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Abstract: Iron oxide nanoparticles (IONPs) have been extensively used in different biomedical appli-
cations due to their biocompatibility and magnetic properties. However, different functionalization
approaches have been developed to improve their time-life in the systemic circulation. Here, we
have synthesized IONPs using a modified Massart method and functionalized them in situ with
polyethylene glycol with different molecular weights (20 K and 35 K). The resulting nanoparticles
were characterized in terms of morphology, structure, and composition using transmission electron
microscopy (TEM) and selected area electron diffraction (SAED). In vivo biodistribution was evalu-
ated in Balb/c mice, the presence of IONP being evidenced through histopathological investigations.
IONP morphological characterization showed a change in shape (from spherical to rhombic) and size
with molecular weight, while structural characterization proved the obtaining of highly crystalline
samples of spinel structured cubic face-centered magnetite. In vivo biodistribution in a mice model
proved the biocompatibility of all of the IONP samples. All NPs were cleared through the liver,
spleen, and lungs, while bare IONPs were also evidenced in kidneys.

Keywords: magnetite nanoparticles; polyethylene glycol; morphology; in vivo; biodistribution

1. Introduction

Iron oxide nanoparticles (IONPs), namely magnetite, have attracted much interest dur-
ing the last 20 years, especially in the area of medical applications such as diagnosis [1–4],
cancer treatment [5–9], iron deficiency supplements [10–13], and antimicrobial [14,15] or
tissue engineering [16–18] where clinically available options have been developed. For
these purposes, different functionalization has been applied to IONPs to improve their
biocompatibility and reduce their aggregation [19,20]. First, due to their hydrophobic
surface and high surface reactivity, bare magnetite NPs are prone to interaction with serum
proteins and cells of the reticuloendothelial system, leading to the formation of blood clogs
or rapid elimination from the blood system [21]. In the second place, the high surface area
and magnetic properties can lead to rapid agglomeration of the bare magnetite NPs in the
absence of a protecting coating.
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In this study, we have prepared IONPs and functionalized them with polyethylene
glycol (PEG) with two different molecular weights (20 K and 35 K, respectively). This was
carried out using a simple modified Massart method which was previously proposed by
our group [22]. The method allows for obtaining a high yield of in situ conjugated Fe3O4
nanosystems directly with active substances. These nanoparticles have shown good results
in applications such as anticancer drug delivery [22–24], radiosensitization [23,24], and
in microbial combating [25,26] in vitro. The novelty of this study comes from using the
synthesis method to add a polymer layer for the purpose of biocompatibility improve-
ment. The research aims to evaluate the influence of the polymer molecular weight on
the morphology, structure, in vivo biocompatibility and biodistibution of the resulting
nanoparticles. For morphological investigations, both transmission electron microscopy
(TEM) and high-resolution TEM (HR-TEM) were employed, while the structural investiga-
tions were carried out using selected area electron diffraction (SAED) and HR-TEM. The
biocompatibility of the IONPs was evaluated in vivo using a biodistribution study carried
out for a mice model.

Iron oxide nanoparticles have been extensively investigated over the past few years in
terms of in vivo behavior [27–30] However, the mechanisms of interaction between the NPs
and the biological systems has still not been made clear [27]. Here, the originality of this
study is mainly given by the time frame that is covered by the biodistribution investigation,
which exceeds the time point of clinical application (less than 24 h).

2. Materials and Methods

For the synthesis of the bare iron oxide (Fe3O4) NPs, a room temperature modified Mas-
sart method was applied, which was derived from the work carried out by Popescu et al. [22]:
an aqueous solution of ferrous sulfate and ferric chloride, [FeSO4•7H2O]:[FeCl3] = 1:1.6
(Sigma Aldrich Chemie GmbH, Darmstadt, Germany) was added drop wise into a basic
medium. The resulted NPs were washed several times and suspended in ultrapure water
at a final concentration of 4 mg/mL. In order to obtain the functionalized NPs (Fe3O4@PEG
20 K and Fe3O4@PEG 35 K, respectively), an in situ method was applied by introducing
polyethylene glycol with molecular weight of 20,000 Da and, respectively, 35,000 Da (Sigma
Aldrich Chemie GmbH, Darmstadt, Germany) into the precipitation medium (mixing into
the basic solution) at a concentration of 0.5% w/vol.

TEM, HR-TEM, and SAED analyses were performed using a Tecnai G2 F30 S-TWIN
HR-TEM (FEI Company, Hillsboro, OR, USA) equipped with SAED. The samples were
prepared for analysis by successive dilutions in ultrapure water followed by sonication, to
obtain suitable concentrations for visualization. The final suspension was placed onto a
holey carbon–copper grid and dried. The investigations were carried out in transmission
mode, at 300 kV, with a point resolution of 2 Å and line resolution of 1 Å.

