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Dosimetric evaluation of synthetic CT image generated using
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Abstract

Purpose and background: The magnetic resonance (MR)-only radiotherapy work-

flow is urged by the increasing use of MR image for the identification and delin-

eation of tumors, while a fast generation of synthetic computer tomography (sCT)

image from MR image for dose calculation remains one of the key challenges to the

workflow. This study aimed to develop a neural network to generate the sCT in

brain site and evaluate the dosimetry accuracy.

Materials and methods: A generative adversarial network (GAN) was developed to

translate T1-weighted MRI to sCT. First, the "U-net" shaped encoder-decoder net-

work with some image translation-specific modifications was trained to generate

sCT, then the discriminator network was adversarially trained to distinguish between

synthetic and real CT images. We enrolled 37 brain cancer patients acquiring both

CT and MRI for treatment position simulation. Twenty-seven pairs of 2D T1-

weighted MR images and rigidly registered CT image were used to train the GAN

model, and the remaining 10 pairs were used to evaluate the model performance

through the metric of mean absolute error. Furthermore, the clinical Volume Modu-

lated Arc Therapy plan was calculated on both sCT and real CT, followed by gamma

analysis and comparison of dose-volume histogram.

Results: On average, only 15 s were needed to generate one sCT from one T1-

weighted MRI. The mean absolute error between synthetic and real CT was

60.52 � 13.32 Housefield Unit over 5-fold cross validation. For dose distribution on

sCT and CT, the average pass rates of gamma analysis using the 3%/3 mm and 2%/

2 mm criteria were 99.76% and 97.25% over testing patients, respectively. For

parameters of dose-volume histogram for both target and organs at risk, no signifi-

cant differences were found between both plans.

Conclusion: The GAN model can generate synthetic CT from one single MRI

sequence within seconds, and a state-of-art accuracy of CT number and dosimetry

was achieved.
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1 | INTRODUCTION

Traditional radiotherapy workflow relies on computer tomography

(CT) image for anatomy acquisition, tumors/organs delineation,

patient positioning, and dose calculation. In the past two decades,

magnetic resonance image (MRI) as the complementary modality to

CT has been increasingly used in clinical routine as it can provide

superior soft-tissue contrast, especially for brain and pelvis site.

Besides, the workflow in which CT images were replaced with MRI

in each step of the entire radiotherapy chain, so-called MR-only

workflow, is of growing interest. MR-only workflow is reported to

be advantageous, as it can avoid the registration error between CT

and MRI, reduce inter- and intra-observer contouring variation, lower

the cost of radiotherapy, improve radiotherapy accuracy, reduce the

patient exposure to ionization radiation,1–10 etc.

The key challenge to MR-only workflow is to extract the infor-

mation of electron density from MRI for radiation dose calculation.

Unlike CT number which can be directly converted to electron den-

sity, the pixel value in MRI only represents the magnetic relaxation

time of tissue which has no direct correlation with electron density.

However, the tissue relaxation time can be converted firstly into CT

number and further into electron density, and the conversions can

be categorized as three approaches.11 The first approach, in general,

is to assign bulk densities for different tissues in MRI, which can be

inaccurate and labor-intensive because of manually contouring of tis-

sue. The second approach is to establish CT number for the corre-

sponding MRI voxel by aligning its voxel to an atlas with a pre-

known correlation between the MRI voxel location and the corre-

sponding CT number. The third approach is the pixel-wise conver-

sion, which establishes a correlation between pixel values of MRI

and CT by training through machine learning. Among those

approaches, neural networks as a specific method of machine learn-

ing stands out for its advantage of high accuracy and automation,

and it is considered as the potential priority method for clinical MRI-

only radiotherapy workflow.

Deep convolutional neural network (DCNN) has been reported

successful in a wide range of medical applications. Several studies

utilized the convolutional neural network to perform the synthesis

of CT from a variety of MRI sequences. Han12 and Liu13 applied

the u-net14 based network to convert MRI to sCT pixel by pixel.

