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Traditional texture cluster algorithms are frequently used in engineering; however, despite their widespread application, these
algorithms continue to suffer from drawbacks including excessive complexity and limited universality. )is study will focus
primarily on the analysis of the performance of a number of different texture clustering algorithms. In addition, the performance
of traditional texture classification algorithms will be compared in terms of image size, clustering number, running time, and
accuracy. Finally, the performance boundaries of various algorithms will be determined in order to determine where future
improvements to these algorithms should be concentrated. In the experiment, some traditional clustering algorithms are used as
comparative tools for performance analysis.)e qualitative and quantitative data both show that there is a significant difference in
performance between the different algorithms. It is only possible to achieve better performance by selecting the appropriate
algorithm based on the characteristics of the texture image.

1. Introduction

Pattern recognition research places a significant emphasis
on the study of image classification. )e labeling of the
image samples with the appropriate categories after they
have been categorized is its responsibility. )e character-
istics of picture samples serve as the foundation for clas-
sification [1], with texture being one of the most important
features to use when attempting to characterize image
detail information [2]. Shape, color, texture, and other low-
level features as well as more complicated high-level feature
information are some examples of the characteristics of
picture samples. As a consequence of this, the investigation
of texture image feature extraction and classification
method is of significant significance, both in terms of
theory and practice.

Images with a texture can accurately reflect the surface
characteristics of the objects or scenes they depict, and they
are a visual element that is both common and important.
Because of this, the extraction and recognition of texture
pattern characteristics that are included in texture images
has always been an important study direction [3], particu-
larly in the fields of image understanding, pattern recog-
nition, and computer vision. )e primary goal of texture
classification is to extract discriminative texture features
from texture images. Once these features have been
extracted, some type of distance measurement and classifier
are applied to determine the category of the texture image.
)e most important aspect of research that goes into texture
image recognition is the process of extracting the features of
textured images. Even with powerful classifiers, it can be
difficult to obtain decent recognition results if the derived
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texture features lack the ability to differentiate between
different types of textures. Extensive research has been done
on texture images by academics, primarily in the areas of
texture feature extraction, texture image segmentation,
texture image classification, recognition, and others. )e
process of identifying textures requires the extraction of
important features from the textures [4]. )e accuracy of the
classification of texture images is significantly influenced by
the performance of the texture characteristics. Photos of
textures that have desirable textural qualities are simpler to
categorize. Bad texture features, on the other hand, make it
difficult to classify texture images, which not only take a long
time to classify but also have a poor classification effect. )is
is because bad texture features make it difficult to distinguish
between different types of textures. In addition to the
properties of the texture, the classification methods that are
used have a significant impact on the result of the classifi-
cation of texture images [5]. Methods that are effective in
classification cut down on the amount of time spent on the
process while simultaneously raising both classification ef-
ficiency and accuracy [6]. )erefore, the extraction of fea-
tures from texture images and the development of
classification schemes for those images are essential com-
ponents of texture image analysis.

Over the course of the past half century, academics from
both the United States and other countries have engaged in a
substantial amount of research on various textural aspects.
As our knowledge of texture images expands, a number of
different algorithms for the extraction of texture picture
features are presented and have gained widespread use. )e
gray-level co-occurrence matrix, also known as GLOM [6] is
themost representative approach to the process of extracting
features from texture pictures. )e extracted texture feature
has a strong effect on classification when applied to pho-
tographs with regular textures. )ere will be some corre-
lation and co-occurrence between the two pixels at some
distance because the texture image is generated by the pe-
riodicity change of gray distribution in spatial position. )is
means that there will be some distance between the two
pixels. )e GLCM algorithm analyzes an image’s texture in
order to characterize its features by locating gray-level co-
occurrences in space.

)e Markov Random Field (MRF) [7–9] and the Fractal
Dimension [10–12] are two approaches to texture seg-
mentation that have stood the test of time. Because the MRF
technique considers the texture picture to be a two-di-
mensional random process and assumes that each pixel’s
gray-value is solely related to that of the surrounding pixels,
the texture image is modeled as a two-dimensional MRF
model [13, 14]. )is is because the MRF technique assumes
that each pixel’s gray value is solely related to that of the
surrounding pixels. Because the parameters of the MRF
model can explain both the intensity and the direction of the
texture image, the features of the texture image correspond
to the parameters of the MRFmodel.)e result of this is that
the process of extracting features from a texture image is the
same as the process of estimating the model parameters in
the MRF approach, and the estimated parameters can be
used to characterize the features of the texture image. To put

it another way, the MRF technique utilizes the two-di-
mensional random process that is commonplace in con-
ventional signal analysis in order to describe the
characteristics of image textures [15]. )e primary objective
of the fractal dimension approach, which is classified as a
method of structural analysis, is to investigate the structure
and morphology of texture textons at various scales in
texture photographs. Many times, rather than using an
integer, a fraction will be used to express the fractal di-
mension. Researchers have shown that the roughness of an
image correlates with its fractal dimension. When the
corresponding image is more jagged, the fractal dimension
will be larger; conversely, when the matching image is
smoother, the fractal dimension will be smaller. Fractal
dimension can be used to represent the roughness of a
texture image because texture pictures exhibit self-similarity
and varied roughness at different scales. )is means that
fractal dimension can be used as the characteristic parameter
for the classification and segmentation of texture images
[16]. Another well-known approach to extracting features
from texture images is known as the Gabor filtering method.
It is analogous to the wavelet transform method of inves-
tigation. Both of them are capable of carrying out analyzes of
images at multiple resolutions. As a consequence of this,
another name for it is the Gabor wavelet approach. )e
Gabor filtering method takes into account the textural
properties of different scales as narrow-band signals. )e
method then extracts the features of these narrow-band
signals using filter-banks that have varying center fre-
quencies and bandwidths. Over the past few years, the Local
Binary Pattern (LBP) and its improved algorithm have
become the method of choice for extracting texture picture
features the majority of the time. )e LBP technique is the
method that is utilized themost frequently for the purpose of
texture feature extraction because the extracted texture
features not only have excellent texture classification ac-
curacy, but also have simple theory, efficient implementa-
tion, and invariance to monotonous lighting changes. )e
fundamental concept behind the LBP algorithm is to encode
the local neighborhood features and then calculate the
histogram of these encoded values as the texture image’s
feature description. )is process is repeated until all of the
local neighborhood features have been encoded.

