
human primates and public health in shared landscapes. Giardia spp., Cryptosporidium spp. and
Microsporidia are unicellular parasites spread by the fecal-oral route by environmentally resis-
tant stages and can infect humans, livestock, and wildlife including non-human primates. Using
immunoassay diagnostic kits and amplification/sequencing of the region of the triosephosphate
isomerase, small ribosomal subunit rRNA and the internal transcribed spacer genes, we investigated
Giardia, Cryptosporidium, and microsporidia infections, respectively, among humans, domesticated
animals (livestock, poultry, and dogs), and wild nonhuman primates (eastern chimpanzees and
black and white colobus monkeys) in Bulindi, Uganda, an area of remarkably high human–animal
contact and spatial overlap. We analyzed 137 fecal samples and revealed the presence of G. intestinalis
assemblage B in two human isolates, G. intestinalis assemblage E in one cow isolate, and Encephalito-
zoon cuniculi genotype II in two humans and one goat isolate. None of the chimpanzee and colobus
monkey samples were positive for any of the screened parasites. Regular distribution of antiparasitic
treatment in both humans and domestic animals in Bulindi could have reduced the occurrence of the
screened parasites and decreased potential circulation of these pathogens among host species.

Keywords: Giardia; Cryptosporidium; microsporidia; non-human primates; humans; domestic animals;
anthropogenic disturbance; coproantigen; PCR; Uganda

1. Introduction

Emerging zoonotic diseases are a serious threat to both public health and animal
conservation. While emerging epidemics such as Ebola and more recently Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), most likely resulting from zoonotic
transmission, can be deadly among humans [1,2], lethal cases of other human respira-
tory outbreaks are also described in wild nonhuman primates (NHP), particularly great
apes [3,4]. Cross-species transmission of pathogens also represents a major threat to
health and survival of wild NHP [5–8], whose populations are declining rapidly in many
regions [9,10].
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Human activities, including logging, forest clearance, and farming, have meant
that NHP increasingly share anthropogenically modified landscapes with humans and
livestock [11–13]. The increased spatial proximity between species enhances the risk of
pathogen transmission [14–16]. Therefore, parasitological surveys of NHP and humans
sharing habitats are of great interest for understanding the consequences of close human–
NHP coexistence by identifying taxa with pathogenic and zoonotic potential [17,18].

Giardia intestinalis, Cryptosporidium spp., and microsporidia of genera Encephalitozoon
and Enterocytozoon are common intestinal protists infecting humans and domesticated
animals, including livestock, dogs, and cats [19–22]. These unicellular organisms also
infect great apes and other NHP [23–27]. In humans, giardiosis and cryptosporidiosis
are characterized by chronic diarrhea, abdominal cramps, and weight loss, and in im-
munodeficient hosts infections can be fatal [28,29]. In free-ranging and captive apes, both
zoonotic assemblages A and B, and ungulate specific assemblages E of G. intestinalis have
been reported, but infections were asymptomatic [23,30–32]. The study of Cryptosporidium
infections in great apes is limited to a few studies. To date, several Cryptosporidium species
have been described in great apes, namely C. parvum in mountain gorillas (Gorilla beringei
beringei) and Bornean orangutans (Pongo pygmaeus), C. muris in western lowland gorillas
(G. gorilla gorilla), Bornean orangutans and Sumatran orangutans (Pongo abelii), C. bovis
and C. meleagridis in western lowland gorillas, and C. hominis, C. suis, and C. ubiquitum
in eastern chimpanzees (Pan troglodytes schweinfurthii) [7,26,27,30,33–36]. Additionally, C.
parvum, C. hominis, C. hominis “monkey”, C. felis, and C. cuniculus have been reported
from other NHPs such as macaques, langurs, colobus, and baboons [37–41]. In agreement
with studies conducted in humans, many infections in apes were subclinical [25–27,30].
The abnormal appearance of the stools of gorillas (i.e., presence of blood and mucus) was
observed in a few cases in animals with the highest values of oocyst concentration [42].
Microsporidial infections caused by Encephalitozoon spp. and E. bieneusi in humans and
NHP are characterized by a variety of pathologies ranging from asymptomatic to lethal
infections, mainly in immunodeficient hosts [43]. In contrast to other NHP [44–46], clinical
disease or pathological findings have not been reported in apes. The clinical impact is
unknown, but it is suggested that the course of infection is similar to that in humans.