The size, circularity, and roundness of the nanoparticles were determined using the
ImageJ (National Institute of Health, Bethesda, MD, USA) software. For this, several images
containing transmission electron microscopy micrographs were loaded in the program.
Based on the scale of the images, a measuring scale was selected. Using the drawing tools
(manual line or freehand selections), the diameter of each nanoparticle was measured
(in two to three points for each nanoparticle) and, respectively, the perimeter of each
nanoparticle was surrounded. A total of about 500 nanoparticles were measured for each
type of sample. The circularity and roundness of the nanoparticles were automatically
determined by the software, the value 1.0 indicating a perfect circle.

The Zeta Potential of the NPs was measured using the Delsa Nano C (Beckman Coulter,
Brea, CA, USA) and the recording was carried out with DelsaNano 3.73 software (Beckman
Coulter, Brea, CA, USA) for stock solutions.

The in vivo biocompatibility and biodistribution of the Fe3O4, Fe3O4@PEG 20 K, and
Fe3O4@PEG 35 K, respectively, were performed on three-month-old BALB/c male mice.
The experimental protocol was carried out in concordance with the European Council
Directive No. 86/609, the European Convention on Protection of Vertebrate Animals (2005)
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and National Law No. 43/2014 regarding the protection of animals used for scientific
purposes. The study was approved by the Ethics Committee of the University of Medicine
and Pharmacy of Craiova, Romania (Approval No. 118/27.05.2015). The mice were aseptic
and intravenously injected in the left jugular vein using 100 µL of 1 mg/mL NPs sterile
suspension in saline. Control mice were injected with 100 µL of saline solution. The
administration was carried out under general anesthesia. Control mice were administered
100 µL saline under the same conditions. During the examination period, the mice were
housed in the Animal Care Unit of the University of Medicine and Pharmacy of Craiova,
maintained in standard conditions (22 ± 2 ◦C, 55 ± 10% humidity and a 12 h light–dark
cycle, water and food ad libitum). At 2 and 10 days after the administration of nanoparticle
treatment, the animals were euthanized, and the main organs were harvested and prepared
for histopathological examination (brain, liver, heart, pancreas, lungs, kidney, and spleen).
Microscopy samples were prepared from 4 µm thick slices stained using Hematoxylin–
Eosin and analyzed with a Nikon Eclipse 55i microscope equipped with a DS-Fil CCD
camera (Nikon Instruments, Apidrag, Romania).

3. Results and Discussion

This study presents the synthesis, characterization, and in vivo biodistribution of
bare IONPs and PEG-conjugated, respectively, obtained using a novel modified Massart
chemical coprecipitation method [22]. The addition of the polymer in the system was
carried out through a “one pot” high yield synthesis approach. The influence of the
polymer molecular weights on the morphology, structure, and in vivo biocompatibility
was evaluated.

The TEM technique was used to evaluate the morphology of the functionalized and non-
functionalized IONPs (Figure 1a,d,g). Thus, bare IONPs highlighted a round shape, having
physical dimensions between 11.6 ± 3.6 nm (circularity = 0.869, roundness = 0.844). Simi-
larly, round-shaped PEG 20 K functionalized nanoparticles have diameters of 12.9 ± 4.02 nm
(circularity = 0.893, roundness = 0.837). The morphology of the NPs was severely affected
upon conjugation with PEG 35 K, resulting in NPs with larger diameters (17.5 ± 10.5 nm)
and rhombic shape (circularity = 0.789, roundness = 0.747). However, some very small, round-
shaped NPs could be observed, probably due to an incomplete or absent functionalization.

Moreover, HR-TEM gave information on the level of crystallinity and structural
characteristics of the samples (Figure 1b,e,h). The (220) crystalline plane of 0.29 nm,
characteristic of the mineralogical phase magnetite was evidenced for all samples, Fe3O4,
Fe3O4@PEG 20 K and Fe3O4@PEG 35 K, respectively (Figure 1b,e,h—red arrows) [22,23].
SAED analysis confirmed the high crystallinity of the samples and emphasized diffraction
rings characteristic for spinel structured face-centered magnetite phase: (220), (222), (400),
(440), (333), (422) (Figure 1c,f,i) [22,23].