As the technology for texture image classification im-
proves, more difficult and complex texture image processing
tasks are assigned, but the feature extraction methods that
have been around for a long time have noticeable bottle-
necks. In the field of texture picture feature extraction, the
method that is capable of self-learning has started to become
more popular.)e concept of deep learning refers to amodel
of neural networks that simulates the layered extraction of
human brain functions. It employs a multi-layer network
topology and learns from a huge number of training ex-
amples, which enables it to develop a very complicated
model and complete an extremely challenging task. As a
result, it can automatically extract discriminative charac-
teristics relevant for classification from samples. Although
deep learning has made significant advancements in texture
classification, the traditional method has reached a high level

2 Computational Intelligence and Neuroscience



of maturity after decades of development and is frequently
used in engineering. )is is in contrast to the situation with
deep learning, which has made significant advancements in
texture classification.

)is study will focus primarily on the analysis of the
performance of a number of different texture clustering
algorithms. In addition, the performance of traditional
texture classification algorithms will be compared in terms
of image size, clustering number, running time, and accu-
racy. Finally, the performance boundaries of various algo-
rithms will be determined in order to determine where
future improvements to these algorithms should be con-
centrated. Before moving on to the actual process of
extracting the texture features, the structure arrangement of
this paper begins by performing a Gabor filtering pre-
processing on the grayscale image. After that, the texture
image is clustered and segmented utilizing a number of
different clustering algorithms; the NMI and RI indicators
are calculated by comparing the obtained label value with the
ground-truth label; and finally, the results of the texture
segmentation are compared and analyzed qualitatively and
quantitatively.

2. Basic Feature Analysis of Texture Image

Texture images can be found anywhere in the environment
of day-to-day life, and it is not difficult to obtain or identify
them, as demonstrated in Figure 1. )ese features of the
texture pattern can describe the fundamental characteristics
of an object’s surface or structure, and they are a very
important aspect of human visual perception that contrib-
utes to cognitive function. Natural texture, artificial texture,
and a combination of the two are the most common types of
textures found in real-world images of textures. Many im-
ages, such as cloth, wood, and forests, among others, have
many similar repeated patch-units that are regularly dis-
tributed. )ese kinds of images are frequently referred to as
texture images, and the repeated regular distribution of
similar units is frequently referred to as the texture’s
features.

)e textural aspects of an image sometimes take the form
of patterns such as spots, grids, stripes, rings, and other
similar designs. )ese patterns are used to characterize the
spatial distribution and spatial relationship between the gray
levels of an image. It is a regular and thorough reflection of a
huge number of patch-units that have properties that are
either comparable or identical to one another. Generally
speaking, the surface characteristics of many items have very
distinct differences in texture. For instance, the texture of the
forest is more granular than the texture of the farmland, the
texture of the farmland is less visible than the texture of the
lake, and the rate of color change is more gradual. )e
resolution of an image has a significant impact on the
characteristics of its texture. For instance, high-resolution
pictures are able to portray the details of small ground
objects quite well, but the features of the textures themselves
are not readily apparent. Images of low resolution make the
details of textures and patterns much more apparent. Tex-
ture characteristics, in comparison to geometric features and

gray features, hold a greater amount of information. It has
found widespread application in a variety of domains. As a
result, the categorization and recognition of texture images
have emerged as significant tools for the human visual
system to use in its quest to understand its surroundings.)e
extraction of features from a texture image is both an es-
sential step and an important part of the process of com-
prehending and recognizing a texture image.

It is challenging for scholars to provide an exact and
consistent description of texture as well as a mathematical
model of texture as illustrated in Figure 2. )is is because
there is a vast diversity and complexity of texture patterns or
patch-units contained in texture photographs. As of recent
times, there is no definition of texture that is generally
recognized by everyone. Despite the absence of a stan-
dardized definition of texture and a mathematical model for
describing it, there is a general agreement among people on
the following qualities of texture images: textons are the
fundamental unit of visual perception in texture images, and
their appearance is characteristically repetitive. Textons can
appear in a texture image in either a regular or random
pattern, depending on the type of texture being created.
Because of this, the existence and repeatability of texton is
considered to be the most important quality of a texture
image. When viewed from this angle, a texture image can be
understood to represent the culmination of a process in
which texton is arranged or distributed in accordance with a
set of predetermined guidelines. )e detection of texture
textons and their repeatability has become the main study
content of texture image feature extraction and classification
because diverse texture textons and arrangement rules can
combine to generate thousands of distinct texture images. In
addition, texture textons typically depict regional aspects of
the texture images. )erefore, in order to properly grasp
texture images, we should not think of texture textons as a
point process but rather as regional features that fall within a
particular range. )is is the approach we should take when
analyzing and comprehending texture images.