As Giardia, Cryptosporidium, and microsporidia infections result from fecal-oral trans-
mission through ingestion of contaminated water and food, transmission might occur be-
tween humans, domestic animals, and wildlife sharing environments [47,48]. Previous stud-
ies that explored genetic diversity of G. intestinalis, Cryptosporidium spp., and microsporidia
in wild great apes revealed potential for transmission of those parasites among humans,
domestic animals, and mountain gorillas in Uganda [34,35,42,49,50] and Rwanda [27,51],
and western gorillas in Central African Republic [26], and within orangutan populations
on Sumatra [30].

The aim of this explorative study was to investigate Giardia, Cryptosporidium, and
microsporidia infections for their potential zoonotic transmission among humans, domes-
ticated animals (livestock, poultry and dogs), and wild NHP (eastern chimpanzees, Pan
troglodytes schweinfurthii; and black and white colobus monkeys, Colobus guereza) in Bulindi,
Uganda [52–54] (Figure 1) using immunochromatographic and molecular analyses.

2. Results

Two immunochromatographic assays were positive for the presence of G. intestinalis
coproantigen of the 86 rapid tests performed, corresponding to a 2-year-old boy and
a cow. Due to a limited number of tests available in the field, 86 fecal samples were
tested for G. intestinalis and 137 for Cryptosporidium, out of the 137 feces collected. All the
137 Cryptosporidium immunochromatographic assays were negative (Table S1).

Out of 137 samples screened, specific DNA of G. intestinalis and E. cuniculi was
detected in three and three samples, respectively (Table 1 and Table S1). Both samples that
were positive for G. intestinalis by immunochromatographic assay were also positive by
PCR. In addition, another sample, corresponding to an 8-year-old girl, was positive by PCR.
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Phylogenetic analysis of the TPI gene revealed the presence of G. intestinalis assemblage B
in both human isolates, which were identical to isolate GenBank acc. no. EF688026, and G.
intestinalis assemblage E in a cow isolate, which was identical to sequence GenBank acc.
no. KJ363355 (Table 1). All three ITS sequences of E. cuniculi obtained from a 40-year-old
man, a 2-year-old boy (from the same household), and a goat, were identical to E. cuniculi
genotype II (e.g., GenBank acc. no. GQ422153), previously detected in a wide spectrum of
hosts (Table 1). A mixed infection of G. intestinalis assemblage B and E. cuniculi genotype II
was observed in a 2-year-old boy (Table 1 and Table S1). None of the screened human and
animal samples were positive for the presence of specific DNA of Cryptosporidium spp. or
E. bieneusi. None of the examined people or animals suffered from diarrhoea.
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Figure 1. Close encounters between NHP, domestic animals, and humans are a daily occurrence in Bulindi. The image
shows an adult male chimpanzee in proximity to a domestic dog in the compound of a village home.

3. Discussion

A very low occurrence of G. intestinalis and E. cuniculi, and no occurrence of Cryp-
tosporidium spp. and E. bieneusi, was detected in the present study and we found no
evidence of potential transmission of the studied protists among closely coexisting people,
domestic animals, and NHP in this farm–forest mosaic landscape in rural Uganda. Out
of the Giardia assemblages identified in this study, only assemblage B, detected in two
humans, has zoonotic potential, while assemblage E, which predominantly infects domestic
ruminants and pigs (mainly cattle and sheep), causes human giardiosis only rarely [55].
The sequence of G. intestinalis assemblage B in this study was identical to isolates that have
been previously reported from water samples and humans in Canada, humans in Australia
(GenBank acc. no. EF688026), and from captive white-faced saki monkeys (Pithecia pithecia)
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in Japan [56,57]. Encephalitozoon cuniculi has a broad host range, mainly among mammals,
but also infects birds, NHP, and humans [58]. Four different genotypes (I–IV) have so
far been differentiated by analysis of the ITS region of ribosomal genes. Although there
seems to be a certain host preference in each genotype, this specificity is not strict [59].
Encephalitozoon cuniculi genotype II, the most common genotype, has been reported in
numerous birds and mammals, including livestock, NHP, and humans [58].