Conjugation of Fe3O4 and PEG polymers was evidenced through Zeta Potential mea-
surements of the stock solutions by an increase in stability. In the case of bare nanoparticles,
a value of −0.01 mV showed instability in water-based mediums. However, the value
decreased with the introduction of the polymer in the system (−17.74 mV in the case of
Fe3O4@PEG 35 K and, respectively, −19.38 mV for Fe3O4@PEG 20 K) and thus the PEG-
conjugated NPs stability increased [31]. The binding mechanism, in this case, is mainly
carried out through non-covalent binding, based on hydrogen bonds between the –OH
functional groups of the iron oxide and polymer and favored by the basic pH reaction
conditions [32].
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Figure 1. Transmission electron microscopy (TEM) images (a,d,g), high resolution TEM (HR-TEM) (b,e,h),
respectively, selected area electron diffraction (SAED) spectrums (c,f,i) for Fe3O4 (a–c), Fe3O4@PEG
20 K (d–f) and Fe3O4@PEG 35 K (g–i). Red arrows in (b,e,h) indicate (220) crystalline plane.

Fe3O4, Fe3O4@PEG 20 K, and Fe3O4@PEG 35 K NPs were intravenously injected
into mice model to evaluate their distribution at 2 and 10 days after administration by
comparison. The biodistribution study in healthy subjects is a measure of the toxicity of
NPs and can provide information on their biocompatibility and clearance mechanisms.
The time points selected for this investigation are longer than the half-life of PEG and/or
iron oxide nanoparticles [33–36] but shorter than long term investigations on this topic,
covering a timeframe that is not particularly reviewed by the scientific literature. Moreover,
the administered dose (4 mg NPs/kg) is the equivalent used in clinical investigations of
diagnosis for PEG- iron oxide systems [36,37].

Control mice were administered saline solution and subjected to the same proto-
col. No alterations in the histological appearance of the main organs were observed
(Figures 2 and 3).
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Neither at 2 nor at 10 days after treatment could the presence of any of the NPs
involved in the study be detected in the brain (Figures 4a–c and 5a–c), and no histopatho-
logical alterations of the nervous tissue could be observed. This suggested the fact that
none of the Fe3O4-based IONPs can cross the blood-brain barrier. Moreover, Fe3O4,
Fe3O4@PEG 20 K, and Fe3O4@PEG 35 K NPs were not evidenced in the myocardium
(Figures 4d–f and 5d–f) or pancreas (Figures 4g–i and 5g–i) at 2 and 10 days after intra-
venous injection. Although the absence of the nanoparticle aggregates is emphasized at
the micrometric and submicrometric levels, this does not exclude the fact that nanosized
aggregates or single nanoparticles can still be present at the subcellular level. The purpose
of this study was to give information on the biodistribution of IONPs at tissue level.
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Figure 4. Cross-section through (a–c) brain, (d–f) myocardium, (g–i) pancreas from mice injected with
Fe3O4 (a,d,g), Fe3O4@PEG 20 K (b,e,h) and Fe3O4@PEG 35 K NPs (c,f,i), respectively, and harvested
at two days after intravenous administration; normal morphology; Hematoxylin–Eosin staining;
400× magnification, scale bar 50 µm.

At two days after treatment, for all three IONP groups, the presence of NPs was
evidenced as dark brown aggregates in low concentration in both blood vessels as well as
in the Kupffer cells situated at the periphery of the hepatic sinusoidal capillaries in liver
(Figure 6a–c). The density of NPs in the Kupffer cells was variable from one cell to another
and directly proportional to the dimension of the hepatic sinusoidal capillary in the hepatic
parenchyma. At 10 days from intravenous administration (Figure 7a–c), the NPs could still
be observed in the hepatic histological structures. No obvious additional changes in the
density of NPs or histopathological alterations could be noticed.
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harvested at 2 days after intravenous administration; normal morphology; Hematoxylin–Eosin
staining; 1000× magnification, scale bar 25 µm.
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with Fe3O4 (a,d,g), Fe3O4@PEG 20 K (b,e,h) and Fe3O4@PEG 35 K NPs (c,f,i), respectively, and
harvested at 10 days after intravenous administration; normal morphology; Hematoxylin–Eosin
staining; 1000× magnification, scale bar 25 µm.

At the lungs level, for all three samples at two days from administration (Figure 6d–f),
NPs were mainly evidenced in perivascular macrophages and the macrophages at the level
of the interalveolar septum. The IONPs density was different depending on the type of
cells: the highest IONPs density was observed for perivascular macrophages, while the
lowest density was found for the macrophages in the intra-alveolar septum. The NPs were
also evidenced in the intravascular cells of the monocyte-macrophage system. This fact
and the presence of the NPs in the vascular lumen could be explained by the fact that the
monocytes’ precursor cells of the macrophages in the red bone marrow, have internalized
IONP structures. Moreover, in the vascular lumen, isolated extracellular NP aggregates
were evidenced, possibly in blood platelets (Figure 6e). Similar observations were made for
the samples harvested 10 days after treatment (Figure 7d–f).