Because each of the examples that are shown in Figures 1
and 2 only contains a single texture, it is very simple to
analyze the properties of each of the textures using these
figures. Actual photographs, on the other hand, exhibit a
diverse range of surface qualities. Mountains, rivers, farm-
lands, and lakes are all examples of different types of textured
regions that can be found in remote sensing photographs.
Nontexture regions are the parts of an image that have only
minor or no shifts in grayscale, whereas texture regions are
the parts of an image that have significant shifts in grayscale.
Texture regions are referred to as the parts of an image that
have significant shifts in grayscale. It is difficult to extract
different types of texture features using methods such as
threshold segmentation and others due to the fact that this is
the case. In Figure 3, you can see a picture that contains
multiclass textures, as well as the findings of the ground-
truth classification that correspond to those results (b). If
one wishes to successfully realize the texture description of a
texture region, the texture clustering approach is an absolute
necessity. A texture feature is a feature that has the ability to
successfully differentiate between various different textures.
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)e quality of its extraction has an effect on the accuracy of
the results obtained from texture classification, texture
identification, and any other subsequent texture image
processing. )is is because the accuracy of these outcomes is
dependent on the extracted texture. A good texture feature
should have the advantages of small computation, small
feature size, and strong discrimination capacity, and it
should also be able to be employed in engineering. )ese are
the characteristics of a good texture feature. )e traditional
method of texture classification has progressed to a more
developed stage and is widely applied in engineering.

After decades of development, the traditional method
has reached a high level of maturity and has seen widespread
application in the field of engineering. Researchers have
made significant strides in the area of texture feature ex-
traction and have proposed a number of different methods
to extract texture features. )ese methods include fuzzy
subspace clustering, K-mean, meanshift, Gaussian mixture

model, LBP, fractal model, and wavelet. )e research on
texture feature extraction methods is booming and has great
prospects, but the traditional methods have limitations as a
result of the hazy definition of texture and the high com-
plexity of texture. )is is due to the fact that texture can be
difficult to define. )is paper will focus primarily on the
analysis of the performance of various texture clustering
algorithms, as well as the comparison of that performance to
the performance of traditional texture classification algo-
rithms in terms of image size, clustering number, running
time, and accuracy. Additionally, the performance bound-
aries of various algorithms will be determined in order to
locate the focus for subsequent improved algorithms. In the
following section, we will discuss a number of traditional
texture clustering algorithms in order to compare and
contrast their performance with other algorithms in the
experimental section.

3. Typical Texture Clustering Algorithms

3.1. K-Means. )e K-Means algorithm is a method of un-
supervised learning and clustering that is founded on the
concept of partitioning. )e Euclidean distance is the
standard indicator that is utilized in the process of mea-
suring the degree of similarity between different data
samples. )e distance between the data objects has an ad-
verse effect on the similarity, which is expressed as a negative
proportion.)e greater the degree of resemblance, the closer
together the points fall. )e procedure requires the starting
number of clusters, k, as well as the initial cluster centers to
be specified in advance. )e position of the cluster center is

(a) (b)

(c) (d)

Figure 1: )e sample of single-texture images. (a) Wood; (b) Lake; (c) Forest; and (d) Farmland.

Figure 2: Texture feature and its textons.
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continuously updated, and the sum of squared error (SSE) of
the clusters is continuously lowered, all in accordance with
the degree to which the data item and the cluster center are
comparable to one another. )e clustering process is
complete and the ultimate outcome is attained when either
the SSE ceases to experience any changes or the objective
function converges.

)e flow diagram for K-mean cluster is shown in
Figure 4.
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where x is sample data; Ci is the i − th cluster center; m is the
dimension of the data sample; xj and Cij is the j-th attribute
value of x and Ci.

3.2. Fuzzy C-Means. One of the most popular unsupervised
clustering algorithms is called the K-means algorithm. )is is
due to the fact that it is both efficient and simple to use. It
employs an iterative methodology and serves a sizable user
population. On the other hand, the K-means algorithm is a
challenging approach to clustering that calls for the number of
cluster categories and classification groups to be determined in
advance. )is method has several limitations that must be
taken into consideration in the event that there is uncertainty
regarding the classification categories. )e Fuzzy C-means
(FCM) approach is a type of unsupervised data clustering that
utilizes membership in order to determine which category a
data sample is a part of in order to classify the sample. In
contrast to the k-means algorithm, the fuzzy clusteringmethod,
also known as FCM, is not as much of a fuzzy clustering
method as it is a hard one.When using fuzzy clustering, it is not
necessary for each data sample to be distinctly arranged within

(a) (b)

Figure 3: Texture images with multiple categories and its ground-truth. (a) Multi-texture images. (b) Ground-truth.
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a single category. On the other hand, as shown in Figure 5, the
category can be classified in an infinite variety of different ways.
When it comes to dealing with uncertain or hazy categories, the
fuzzy clustering method, also known as the FCM, is one of the
most prominent lines of clustering development and offers a
number of benefits. )e following equations can be used to
express clustering based on the FCM:

min J(u, v) � 􏽘
N

i�1
􏽘

C

j�1
u

m
ij xi − xj

�����

�����
2
,

subjected.to. 􏽘
C

j�1
uij � 1, uij ≥ 0,

(2)

where m is the membership factor, usually taken as 2;
‖xi − vj‖

2 represents the Euclidean distance from the current
data point to the center point; xi is the current pixel point, vj

is the cluster center point, N is the total number of data
points, C is the contour curve, and (2) indicates that the sum
of membership degrees of all categories is 1.