The encoder-decoder architecture in their networks enable the

learning of a hierarchy of features from MRI through a downsam-

pling process, then those features in various resolution were com-

bined to generate high-resolution CT image through an upsampling

process. Besides, the generative adversarial network (GAN) tailored

for image-to-image translation has been applied in the translation

of MRI to CT.15–19 Those U-net based networks contain only the

generator of CT image, while the GAN contain an additional adver-

sarial network as the discriminator which would compete with the

generator to distinguish generated CT images from real CT.

Although those deep learning-based methods mentioned above

have achieved state-of-the-art performance, there still a lot of fac-

tors, that is, MRI sequence, registration method, loss function,

worthy spending efforts on since many of them can be influential

to the results. In this study, we aimed to develop a GAN model to

translate clinical standard MRI to synthetic CT, and evaluate its

accuracy in terms of image pixel value and clinical radiotherapy

dosimetry.

2 | MATERIALS AND METHODS

2.A | Patient data collection

Thirty-seven brain cancer patients who had undergone external

radiotherapy from July 2019 to April 2020 in our department were

enrolled. Their median age is 50.4 (range: 15 ~ 83). For each patient,

the MR image was acquired on a 3T scanner (Siemens, Erlangen,

Germany) with the following parameters: T1 TIRM Dark Fluid spin

echo sequence, 18 ms echo time, 2000 ms repetition time,

0.718 × 0.718 mm transversal voxel dimensions, 6.5 mm slice thick-

ness, 896.4 ms inversion time, 150°flip angle. On the same day, the

CT image was acquired on a CT scanner (Philips Healthcare, Eind-

hoven, The Netherlands) with 120 kV and 300 mA tube current,

0.625 × 0.625 mm transversal voxel dimensions, 3 mm slice thick-

ness. All MRIs were rigidly registered to the corresponding CT based

on mutual information (MI) and resampled to the same voxel size as

CT images.

2.B | Generative adversarial network

A conditional generative adversarial network similar to “pix2pix” was

adopted here. Two networks namely generator and discriminator

comprised of the network. The paired MRI and CT images of each

patient were feed into the generator for learning the mapping from

CT from MRI, so that the generator can generate sCT from an input

MRI. Then the discriminator was trained to compete with the gener-

ator and distinguish sCT from the corresponding real CT as well as

possible. Through the training of generator and adversarially training

of discriminator, the network would converge to its best perfor-

mance. The detailed architectures of generator and discriminator

were illustrated in Figs. 1(a) and 1(b), respectively.

We adopted a “U-net” shaped encoder-decoder network as the

generator. For the encoder, we have five convolutional layers with a

filter size 4 × 4 and a stride of 2 to downsample the input 2D MRI

slices from size 512 × 512 to 16 × 16. Each convolutional layer was

followed by batch normalization and a Leaky rectified linear unit

(Leaky ReLU). For the decoder, a mirrored upsampling process with

skip connection to corresponding encoder layers decodes the low-

resolution feature maps into 2D synthetic CT. The features from

each encoder layer were copied and concatenated with the corre-

sponding feature before each deconvolution layer except the first

and last one. The dropout layers were applied after the first three

batch normalizations in the decoder network to improve network

generalization.20 Compared to the original U-Net, the total number

of convolutional layers was reduced from 19 to 11. Another modifi-

cation to U-Net is that all pooling layers and unpooling layers were
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replaced by convolutional and deconvolutional layers, because frac-

tionally strided convolutional layers can be trained to produce dense

high-resolution feature maps, while unpooling layers use memorized

pooling indices from maxpooling layers to produce sparse high-reso-

lution feature maps.21

The discriminator network consisted of five convolutional layers

with a filter size 4x4 and a stride of 2. The concatenation of input

MRI and synthetic or real CT was feed to the first convolutional

layer. The leaky ReLU followed each convolutional layer except the

last one, which was followed by a sigmoid function then output a

score map of shape 1 × 32 × 512 to distinguish between synthetic

CT and real CT.