Table 1. Presence of Giardia intestinalis and Encephalitozoon cuniculi based on amplification of the triosephosphate isomerase
gene (TPI) and the internal transcribed spacer (ITS) of the rRNA, respectively, by PCR in fecal samples (n = 137) of humans,
domestic animals and NHP in Bulindi, Uganda. The asterisk (*) indicates samples that were positive for coproantigen by
the immunochromatographic assay.

Host Sex
Positive/No. of Screened Samples

(Occurrence)
[Family Origin]

Parasite Identification
(GenBank Acc. No.)

Humans

M
2/19 (10.5%)

[family 4]

E. cuniculi genotype II
(MZ048410)

G. intestinalis assemblage B *
(MZ055371)

E. cuniculi genotype II
(MZ048411)

F 1/24 (4.2%)
[family 9]

G. intestinalis assemblage B
(MZ055372)

Cows ND 1/11 (9.1%)
[family 3]

G. intestinalis assemblage E *
(MZ055373)

Goats ND 1/11 (9.1%)
[family 9]

E. cuniculi genotype II
(MZ048412)

Pigs ND 0/12 –
Hens ND 0/11 –
Dogs ND 0/2 –

Chimpanzees M 0/14 –
F 0/16 –

Black and white colobus
monkeys ND 0/17 –

M—Male; F—Female; ND—Not determined.

The results of our study contrast with several previous studies that reported a higher
occurrence of the studied parasites in various primates with frequent contact with humans
and livestock (e.g., eastern chimpanzees and baboons P. anubis [7]; long-tailed macaques
Macaca fascicularis [60]; mountain gorillas G. b. beringei [61]). Rather, our findings are
in accordance with studies reporting a low occurrence of E. cuniculi, E. bieneusi, or Cryp-
tosporidium spp. in NHP [33,36] in areas with considerably less contact between NHP,
humans, and livestock.

The infectious stages of the observed parasites, especially G. intestinalis, E. bieneusi,
and E. cuniculi, are often excreted intermittently. Thus, repeated sampling of the same
individuals over several consecutive days is recommended [62]. A low occurrence together
with a limited number of samples can reduce the likelihood of parasite detection [26,63].
Nevertheless, in a previous coproscopic survey made at Bulindi in 2012–2013, McLennan
et al. [53] collected 432 fecal samples from 19 chimpanzees and found a low prevalence of
Giardia cysts (1.6%). These findings agree with the results of the present study and suggest
a very low G. intestinalis burden in this population, even when approximatively 23 samples
from each individual were analyzed. Our findings also reveal a very low occurrence of
the other studied protists in humans and domesticated animals from Bulindi, but do not
necessarily indicate that NHP in the study area are not at risk of G. intestinalis infections or
other zoonotic pathogens (see, e.g., [54]). The low number of positive detections in this and
previous studies could also be due to the very low infection rates of the studied pathogens.
As has been shown, wild animals may harbor parasite infections at intensities under the
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detection limit of diagnostic methods. Generally, samples with an infection intensity of less
than 500 and 10 (oo)cysts of Cryptosporidium spp. mostly failed in immunochromatographic
assays and PCR, respectively [64–66]. Therefore, concentrating (oo)cysts in the sample,
which is not often used in parasitological studies of NHP due to the small amount of
available fecal material, could increase the detection rate of the studied protists.