)e process of texture image segmentation can be
regarded as the type of sample data belongs to which kinds of
textures. For texture images, the pixels have uncertain
characteristics. )erefore, it is not appropriate to use the
hard clustering method to divide the categories of pixels.
FCM can better use the image information and apply the
fuzzy relationship to the texture image, which can have a
better and more accurate cluster & segmentation effect.

3.3. Gaussian Mixture Model. )e general expression of
Gaussian mixture model can be rewritten as:

P(x) � 􏽘
K

k�1
αkφ x θk

􏼌􏼌􏼌􏼌􏼐 􏼑, (3)

where K represents the number of Gaussian distributions
that make up the mixed distribution, i.e., Kclusters; αk

represents the mixing coefficient of the k − th cluster, αk > 0
and 􏽐

K
k�1 αk � 1 ; φ(x | θk) represents the Gaussian density,

where θk � (uk, σ2k) is denoted as follows:

φ x θk

􏼌􏼌􏼌􏼌􏼐 􏼑 � (2π)
− d/2 σ2k􏼐 􏼑

− 1/2
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(4)

uk, σ2k represent the mean and covariance matrix of the k −

th cluster, respectively; d represents the data dimension.
Gaussian mixture model adopts EM algorithm to esti-

mate parameters. EM algorithm consists of E-step and
M-step. In other words, it maximizes the log likelihood
function of incomplete data to estimate parameters of
Gaussian mixture model.

)e EM algorithm gradually improves the parameters of
the model by utilizing the EM steps in a randomized order.
)is results in a steady increase in the likelihood probability
of the parameters as well as the training samples, and the
program finally ends at the maximum point.

3.4. Mean-Shift. Mean-shift is an approach for density
clustering that can be utilized as a way for segmenting
texture images. Mean-shift is referred to as “shifting the
mean.”)e density gradient is utilized inmean-shift in order
to estimate the parameters of the samples, and the kernel
function is utilized in order to weight the samples. )e

START

Input The total number of data n and the number
of clusters k

Initialize k cluster centers

Assign each object Data to the nearest cluster

Convergence?

Output clustering results

Y

N

Figure 4: Flow diagram for K-mean cluster.

START

Initialize membership matrix U

Initialize k cluster centers

 Convergence?

Output cluster center and Membership matrix

Y

N

Calculate the cost function

Figure 5: Flow diagram for Fuzzy C-mean cluster.
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nonparametric kernel density estimation approach that
Silverman suggested offers a methodical demonstration.
Mean-shift makes use of the common kernel function
principle in order to propose a kernel-based density esti-
mation algorithm.)is algorithm assigns weights to samples
within each bandwidth in such a way that the contribution of
the offset to the mean-shift vector varies depending on the
distance between the sample and the offset point. In other
words, the kernel-based density estimation algorithm uses
the common kernel function principle.

Given n sample points xi, i � 1, 2, . . . , n in the d di-
mensional space Rd, the mean-shift vector at the points can
be written as follows:

Mh(x) �
1
k

􏽘
xi∈Sh

xi − x( 􏼁, (5)

)e Mean-shift algorithm is extended to the following
form:

Mh(x) �
􏽐

n
i�1 G xi − x( 􏼁/h( 􏼁w xi( 􏼁 xi − x( 􏼁

􏽐
n
i�1 G xi − x( 􏼁/h( 􏼁w xi( 􏼁

, (6)

where w(x)≥ 0 is the weight of sample point x; G(xi) is a
unit kernel function, G(x) � g(‖x2‖); h is the bandwidth of
the kernel function.

3.5. Fuzzy Subspace Clustering. In order to cluster high-
dimensional data sets, a new approach called fuzzy subspace
clustering (FSC) has been devised. )is algorithm was in-
spired by fuzzy clustering and LAC. )e FSC algorithm
locates the subspace clusters in which every dimension of the
initial data is linked to each cluster in terms of the proba-
bility or weight. In a dimension, the weight that is to be
attributed to the dimension is proportional to the cluster
density. )e higher the cluster density, the bigger the weight.
In other words, each cluster has an association with all
dimensions of the data that was initially collected.

One of the subcategories of clustering methods is re-
ferred to as fuzzy subspace clustering. In addition to having
strong denoising capabilities, it is capable of transforming
high-dimensional data into useful subspaces for clustering.
)e following is an expression that can be used to describe
the objective function of fuzzy subspace clustering:

JFSC � 􏽘
K

k�1
􏽘

d

i�1
w

T
ki ukj􏼐 xji − vki􏼐 􏼑

2
+ ε0),

subjected.to.ukj ∈ 0, 1{ }, 􏽘
K

k�1
ukj � 1; 0< 􏽘

n

j�1
ukj <N,

0≤wki ≤ 1; 􏽘
d

i�1
wki � 1,

(7)

where K, N, and d represent the number of clusters, the
number of samples and the characteristic dimension of
samples, respectively; ε0 is a small regularization constant. In
order to reflect the characteristics of subspace clustering, the
weight vector wk, k � 1, 2, . . . , K for each cluster is designed,

where ωki ∈ ωk indicates the contribution of the ith feature
to the k-th cluster.