The loss function used in the generator network was mean abso-

lute error (MAE) as defined in Section 2.D, to represent the pixel-wise

difference between synthetic CT and real CT. For discriminator, we

adopt the least square loss function since it strongly penalized the

fake samples away from decision boundary and improve the stability

of learning process.22 The Loss term can be expressed as follows:

log D xð Þ2
� �

þ log 1�D G yð Þð Þð Þ2
� �

where the D and G represented the discriminator and generator,

respectively, and x,y represented the pair of real CT and MRI, G(y) is

output of generator, namely the synthetic CT.

(a)

(b)

F I G . 1 . Architecture of generator (a) and discriminator (b) of the generative adversarial network. The blue cubes represent the feature maps
extracted by the convolutional and deconvolutional layers; the arrows of different colors denote different operations; the x-y-z size is noted
for each row (a) and block (b) of feature maps; white cubes represent copied feature maps.
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2.C | Training and cross validation

All 48 patients were randomly divided into training group (27

patients) and testing group (10 patients), and the training group were

further split into five folds for cross validation. In each run, four folds

were used to train the model and the remaining one fold was used

to validate the model performance, till all folds were used for valida-

tion. Each trained model was used to generate synthetic CT for all

patients in testing group.

The network weights were initialized using Xavier23 and updated

using the ADAM algorithm24 with a fixed learning rate of 0.0002.

The batch size was set to 20 to make best use of video memory,

and around 32000 steps (720 epochs) were taken to converge each

training. The training was performed on a 64-bit Windows worksta-

tion, with an Intel Core i7 CPU and an NVIDIA GeForce GTX Titian

X graphics card with 12 G RAM.

2.D | Evaluation of synthetic CT

For each testing patient, the mean absolute error (MAE) of each

pixel value within patient body contour between sCT and real CT

was calculated as follows:

MAE¼∑n
i¼1 ICT ið Þ� IsCT ið Þj j

N

The peak signal to noise ratio (PSNR) is also evaluated as fol-

lows:

PSNR¼20log10
MAX
MSE

where MAX strands for maximum signal value of real CT, and MSE

stands for mean square error calculated by

MSE¼∑n
i¼1 ICT ið Þ� IsCT ið Þð Þ2

N

2.E | Treatment planning and dose calculation

The clinical plans with dual Volumetric Modulated Arcs Therapy

(VMAT) delivery technique were optimized on real CT (planning CT)

for 10 patients in testing group by the Eclipse 11.0 treatment plan-

ning system (Varian Medical System, Palo Alto, USA). For each

patient, the synthetic CT was imported into Eclipse, and rigidly regis-

tered with real CT. Then all the contours of target and organs at risk

were transferred from real CT to sCT. The clinical VMAT plan was

also transferred based on the registration of images. The same table

of Electron density to Housefield Unit was applied to both CT, then

the dose distribution on both sCT and CT were calculated by Aniso-

tropic Analytical Algorithm (AAA) with a dose matrix resolution of

0.3 × 0.3 × 0.3 mm3.

The Dose-Volume Histograms (DVHs) for both plans of all test-

ing patients were analyzed. Moreover the gamma analysis was per-

formed between the dose distributions on real and synthetic CT at

3%/3 mm and 2%/2 mm criteria, respectively.

F I G . 2 . Comparison of (a) T1-weighted TIRM Dark Fluid MRI, (b) synthetic computed tomography (CT), (c) planning CT and (d) difference
map in transverse, sagittal, and coronal views for one example patient.
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F I G . 3 . Dose distribution of a clinical
VMAT plan calculated on planning (a) and
synthetic (b) computed tomography.

F I G . 4 . Gamma analysis between the
dose distribution of synthetic and planning
computed tomography in transverse,
sagittal, and coronal planes with criteria of
3 mm/3% (a) and 2 mm/2% (b),
respectively.