Our findings suggest that humans and livestock in Bulindi also have low levels
of protist infections compared to results of surveys elsewhere in Africa (e.g., [67–73]),
including the only previous study using amplification by PCR and sequencing conducted
in Uganda (around Kibale National Park, 150 km south of Bulindi). In that study, 40.7%
of 108 human fecal samples were positive for G. intestinalis [31]. This difference may be
linked to deworming treatments delivered to humans and domestic animals in the Bulindi
area, in Hoima District. Adults (except pregnant women and children under 5 years)
generally receive a periodical preventive onchocercosis treatment every six months with
Ivermectin (treatments distributed by the Ugandan government) and, in parallel, children
are dewormed every three months at their schools with albendazole (data collected during
interviews by M. Cibot, unpubl. data). Most farmers also regularly treat their animals,
except poultry, with albendazole (Albafas 25 mg, albendazole) at least once per year. Some
also treat calves every month and adult cows every second month (Cibot, unpubl. data).
We also cannot exclude a potential impact of improved sanitation among participating
households; however, we were unable to compare sanitation practices in Bulindi with
previous studies in other regions in the present study. Last but not least, the different
sensitivity of the PCR methods used to detect G. intestinalis should be taken into account.
While in our study we used genotyping at the locus encoding triosephosphate isomerase
(tpi), Johnston et al. [31] used multilocus sequence typing at ef1-a (elongation factor 1),
gdh (glutamate dehydro-genase), SSU (small subunit 18S rRNA), and tpi loci, which
may increase the number of amplified positive samples for particular assemblages due to
extensive annealing site diversity [74].

Albendazole is a broad spectrum antiparasitic agent that is also effective against giar-
diosis [75,76]. The positive effect of albendazole treatment for G. intestinalis infections in
human and animal populations has been widely proven [77,78]. The limited and temporary
effect of albendazole on E. cuniculi was reported under experimental conditions in both
immunodeficient and immunocompetent murine hosts [79–82]. Moreover, in most im-
munocompetent hosts experimentally infected with Encephalitozoon cuniculi, treatment with
albendazole caused a considerable shift of infection towards organs outside the gastroin-
testinal tract, disappearance of microsporidia from the gastrointestinal tract, and reduced
spore shedding [80–83]. No 100% effective treatment is currently available to clear the
infection caused by Cryptosporidium spp. Currently, nitazoxanide is used against cryp-
tosporidiosis in immunocompetent patients and halofuginone lactate and paromomycin
for livestock [84–86]. Albendazole and ivermectin are not standardly used for treatment of
hosts suffering from cryptosporidiosis, but the effect of ivermectin against C. parvum infec-
tion was observed in a rat model under experimental conditions [87,88]. However, given
the limited number of studies investigating the efficacy of ivermectin on Cryptosporidium
infections, it cannot be stated with certainty that regular use of this drug in the Bulindi
study population contributed to the absence of Cryptosporidium in the present study.

Repeated application of albendazole and ivermectin in Bulindi human residents and
livestock, and potentially improved sanitation, probably guarantees long-term effects
resulting in a minimum of positive samples and a decreasing potential circulation of
these pathogens among host species. Similarly, a decreased prevalence of Giardia spp. in
mountain gorillas in Uganda was related to improved health and sanitation among local
humans [89]. While it is commonly assumed that close spatial overlap between humans and
domestic or wild animals, including wild NHP, creates a high risk of pathogen transmission,
the reality is likely to be more nuanced. As Narat et al. [15,90] point out, identifying how
different kinds and frequencies of contact between species affect cross-transmission of
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pathogens, as well as different practices of health prevention, must be taken into account
in parasitological studies.

To conclude, it is essential that long-term health monitoring of wild NHP, including
the endangered chimpanzees [10], as well as humans and their domestic animals, is
implemented in Bulindi and elsewhere regionally to better understand host and pathogen
dynamics in such a dynamic, human-modified landscape where humans, livestock, and
wildlife coexist closely.