Given training data set Dtr � (xi, yi), xi ∈ Rd,

yi ∈ R, i � 1, 2, . . . , N, X � x1, x2, . . . , xN􏼈 􏼉 is divided into k
classes by FSC algorithm, which is corresponding to K fuzzy
rules. Each feature selected by each fuzzy rule corresponds to
a fuzzy subset Ak

i . If the Gaussian function is used as the
membership function, the corresponding Gaussian function
parameters for Ak

i can be estimated as follows:

c
k
i � 􏽘

N

j�1
ukjx

k
ji/􏽘

N

j�1
ukj,

δk
i � h 􏽘

N

j�1
ukj x

k
ji − c

k
i􏼐 􏼑/􏽘

N

j�1
ukj,

(8)

where xk
ji denotes the ith feature selected by the j-th sample

xj � (xj1, xj2, . . . , xj d)T from the k-th fuzzy rule; ukj rep-
resents whether the j-th sample belongs to the K-th cluster.

3.6.MaximumEntropyClusteringAlgorithm. )eMaximum
Entropy Clustering Algorithm (also known as MEC) is one
of the clustering algorithms that is considered to be among
the most representative. )e mathematical representation of
it is straightforward, and the physical significance of what it
means is unmistakable. It is an algorithm for clustering that
is frequently employed by academics. )e MEC clustering
algorithm has better denoise than the classical fuzzy
C-means clustering, which makes it possible to obtain better
clustering and brings the segmentation results closer to the
ground-truth results. )is is especially useful in the seg-
mentation of texture images that contain noise. )e ex-
pression of the function that the MEC algorithm uses is as
follows:

min
U,V

􏽘

C

i�1
􏽘

N

j�1
uij xj − Vi

�����

�����
2

+ λ􏽘
C

i�1
􏽘

N

j�1
uij ln uij

⎛⎝ ⎞⎠,

subjected.to.0≤ uij ≤ 1􏽘
C

i�1
uij � 1, 1≤ i≤C, 1≤ j≤N.

(9)

4. Comparative Performance Analysis

Traditional methods have been refined over the course of many
decades, which has resulted in their high level of maturity and
widespread application in engineering. )e primary objective
of this study is to evaluate and assess a wide range of existing
typical texture classification algorithms, evaluate and assess
their performance with regard to image size, clustering
number, running time, and accuracy, and determine the
performance boundaries of various algorithms in order to
determine the focus for subsequent improved algorithms.

4.1. Data Sources for Texture Classification. In this study, the
Brodatz texture images found in the public database serve as
the basis for feature extraction and classification exercises
involving a variety of texture clustering techniques. 112
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distinct grayscale texture images are included in the Brodatz
texture dataset. Each image has a resolution of 640 pixels by
640 pixels and 8 bits. Figure 6 depicts the 10 representative
texture images that were chosen for the study, and they are
available for download at http://www.ux.uis.no/tranden/
brodatz.html. )is selection was made to make the analy-
sis more manageable. )e Brodatz texture image that we
have chosen is a composite image that is made up of seven
individual basic texture images, and the size of the composite
image has been resized to match the size of the individual
basic texture photographs. In order to create an accurate
representation of the environment in which the real dataset
was collected, Gaussian noise with varying standard devi-
ations was applied to each texture image.

For the purpose of the experiment, each texture image
with a resolution of 640 by 640 pixels needs to be segmented
into sixteen nonoverlapping subimages of either 100 by 100
or 124 by 124 pixels. To put that another way, the experiment
requires a library of texture images with 640 different
subimages, but we only chose 10 representative photos to
analyze. In accordance with the experimental steps, the
feature of each sub-image is extracted. In the first step, a
Gabor filtering preprocessing operation is carried out on the
grayscale image, and this operation extracts the features of
the image’s texture.

4.2. Experimental Setup

4.2.1. Comparison Algorithm. After decades of growth, the
traditional technique has reached a high level of maturity
and has seen widespread use in the field of engineering. In
the area of texture feature extraction, researchers have made
significant strides, leading to the development of new al-
gorithms such as K-means clustering algorithm, Fuzzy
C-Means algorithm, Gaussian mixture model, Mean-Shift,
Fuzzy Subspace clustering, and Maximum Entropy Clus-
tering Algorithm. All of these algorithms were proposed by
the researchers. )e theory behind several algorithms as well
as the technique of putting them into practice was presented
in Section 2 of this study. It is important to note that all of the
comparison algorithms used for this research employ open
source MATLAB code, and the default values for their

parameters. )is makes quantitative analysis of following
trials more convenient. )e operational system is a 32 bit
version of Windows 10, and the programming environment
is MATLAB 7.10.0.499. )e experimental hardware consists
of an Intel Core i5-7240 CPU, which has a basic frequency of
3.40GHz and 4GB of memory (R2017a).

4.2.2. Evaluation Criteria. In order to quantitatively eval-
uate the performance of different comparison texture
clustering algorithms, the experiment adopts running time,
Rand index (RI) and Normal Mutual Information (NMI) for
quantitative analysis. )e calculation equation of RI and
NMI is shown in the following equations:.