TANG ET AL. | 59



3 | RESULT

Each training of model parameters with our dataset cost around

15 h, while generating a single synthetic CT from an input MRI using

the trained model took only 15 s on average.

3.A | Image comparison between synthetic and real
CT

For all testing patients, the average and standard deviation of MAE

between synthetic and real CT were 60.13 � 13.72 HU,

60.51 � 14.23 HU, 61.14 � 12.56 HU, 62.28 � 13.85 HU,

59.38 � 13.23 HU using training folds 1, 2, 3, 4, and 5, respectively.

The average of MAE and PSNR over all cross validation dataset was

60.52 � 13.32 HU and 49.23 � 1.92 dB. Figure 2 showed the com-

parison of MRI, synthetic CT, planning CT and difference map for

one example patient. A good visual result of CT synthesis by GAN

was shown, except for some blurry area in the vicinity of the inter-

face between skull and brain tissue.

3.B | Dosimetric comparison between synthetic and
real CT

For each testing patient, a VMAT radiotherapy plan was optimized

on the planning CT then calculated again on the corresponding sCT.

For the comparison of dose distribution, the result was illustrated in

Fig. 3 for a representative patient, which showed a very similar dis-

tribution on both CTs. The gamma analysis was also applied over all

testing patients and the mean value of 99.76% (range 99.31% to

100%) and 97.25% (range 95.95% to 99.65%) were obtained with

criteria of 3 mm/3% and 2 mm/2%, respectively. The main dosimet-

ric discrepancy (gamma value > 1) located at the skin surface where

the photon beam entered, also at the dose falling region around the

tumor, as shown in Fig. 4 for one example patient. Besides, The

DVH parameters of target and organs at risk (OARs) on both CTs

were calculated with the contours delineated on planning CT, then

compared with nonparametric paired-sample Wilcoxon signed-rank

sum test, the average of each parameters were listed in Table 1. No

significant differences were found for both target and OARs. The

comparison of DVH for one example patient was illustrated in Fig. 5.

On the converse, a VMAT plan was optimized on synthetic CT

following clinical protocols, then transferred and calculated on plan-

ning CT. and the gamma analysis showed 99.96% and 97.99% with

criteria of 3 mm/3% and 2 mm/2%, respectively, which is close to

the comparison result when the VMAT plan was optimized on the

planning CT as stated before.

4 | DISCUSSION

To explore the feasibility of MR-only radiotherapy, we developed a

generative adversarial network to generate synthetic CT from one

single MRI sequence. Through the training by pairs of MRI and CT

of brain scanning, the GAN model could translate the input T1-

Weighted TIRM Dark Fluid MRI into CT images. In the field of trans-

lating MRI to CT, most of previous studies required dedicated MRI

sequences (dUTE and Dixon), or a combination of multiple MRI

modalities as the input data to allow a better contrast of bone, even

TAB L E 1 Comparison of mean DVH parameters of plans on synthetic and planning computed tomography (CT) for 10 testing patients

DVH parameter Synthetic CT (range) Planning CT (range) Dose difference Wilcoxon P-value

PTV D95 (Gy) 60.17 (59.92 to 60.79) 60.15 (59.86 to 60.95) 0.033% 0.623

Dmean (Gy) 60.95 (60.55 to 62.22) 61.03 (60.65 to 62.25) −0.13% 0.16

Dmax (Gy) 63.19 (62.43 to 64.43) 63.27 (62.5 to 64.66) −0.13% 0.159

Len Dmax (Gy) 3.03 (0.79 to 6.71) 2.99 (0.8 to 6.44) 1.33% 0.888

Brain stem D1cc (Gy) 18.37 (3.07 to 34.1) 18.34 (3.11 to 33.9) 0.16% 0.499

Optic nerve Dmax (Gy) 6.13 (1.38 to 12.27) 6.17 (1.3 to 12.6) −0.65% 0.091

Optic chiasma Dmax (Gy) 7.76 (1.25 to 13.59) 7.82 (1.21 to 13.85) −0.77% 0.26

Brain Dmean (Gy) 22.27 (15.23 to 31.75) 21.99 (15.1 to 31.4) 1.27% 0.141

F I G . 5 . Comparison of DVH of a clinical VMAT plan calculated on
the synthetic computed tomography (CT) (Dashed) and planning CT
(Solid).
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some manually contouring coincide with them.11 Considering keep-