In the spleen, all three types of NPs could be observed at two days as dark brown
spherical aggregates located in the red pulp (Figure 6g–i). The IONPs were absent from
the white pulp. However, white pulp hypertrophy was evidenced at two days, since the
NPs have stimulated the formation of macrophages in the multilobular nuclei. In the red
pulp, the IONPs were evidenced at the level of the macrophage system cells, but also in the
Billroth cords and the sinusoidal capillaries. The NPs were present as granular structures
with variable dimensions up to 3 µm. The density was variable from one cell to another,
with some of them displaying a higher quantity of internalized NPs.

At 10 days after the treatment, Fe3O4, Fe3O4@PEG 20 K, and Fe3O4@PEG 35 K NPs
were as well evidenced in the red pulp, in the macrophage system cells, Billroth cords and
sinusoid capillaries, but not the white pulp (Figure 7g–i). A higher density of variable-
sized black aggregates was noticed in the samples harvested at this time, compared to the
ones analyzed at 2 days after administration.

The presence of none of Fe3O4, Fe3O4@PEG 20 K and Fe3O4@PEG 35 K NPs, respec-
tively, was evidenced after 2 days from administration in renal parenchyma: neither in
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glomeruli, renal tubes, or renal stroma (Figure 8a–c). However, at 10 days from treatment,
a low concentration of NP aggregates was observed in the kidney blood vessels, only for
Fe3O4 NP samples, showing that renal clearance is a possible way to eliminate this type
of NPs (Figure 8d,g–i). The in situ PEG conjugation of the NPs delays or prevents their
elimination through the renal system.
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The main clearance pathway in the case of IONPs is the mononuclear phagocyte
system (reticuloendothelial system), with cells located predominantly in the liver, spleen
and fewer in the lungs [38]. All IONPs involved in this study, namely Fe3O4, Fe3O4@PEG
20 K, and Fe3O4@PEG 35 K NPs, respectively, have been detected in these organs since
the second day after intravenous injection. The NPs were identified inside cells such as
circulating monocytes (which usually extravagate from the blood stream inside different
areas) and macrophages (which are naturally stored in these organs). Moreover, monocytes,
which are precursors of macrophages, can be produced in the bone marrow and extravagate
into the tissues when needed.

As evidenced by our investigations, IONPs were located in the liver inside the Kupffer
cells and in alveolar macrophages in the lungs, which was in concordance with observa-
tions made by other research groups [39–41]. The presence of IONPs in the lungs was
explained by the excess of NPs in the bloodstream. The presence of IONPs in Kupffer cells
and reticular macrophages in the liver is a sign of elimination through the opsonization
phenomenon [42,43].

The elimination of IONPs through the macrophages in the spleen is a secondary
filtering barrier for this type of NPs [44,45]. Our results emphasized the localization of
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IONPs in the red pulp, due to the extraversion of macrophages carrying NPs in the porous
capillaries at the extremity of these regions.

The macrophages in the pulmonary, hepatic, splenic level specialize in capturing
of specific antigens in the local environment. Thus, a difference in the NP capturing by
macrophages at this level is given by a difference in the reaction intensity.

The PEGylation of IONPs has not only been proved to increase the half-time of NPs
in the body [46] but also to determine their elimination through a different pathway.
Cole et al. [47] have shown that PEG cross-linked IONPs have been predominantly cleared
through the macrophages in the spleen than through specialized cells in the liver and were
correlated with longer blood life and higher hydrodynamic dimension. Renal clearance in
case of PEGylated NPs is less possible since the higher dimension prevented the passage
through the kidney fenestrations [21].

However, depending on the application, the macrophage uptake can be either benefi-
cial or not. For example, it can be good in certain cases of diagnosis and visualization, such
as disorders associated with inflammation, but in applications of cancer visualization or
vascular angiography it is not desired [48].

4. Conclusions

In this study, we have successfully prepared iron oxide (Fe3O4) NPs using a modified
chemical co-precipitation method and have functionalized them in situ using PEG with
different molecular weights (20 K and 35 K, respectively).

Morphological investigations using TEM revealed that the dimension of the NPs
increases with the polymer shell’s molecular weight and also their diameter distribution is
larger. Functionalization of Fe3O4 with PEG 35 K induces a rhombic morphology to the
resulting NPs. However, very small round IONPs are also present.

Structural investigations were carried out using HR-TEM and SAED, revealing the high
level of crystallinity of the resulting spinel structured cubic face-centered magnetite NPs.

The in vivo biological assessment proved the biocompatibility of these NPs, as no ma-
jor histopathological alterations were observed in the examined tissues. The investigations
showed that the IONPs are cleared through the immune cells in the liver, spleen, and lungs.
The presence of bare IONPs was evidenced in the blood vessels in the kidneys.
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