NMI �
􏽐

c
i�1 􏽐

c
j�1 NijlogN · Nij􏼐 􏼑/Ni · Nj

�������������
􏽐

c
i�1 NilogNi/N

􏽱 ��������������
􏽐

c
j�1 NjlogNj/N

􏽱 , (10)

RI �
f00 + f11

N(N − 1)/2
. (11)

4.3. Performance Analysis for Different Texture Clustering
Algorithms. In our experiment, we begin by applying Gabor
preprocessing to the texture image in order to reduce the
amount of interference from the surrounding noise. Based
on the preprocessed data, we next employ a variety of ap-
proaches to extract features and cluster texture. With the
Gabor filter, you can accurately depict and identify various
textures. Using a Gaussian kernel function in the spatial
domain, a two-dimensional Gabor filter is equivalent. Be-
cause of the multiplicative convolution feature, the Fourier
transform of the Gabor filter impulse response is a con-
volution of the harmonic function Fourier transform and the
Gaussian function Fourier transform. In order to construct
the filter, two parts must be used: a real one and an
imaginary one that are orthogonal to one another. As a
result, there are three stages to the texture clustering process.
)e first step in the clustering process is to perform picture
preprocessing using the Gabormethod to reduce the amount
of noise in the image. Extracting texture feature vectors from
each pixel in an image, and then using these vectors to

Figure 6: )e sample of ten representative Brodatz texture images.
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generate picture features, is the second phase. )e final
clustering results are obtained in the third stage, which
involves applying a variety of clustering approaches. )e
texture feature vectors of each pixel in the image are pro-
cessed using these techniques. It is possible to produce a
clustered image by separating pixels into multiple clusters
and then using the texture clustering to display the resulting
image with different gray values for each of the different
clusters. As part of our evaluation of the various texture
clustering algorithms, we will undertake both qualitative and
quantitative data analysis.

In comparative experiment, we selected 10 representa-
tive images for analysis. However, due to space limitations,
this section only selects the clustering results of 6 texture
images for qualitatively discussing the results. Figures 7–11
are the clustering results of different algorithms for different
texture images.

Figure 7 is the clustering result of the texture image t21.
It can be clearly seen from the raw image that the texture
image should be divided into two categories, but except that
the results of mean-shift are messy, FCM, FSC, GMM,MEC,
and K-means can get more accurate results.)e boundary of
FSC and GMM is smooth, while other results are rough and
misclassified. )e essence of the two-dimensional K-means
model is that it draws a circle with the center of each cluster.
In other words, the center of the circle is the maximum
Euclidean distance from the center of a cluster to the center
of another cluster as the radius. )at means it truncates the
training set by a circle. Moreover, K-means requires that the
shape of these clusters must be circular. )erefore, the
cluster fitted by K-means model is very different from the
actual data distribution (maybe ellipse), and multiple cir-
cular clusters are often mixed and overlapped with each
other. In general, K-means has two shortcomings, which
makes its fitting effect on many data sets (especially low

dimensional data sets) unsatisfactory: the shape of texture is
not flexible enough, the fitting results are quite different
from the actual results, and the accuracy is limited.

Figure 8 is a clustering result of the texture image t22. It
can be seen that the raw image has three textures, and the
difference is small, GMM and K-means can get more ac-
curate results, while FCM, FSC, MEC, and mean-shift have
poor clustering results. )ere are a large number of mis-
classification phenomena in the background region of FCM.
From the results, it can be clearly seen that FCM algorithm
divides the upper and lower triangular regions very disor-
derly. MEC and mean-shift classify the two regions into one
class in the texture image.

Figure 9 is a clustering result of the texture image t31. It
is obvious in the result that although FCM algorithm has
segmented three categories in texture clustering, there is a
problem in the segmented region. )e upper rectangle and
the lower rectangle are not accurately segmented. However,
compared with the segmentation results of FSC and MEC
algorithm, the segmentation accuracy of FCM algorithm is
improved. From the results in Figure 9(f ), it can be seen that
the k-means algorithm directly classifies the regions with
very low density as the background, while the FCM algo-
rithm clearly divides the regions with low density.)erefore,
FCM algorithm can deal with uneven density region well.

Figure 10 is a clustering result of the texture image. From
the clustering results, it can be seen that FSC and MEC
algorithms classify the edges of two adjacent classes into two
classes, K-means algorithm segments the edges and back-
ground together, and FCM algorithm classifies the edges and
squares into one class. So FCM algorithm can also deal with
the uneven edge region.

As can be seen from the clustering results in Figure 11,
although the FSC and MEC algorithms segment the texture
of the middle region, they do not accurately segment the

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 7: Clustering results of different algorithms in texture image t21. (a) Raw image. (b) FCM. (c) FSC. (d) GMM. (e) MEC. (f ) K-means.
(g) Mean-shift. (h) Ground-truth.
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texture of the edge region. Figure 11 is a square region with
multiclass textures. From the ground-truth clustering re-
sults, FCM, FSC, GMM, and K-means can be used in some
grid regions, but the results are not ideal. In particular, the
category of boundary area is not accurate, resulting in
unclear boundary. Mean-shift divides several different
textures into the same category.

According to the above clustering results, compared with
the image segmentation results of K-means algorithm, FCM,
FSC, and mean-shift algorithm, GMM algorithm can reduce
the number of wrong segmentation regions and obtain good
segmentation results. Gaussian mixture model (GMM) can
be regarded as an optimization of K-means model. It is not
only a common technical means in industry, but also a

generative model. Gaussian mixture model tries to find the
mixed representation of multi-dimensional Gaussian
probability distribution, so as to fit arbitrary shape data
distribution.