ing acquisition time as short as possible and avoiding labor-intensive

processing, the direct utilizing of one single clinically common

sequence is favorable in the workflow of translating MRI to CT,

which motivated us to use T1-weighted clinical sequence in this

study.

The average of MAE between synthetic CT and planning CT was

60.77 � 13.99 HU, which is better than some previously reported

results using atlas-based or machine learning methods.25–31 A few

studies used the neural network,12,13,16,17,32 either GAN or CNN.

Although different network architectures and modalities of training

data, finally we achieved similar or even better results compared to

theirs.

The field of MRI translation to CT covers both diagnostic and

therapeutic radiology. Since our prior goal was to use the synthetic

CT from MRI for dose calculation in clinical workflow, the dosimetric

performance of synthetic CT was also evaluated by comparing dose

distribution of the same clinical plan delivered, respectively, on syn-

thetic CT and planning CT. A mean pass rate of 99.79% with 3 mm/

3 % criterion and 97.23% with 2 mm/2% criterion was similar to

other studies using deep learning approaches.13,33 While Kazemifar17

also utilized GAN network and show a slightly higher pass rate of

98.7% with 2 mm/2%. One of the distinctions in their study was the

use of mutual information as the loss function, instead of MAE in

ours. Since the performance of the neural network was also influ-

enced by other factors, i.e. training data, the improvement by using

MI still needs more studies to verify.

For the evaluation of DVH, we choose D95, mean dose and

maximum dose for PTV, and D1cc, mean dose and maximum dose

for OAR as pointed by the reference,34 which are highly relevant

clinical information. And all the metric of PTV and OAR showed no

significant difference through Wilcoxon signed rank-sum test, which

suggests a minimal risk from the use of sCT for dose calculation.

Furthermore, to explore the feasibility of plan optimization on

synthetic CT, we followed clinical protocols and optimized beam flu-

ences on synthetic CT for one patient, and transferred it to corre-

sponding CT image for dose calculation. The pass rate of gamma

analysis between dose distributions did not show significant differ-

ence referring to the comparison of dose recalculation of plan opti-

mized on planning CT. This indicates that the direct utilizing of the

sCT on beam fluences optimization does not bias plans on dosimet-

ric perspective.

Calculation on synthetic CT generated from MRI has gained

growing interest, mainly due to the enthusiasm of developing MR-

only workflow. On one hand, the advent of MR-guided Linac35 and

MR-guided 60Co radiotherapy36 encouraged the exploration of MR-

guided adaptive radiotherapy workflow, while the MR-only workflow

seems to be a promising approach that has the potential minimize

the cost of the daily adaptive routine. On the other hand, even

though the majority of clinic centers might not be equipped with

MRI-guided devices; however, the MRI-simulators or MRI diagnostic

scanners would likely be present in near future, so they have the

chance to benefit from MR-only workflow. Thus, a fast and accurate

approach of translating MRI to CT is desirable to be implemented in

the clinical workflow. Our studies show that the translation by neu-

ral network required only took around ten seconds on one single

GPU, and a state-of-the-art dosimetric accuracy can be achieved for

brain site.

5 | CONCLUSION

The GAN model can perform a fast synthesis of CT from a single

clinical MRI sequence, and high accuracy of CT number and dosime-

try was achieved. This accomplishment allows the elimination of CT

scanning in the radiotherapy workflow when CT images would not

be helpful for tumor delineation since MRI can provide better resolu-

tion of soft tissues.
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