4. Materials and Methods

Bulindi (1◦29′ N, 31◦28′ E) is located in western Uganda’s Hoima District. The land-
scape is a mosaic of farmland, villages, and fragments of riverine forest along watercourses.
A resident ‘community’ of chimpanzees, first studied in 2006–2007 [91], has been studied
continuously since 2014 [92]. Besides the chimpanzees, black and white colobus monkeys
are also permanent NHP residents, whereas baboons (Papio anubis) and tantalus monkeys
(Chlorocebus tantalus) are transient visitors. NHP in Bulindi have experienced major habitat
disturbance: between 2006 and 2014 forest fragments were reduced in size by ca. 80% and
converted to farmland [92]. Rapid habitat change has led to increased foraging in agricul-
tural fields by NHP [91,92] and close encounters occur daily among the chimpanzees, black
and white colobus monkeys, people, and domestic animals (Figure 1). Wild NHP defecate
in croplands and near homes and dwellings when travelling or foraging outside forest
fragments. Conversely, villagers use forest fragments for timber and fuelwood, and they
also sometimes defecate outdoors at the edges of crop fields and in the forest [52]. Pigs,
goats and cows are ordinarily kept near homes. However, cattle (sometimes with goats) are
taken daily to graze along forest edges and to drink at forest streams. Dogs are usually free
to roam. Finally, people, cattle, and NHP use shared water sources within forest fragments.
Thus, risk of pathogen transmission in this landscape is extremely high [53,54].

During October–November 2016 (in the wet season [53]) we non-invasively collected
fresh feces of chimpanzees (n = 30) and colobus monkeys (n = 17) inhabiting forest frag-
ments in Bulindi. Chimpanzees (community size at the time of the study = 22 individuals)
were followed daily by the field team and fresh fecal samples were picked immediately
after defecation from identified individuals. Fresh fecal samples (estimated≤12 h old) were
collected from unhabituated black and white colobus monkeys from beneath trees where
the monkeys had been located. In parallel, local human participants (n = 43), livestock
(n = 11 cows, n = 11 goats, n = 12 pigs), poultry (n = 11), and dogs (n = 2) were sampled
from 10 households in two villages located centrally within the 20 km2 home range of the
chimpanzees (Table S1). We gave participants tongue placers, stool containers and plastic
bags to enable them to collect samples by themselves, and returned a maximum of six hours
later to collect them. For humans and domesticated animals, each fecal sample represented
a unique individual sampled once only, but some individual chimpanzees were sampled
more than once; colobus monkey individuals also could have been sampled more than
once. The fecal consistency was noted at the time of sampling. The fecal specimens were
preserved in 95% ethanol and shipped to the Institute of Parasitology, Czech Academy
of Sciences. All samples were laboratory processed within 1–2 months after collection.
Each human participant was also asked to participate in a short interview about their (and
their children’s) (1) previous anthelmintic treatments and health status, and about their
(2) animal husbandry practices (e.g., number of animals kept, housing for animals, medical
treatments). As not all individuals in the study villages were literate and/or spoke English,
a local translator helped with interviews.