In order to quantitatively evaluate the performance of
different comparison texture clustering algorithms, the ex-
periment adopts running time, Rand index (RI) and normal
mutual information (NMI) for quantitative analysis.
Tables 1–3 show the comparative analysis for running time,
rand index, and normalized mutual information. Table 1
shows the effect of image size on the running-time results.
Two different sizes of texture images are selected in the
experiment. For texture image with a size of 124×124, the
running time of FCM is 22.85, while the image processing

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 8: Clustering results of different algorithms in texture image t22. (a) Raw image. (b) FCM. (c) FSC. (d) GMM. (e) MEC. (f ) K-means.
(g) Mean-shift. (h) Ground-truth.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 9: Clustering results of different algorithms in texture image t31. (a) Raw image. (b) FCM. (c) FSC. (d) GMM. (e) MEC. (f ) K-means.
(g) Mean-shift. (h) Ground-truth.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 10: Clustering results of different algorithms. (a) Raw image. (b) FCM; (c) FSC. (d) GMM. (e) MEC. (f ) K-means. (g) Mean-shift.
(h) Ground-truth.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 11: Clustering results of different algorithms. (a) Raw image. (b) FCM. (c) FSC. (d) GMM. (e) MEC. (f ) K-means. (g) Mean-shift.
(h) Ground-truth.

Table 1: Comparative analysis for running time.

Images Size Cluster FCM FSC GMM MEC Kmeans Mean-shift
T21 100×100 2 34.51 6.32 7.50 3.26 3.55 15.93
T22 100×100 2 9.11 5.59 8.10 3.42 3.45 28.42
T31 100×100 3 21.99 5.64 16.84 4.39 5.94 9.77
T32 100×100 3 18.69 7.74 8.29 4.07 4.58 15.45
T41 100×100 4 18.69 10.40 58.70 6.87 6.99 11.74
D1 124×124 7 22.85 23.34 192.58 17.77 17.16 24.93
Z2 100×100 5 34.13 14.24 62.53 13.12 13.30 28.61
Z3 100×100 2 23.65 4.34 10.39 3.74 3.44 13.62
Z4 100×100 2 13.87 4.21 9.93 3.93 4.06 16.45
Z5 100×100 2 7.62 3.25 20.93 2.73 3.42 4.80

Computational Intelligence and Neuroscience 11



time of 100×100 is 18.69. In general, the running time of
124×124 pixels image is longer than that of 100∗100 for any
algorithm. From this, we can conclude that the size of the
image determines the length of the running time. )e larger
the size of image, the slower the running time.

In this experiment, a variety of experiments are carried
out on the number of clusters. Five synthetic texture images
with two clusters, two images with three clusters, one image
with four clusters, one image with five clusters, and one image
with seven clusters are selected. For example, there are seven
clusters in D1. As for the RAND index, when the number of
clusters is more, the value of the RAND index is inversely
proportional. In other words, the more the number of
clusters, the lower the value of the RAND index. In nor-
malized mutual information, we can also see that when the
number of clusters is greater, the value of normalized mutual
information is inversely proportional. )e more the number
of clusters, the lower the value of NMI as shown in Tables 1-2.

In texture image D1 with the size of 124×124, it can be
seen that GMM algorithm and K-means algorithm have
better effects. For the three evaluation indicators, GMM
segmentation has the best effect. It can be seen from Table 1
that MEC algorithm has the fastest running time, but the
GMM algorithm has the best clustering results for Rand
index and normalized mutual information, but MEC is not
the worst. )erefore, the correlation between running time
and clustering performance index is not strong. By com-
paring result of five images with two clusters and result of
two images with three clusters, it is concluded that when the
image texture is relatively independent, it will be easier to
segment. When a texture in image contains another texture,
it will cause large errors and cause misclassification.

)rough the data analysis in Tables 2 and 3, each al-
gorithm can find that there is a proportional relationship
between Rand index and normalized mutual information,
which is the embodiment of the clustering performance.
When one value is larger, the other is larger, and the value of
rand index is larger than that of normalized mutual
information.

5. Conclusion and the Future Work

Traditional texture cluster algorithms have seen widespread
application in engineering, but despite this, there are on-
going challenges associated with their high complexity and
limited universal applicability. )is paper focuses primarily
on the analysis of the performance of various texture
clustering algorithms. It also compares the performance of
traditional texture classification algorithms in terms of
image size, clustering number, running time, and accuracy.
Finally, it determines the performance boundaries of various
algorithms in order to locate the focus for subsequent im-
proved algorithms. For the purposes of the experiment, a
number of traditional clustering algorithms have been
chosen to serve as benchmarks for evaluating overall per-
formance. Both qualitative and quantitative findings point to
the fact that the performances of various algorithms are
quite distinct from one another. Better performance can
only be achieved by selecting the appropriate algorithm in
accordance with the characteristics of the image’s texture. In
the future, we are going to conduct an analysis of the texture
segmentation algorithm that is based on deep learning. In
addition, we are going to conduct an in-depth comparison of
the conventional algorithm and the intelligent algorithm in

Table 2: Comparative analysis for Rand Index (RI).

Images Size Cluster FCM FSC GMM MEC Kmeans Mean-shift
T21 100×100 2 0.92 0.95 0.97 0.96 0.96 0.76
T22 100×100 2 0.74 0.73 0.91 0.74 0.91 0.84
T31 100×100 3 0.84 0.88 0.91 0.81 0.78 0.80
T32 100×100 3 0.79 0.91 0.92 0.84 0.93 0.85
T41 100×100 4 0.61 0.91 0.92 0.79 0.91 0.88
D1 124×124 7 0.66 0.72 0.76 0.62 0.76 0.71
Z2 100×100 5 0.71 0.75 0.85 0.66 0.74 0.80
Z3 100×100 2 0.72 0.72 0.74 0.72 0.70 0.70
Z4 100×100 2 0.76 0.73 0.77 0.80 0.81 0.59
Z5 100×100 2 0.90 0.91 0.87 0.91 0.94 0.93

Table 3: Comparative analysis for normalized mutual information (NMI).