Giardia Rapid Assay (IDEXX, Westbrook, ME, USA) and RIDA QUICK Cryptosporid-
ium (R-Biopharm AG, Daemstadt, Germany) immunochromatographic diagnostic kits
were used according to the directions of the manufacturer for detection of Giardia and
Cryptosporidium coproantigen in fresh and ethanol fixed feces, respectively. RIDA QUICK
Cryptosporidium is primarily developed for detection of C. parvum, and therefore other
Cryptosporidium spp. might not be detected. The suspension of each fecal sample in ethanol
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was evaporated overnight at 60 ◦C, before isolation of genomic DNA (gDNA). A total
of 200 mg of fecal material was homogenized by bead disruption using 0.5 mm glass
beads (Biospec Products, Inc., Bartlesville, OK, USA) in a FastPrep®-24 Instrument (MP
Biomedicals, CA, USA) at a speed of 5 m/s for 1 min followed by isolation/purification
using the QIAamp® DNA Stool Mini Kit in accordance with the manufacturer’s instruc-
tions (QIAgen, Hilden, Germany). Purified gDNA was stored at −20 ◦C prior to use in
PCR. All gDNA samples obtained were analyzed by polymerase chain reaction (PCR)
using sets of specific primers. A nested PCR approach was used to amplify a region of
the triosephosphate isomerase gene (TPI) of G. intestinalis [93], small ribosomal subunit
rRNA gene (SSU) of Cryptosporidium spp. [94], the internal transcribed spacer (ITS) of
Enterocytozoon bieneusi [95] and Encephalitozoon spp. [26]. Molecular grade water and DNA
of Giardia microti, C. proliferans, E. hellem genotype 1A, or E. bieneusi genotype PtEbIX were
used as negative and positive controls, respectively. Secondary PCR products were run on
a 2% agarose gel containing 0.2 µg/mL ethidium bromide in 1 × TAE buffer at 75 volts
for approximately 1 h. Bands of the predicted size were visualised using an UV light
source, and then extracted using QIAquick Gel Extraction Kit (QIAgen). Gel-purified
secondary products were sequenced in both directions with an ABI 3130 genetic analyzer
(Applied Biosystems, Foster City, CA, USA) using the secondary PCR primers and the
BigDye Terminator V3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA).
All samples were analyzed in duplicates. In the case of positive detection, the sample was
newly re-isolated and the previous finding was independently verified. Sequences have
been deposited in GenBank under the accession numbers MZ048410–MZ048412 (ITS of
Encephalitozoon cuniculi) and MZ055371–MZ055373 (TPI of Giardia intestinalis).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10080933/s1, Table S1: List of screened fecal samples (n = 137) from humans,
domestic animals and NHP (chimpanzees and black and white colobus monkeys) in Bulindi, western
Uganda; samples are listed by species and household membership for human participants and
domestic animals (n = 10 households). Results of (1) immunochromatographic assays targeting
coproantigen of Giardia intestinalis and Cryptosporidium spp.; and (2) presence/genotyping of specific
DNA of Cryptosporidium spp., Giardia intestinalis, Encephalitozoon spp. and Enterocytozoon bieneusi
based on amplification of the small ribosomal subunit rRNA gene (SSU), triosephosphate isomerase
gene (TPI), and the internal transcribed spacer (ITS) of the rRNA, respectively, by PCR are shown.
Positive samples are indicated by red.
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K.J., Hasegawa, H., Eds.; Andreas A Brahm: Frankfurt am Main, Germany, 2018; pp. 116–117.

75. Reynoldson, J.A.; Behnke, J.M.; Gracey, M.; Horton, R.J.; Spargo, R.; Hopkins, R.M.; Constantine, C.C.; Gilbert, F.; Stead, C.;
Hobbs, R.P.; et al. Efficacy of Albendazole against Giardia and hookworm in a remote Aboriginal community in the north of
Western Australia. Acta Trop. 1998, 71, 27–44. [CrossRef]

76. Solaymani-Mohammadi, S.; Genkinger, J.M.; Loffredo, C.A.; Singer, S.M. A meta-analysis of the effectiveness of Albendazole
compared with Metronidazole as treatments for infections with Giardia duodenalis. PLoS Negl. Trop. Dis. 2010, 4, e682. [CrossRef]

77. Pengsaa, K.; Sirivichayakul, C.; Pojjaroen-Anant, C.; Nimnual, S.; Wisetsing, P. Albendazole treatment for Giardia intestinalis
infections in school children. SE Asian J. Trop. Med. Public Health 1999, 30, 78–83.

78. Xiao, L.; Saeed, K.; Herd, R.P. Efficacy of Albendazole and fenbendazole against Giardia infection in cattle. Vet. Parasitol. 1996, 61,
165–170. [CrossRef]
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