Images Size Cluster FCM FSC GMM MEC Kmeans Mean-shift
T21 100×100 2 0.76 0.85 0.88 0.85 0.86 0.52
T22 100×100 2 0.39 0.31 0.67 0.40 0.66 0.49
T31 100×100 3 0.56 0.70 0.74 0.55 0.53 0.55
T32 100×100 3 0.58 0.73 0.78 0.61 0.79 0.61
T41 100×100 4 0.34 0.74 0.75 0.51 0.71 0.64
D1 124×124 7 0.31 0.36 0.50 0.30 0.48 0.42
Z2 100×100 5 0.43 0.48 0.51 0.33 0.48 0.44
Z3 100×100 2 0.36 0.45 0.49 0.35 0.33 0.37
Z4 100×100 2 0.48 0.45 0.51 0.49 0.52 0.34
Z5 100×100 2 0.70 0.72 0.68 0.76 0.80 0.77
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order to determine the conditions under which they can
adapt and the boundaries of their performance.

Data Availability

)e dataset used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China (No. 61862051), the Science and Tech-
nology Foundation of Guizhou Province (No. [2019]1299), the
Top-notch Talent ProgramofGuizhou province (No. KY[2018]
080), the Natural Science Foundation of Education of Guizhou
province (No. [2019]203) and the Funds of Qiannan Normal
University for Nationalities (Nos. qnsy2018003, qnsy2019rc09,
qnsy2018JS013, and qnsyrc201715).

References

[1] A. Vailaya, M. Figueiredo, A. Jain, and Hong-Jiang Zhang,
“Image classification for content-based indexing,” IEEE
Transactions on Image Processing, vol. 10, no. 1, pp. 117–130,
2001.

[2] M. Ohi, Y. Li, Y. Cheng, and T. Walz, “Negative staining and
image classification — powerful tools in modern electron
microscopy,” Biological Procedures Online, vol. 6, no. 1,
pp. 23–34, 2004.

[3] S. Bandyopadhyay and U. Maulik, “Genetic clustering for
automatic evolution of clusters and application to image
classification,” Pattern Recognition, vol. 35, no. 6,
pp. 1197–1208, 2002.

[4] M. N. Robert, “Image classification by a two-dimensional
hidden Markov model,” IEEE Transactions on Signal Pro-
cessing, vol. 12, no. 9, pp. 988–992, 2000.

[5] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of
local binary pattern operator for texture classification,” IEEE
Transactions on Image Processing: A Publication of the IEEE
Signal Processing Society, vol. 19, no. 6, pp. 1657–1663, 2010.

[6] R. Manthalkar, P. K. Biswas, and B. N. Chatterji, “Rotation
invariant texture classification using even symmetric Gabor
filters,” Pattern Recognition Letters, vol. 24, no. 12,
pp. 2061–2068, 2003.

[7] T. Kasetkasem, M. K. Arora, and P. K. Varshney, “Super-
resolution land cover mapping using a Markov random field
based approach,” Remote Sensing of Environment, vol. 96,
no. 3-4, pp. 302–314, 2005.

[8] R. Paget and I. D. Longstaff, “Texture synthesis via a noncausal
nonparametric multiscale Markov random field,” IEEE
Transactions on Image Processing, vol. 7, no. 6, pp. 925–931,
1998.

[9] J. Zhang, “)e mean field theory in EM procedures for
Markov random fields,” IEEE Transactions on Signal Pro-
cessing, vol. 40, no. 10, pp. 2570–2583, 1992.

[10] X. Chen, B. Neubert, Y. Q. Xu, and S. B. Kang, “Sketch-based
tree modeling using Markov random field,” ACM Transac-
tions on Graphics, vol. 27, no. 5, pp. 345–356, 2008.

[11] X. Liu, D. L. Langer, M. A. Haider, Y. Yang, M. N. Wernick,
and I. S. Yetik, “Prostate cancer segmentation with simulta-
neous estimation of Markov random field parameters and
class,” IEEE Transactions on Medical Imaging, vol. 28, no. 6,
pp. 906–915, 2009.

[12] F. Zhou, Q. Chen, B. Liu, and G. Qiu, “Structure and texture-
aware image decomposition via training a neural network,”
IEEE Transactions on Image Processing, vol. 29, pp. 3458–
3473, 2020.

[13] Y. Jiang, X. Gu, D. Wu et al., “A novel negative-transfer-
resistant fuzzy clustering model with a shared cross-domain
transfer latent space and its application to brain CT image
segmentation,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 18, no. 1, pp. 40–52, 2021.

[14] M. V. Boland and R. F. Murphy, “A neural network classifier
capable of recognizing the patterns of all major subcellular
structures in fluorescence microscope images of HeLa cells,”
Bioinformatics, vol. 17, no. 12, pp. 1213–1223, 2001.

[15] G. H. Liu, L. Zhang, Y. K. Hou, Z. Y. Li, and J. Y. Yang, “Image
retrieval based on multi-texton histogram,” Pattern Recog-
nition, vol. 43, no. 7, pp. 2380–2389, 2010.

[16] M. Li, J. Zhou, D. Wang, P. Peng, and Y. Yu, “Application of
clustering-based analysis in MRI brain tissue segmentation,”
Computational and Mathematical Methods in Medicine,
vol. 2022, p. 1, 2022.

Computational Intelligence and Neuroscience 13


